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1. Introduction

In this paper we study a new type of trust region method for solving the
unconstrained optimization problem,

min
x∈<n

f(x). (1.1)

Our goal is to design an algorithm that retains the excellent convergence
properties of trust region methods, but is more economical to implement
when the number of variables is large.

A trust region method calculates a trial step by solving the subproblem

min
d∈<n

gT
k d +

1
2
dT Bkd ≡ φk(d) (1.2)

subject to ||d||2 ≤ ∆k, (1.3)

where gk = ∇f(xk) is the gradient of the objective function at the current
approximate solution, Bk is an n×n symmetric matrix which approximates
the Hessian of f , and ∆k > 0 is a trust region radius. One of the advantages
of trust region methods, as compared with line search methods, is that Bk

is allowed to be indefinite.
After obtaining a trial step dk, which is an exact or approximate solution

of (1.2)-(1.3), trust region algorithms compute the ratio ρk between the
actual reduction in the function, f(xk) − f(xk + dk), and the predicted
reduction, φk(0)− φk(dk). The trust region radius ∆k is updated according
to the value of this ratio ρk. Now, if the step dk is not successful, that is if
f(xk + dk) ≥ f(xk), one rejects the step, sets xk+1 = xk, reduces the trust
region radius, and resolves the problem (1.2)-(1.3). This strategy is quite
adequate for small problems.

However, if the number of variables is large, resolving the trust region
problem can be costly, since this requires solving one or more linear systems
of the form

(Bk + λI)d = −gk (1.4)

(see for example Dennis and Schnabel (1983)). In contrast, line search meth-
ods require very little computation to determine a new trial point. There-
fore we ask how to incorporate backtracking line searches in a trust region
method, so as to avoid resolving the subproblem when the step is not suc-
cessful.

Introducing line searches, however, may weaken the convergence prop-
erties of the algorithm. Therefore we begin by discussing two problematic
cases that may occur in practice, and how to cope with them.
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When the search direction in a line search algorithm is nearly orthogonal
to the steepest descent direction −gk, a very small stepsize will normally be
required to obtain an acceptable step. In some cases, rounding errors may
cause the line search to fail. In similar circumstances, a trust region algo-
rithm will reduce the trust region and the new trial step will tend to the
steepest direction. This property makes the method more robust with re-
spect to noise and rounding errors (Carter (1991)), and should be preserved.

The second difficult case is when the search direction in a line search
algorithm, or the trial step in a trust region method, are excessively large,
which may be caused by a very small matrix Bk. In this case, reducing the
trust region will give trial steps that are nearly in the direction of the first
failed trial step. The trust region method will, in this case, behave similarly
to a backtracking line search method – except that its computational cost
will be much higher. In this case it would be advantageous to perform a
backtracking line search.

We conclude that backtracking should be performed provided the direc-
tion of search is sufficiently downhill. In this paper we show that this can
safely be done either along a straight line, or along a curved path, since we
find a way of solving (1.2)-(1.3) so that the trial step dk is always a direction
of sufficient descent for the objective function. By this we mean that the
angle between dk and −gk will be bounded away from π/2 if gk is bounded
away from zero, and if ‖dk‖ and ‖Bk‖ are bounded above. This property
will allow us to establish very satisfactory convergence results. Toint (1982)
has also incorporated line searches in a trust region method, but in his al-
gorithm line searches are carried out at every iteration. In our algorithm, a
backtracking line search is performed only when the trial point xk + dk fails
to give a lower objective function value.

The theory and implementation of trust region methods has received
much attention (see for example Fletcher (1987); Gay (1981); Moré (1983);
Moré and Sorensen (1983); Powell (1975); Sorensen (1982a, 1982b); Powell
(1984) and Eisenstat and Walker (1991)). The analysis of this paper is based
on this work.

Notation. Throughout the paper ‖ · ‖ denotes the Euclidean vector norm or
its induced matrix norm. The generalized inverse of a matrix A is denoted by
A+, and the angle between two vectors v1 and v2 is denoted by < v1, v2 >.
The eigenvalues of a symmetric matrix A are denoted by σ1(A) ≥ . . . ≥
σn(A). We indicate that a matrix is positive semi-definite by A ≥ 0.
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2. The Subproblem

In this section, we give some properties of the subproblem (1.2)-(1.3),
and consider a few techniques for computing an approximate solution of it.
We first recall the following well known result (see for example Moré and
Sorensen (1983) and Gay (1981)).

Lemma 2.1 A vector d∗ ∈ <n is a solution of the problem

min
d∈<n

gT d +
1
2
dT Bd ≡ φ(d) (2.1)

subject to ||d|| ≤ ∆, (2.2)

where g ∈ <n, B ∈ <n×n is a symmetric matrix, and ∆ > 0, if and only if
||d∗|| ≤ ∆ and there exists λ∗ ≥ 0 such that

(B + λ∗I)d∗ = −g (2.3)

(B + λ∗I) ≥ 0 (2.4)

and
λ∗(∆− ||d∗||) = 0. (2.5)

To express the solution of the trust region problem in closed form it
is convenient to make use of some properties of generalized inverses. Sup-
pose that A is a symmetric and semi-definite n × n matrix with spectral
decomposition

A = QΛQT , (2.6)

where Λ = diag (σ1, . . . , σr, 0, . . . 0), with σ1 ≥ . . . ≥ σr > 0, and Q =
[q1, . . . , qn] is orthogonal. We define the generalized inverse of A by

A+ = QΛ+QT (2.7)

where Λ+ = diag ( 1
σ1

, . . . , 1
σr

, 0, . . . , 0). By writing A = Σr
i=1σiqiq

T
i it is easy

to show that if d solves
Ad = −g (2.8)

for some vector g ∈ <n, then

d = −A+g + v, (2.9)
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where v is in the null space of A. It is also clear that g ∈ span [q1, . . . , qr].
Using these facts we obtain

gT A+g ≥ ‖g‖2/σ1. (2.10)

Applying these results to the system (2.3) we see that the solution of the
trust region problem is given by

d∗ = −(B + λ∗I)+g + v, (2.11)

for some v in the null space of B + λ∗I; we also have that gT v = 0.
By considering the maximum reduction of the quadratic model φ along

the steepest descent direction −g one obtains a lower bound for the maxi-
mum reduction φ(0)− φ(d) within the trust region ||d|| ≤ ∆.

Lemma 2.2 (Powell, 1975) If d∗ is a solution of (2.1)-(2.2), then

φ(0)− φ(d∗) ≥ 1
2
||g||min{∆, ||g||/||B||}. (2.12)

The global convergence theory of trust region algorithms only requires
that the computed trial step dk satisfies

φk(0)− φk(dk) ≥ β||gk||min{∆k, ||gk||/||Bk||} (2.13)

for all k, where β is a positive constant. Inequality (2.13) is clearly satisfied
if dk is the exact solution of (1.2)-(1.3). Some other choices of the trail step
dk, such as the dogleg step of Powell (1970), and the minimum of φ(d) over
a two-dimensional subspace within the trust region (Dennis and Mei (1979);
Shultz, Schnabel and Byrd (1985)), also satisfy (2.13). One of the main
requirements on our algorithm will be that it satisfy (2.13).

Since our algorithm will perform a backtracking line search when the
trial step dk increases the objective function, we shall require that dk be suf-
ficiently downhill. Therefore we now study the descent properties of search
directions generated by trust region methods. We first consider the case
when the trust region constraint is active.

Lemma 2.3 If d∗ is a solution of (2.1)-(2.2), if ||d∗|| = ∆, and if λ∗ ≥ 0
satisfies (2.3)-(2.4), then

0 ≤ λ∗ ≤ ||g||/∆− σn(B) (2.14)

5



and

d∗T g ≤ − ||g||2
σ1(B)− σn(B) + ||g||/∆

, (2.15)

where σ1(B) and σn(B) are the largest and smallest eigenvalues of B, re-
spectively.

Proof. From (2.3) we have that

σn(B + λ∗I)||d∗|| ≤ ||g|| (2.16)

which implies that
σn(B) + λ∗ ≤ ||g||/∆ (2.17)

because ||d∗|| = ∆ and σn(B + λ∗I) = σn(B) + λ∗. This inequality and the
fact that λ∗ is non-negative give (2.14).

Equation (2.11) and inequalities (2.10) and (2.17) yield

d∗T g = −gT (B + λI)+g (2.18)
≤ −||g||2/σ1(B + λ∗I)
= −||g||2/(σ1(B) + λ∗)
≤ −||g||2/(σ1(B)− σn(B) + ||g||/∆). QED

In the case when ||d∗|| < ∆, we have from (2.5) that λ∗ = 0, and the
analysis is simple. Equations (2.11) and (2.18) hold and from (2.10) we
obtain

d∗T g = −gT B+g

≤ −||g||2/σ1(B). (2.19)

Combining (2.15) and (2.19), we obtain the following result.

Lemma 2.4 If d∗ is a solution of (2.1)-(2.2), then

d∗T g ≤ −1
2
||g||min{∆, ||g||/(2||B||)}. (2.20)

Proof. If ||d∗|| < ∆, we can see that inequality (2.20) follows from relation
(2.19) and the equality σ1(B) = ||B||.
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If ||d∗|| = ∆, by (2.15) and the fact that σ1(B)−σn(B) ≤ 2||B|| it follows
that

d∗T g ≤ −||g||2/(2||B||+ ||g||/∆)
≤ −||g||2/2max{2||B||, ||g||/∆}
= −1

2
||g||min{∆, ||g||/(2||B||)}. QED

This lemma shows that the optimal solution d∗ satisfies

cos(< d∗, − g >) = −d∗T g/||d∗|| ||g||
≥ 1

2
min{∆/||d∗||, ||g||/(2||B|| ||d∗||)}

≥ 1
2

min{1, ||g||/(2||B|| ||d∗||)}. (2.21)

We now show that the angle between d∗ and −g is a monotonic function
of ∆. To establish this result we assume that in the hard case we always
choose a solution at the boundary of the trust region. This will be spelled
out in detail in the proof of the following result.

Lemma 2.5 Assume that g 6= 0, let ∆2 > ∆1 > 0, and define d∆1 and d∆2

to be the solutions of (2.1)-(2.2) when ∆ = ∆1 and ∆ = ∆2, respectively.
Then

cos(< d∆1 , − g >) ≥ cos(< d∆2 , − g >). (2.22)

Proof. From Lemma 2.1, we know that there exist λ1 ≥ 0 and λ2 ≥ 0 such
that

(B + λ1I)d∆1 = −g, λ1(∆1 − ||d∆1 ||) = 0 (2.23)

(B + λ2I)d∆2 = −g, λ2(∆2 − ||d∆2 ||) = 0. (2.24)

We first show that λ1 ≥ λ2. By contradiction, assume that λ2 > λ1 ≥ 0.
A direct consequence of the condition λ2 > 0 is ||d∆2 || = ∆2. Using this
and (2.23)-(2.24) we have

0 ≤ (d∆1 − d∆2)
T (B + λ1I)(d∆1 − d∆2)

= (d∆1 − d∆2)
T [−(B + λ1I)d∆2 − g]

= (d∆1 − d∆2)
T (λ2I − λ1I)d∆2

= (λ2 − λ1)[dT
∆1

d∆2 − ||d∆2 ||2
≤ (λ2 − λ1)[∆1∆2 −∆2

2] < 0, (2.25)
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which is a contradiction. Therefore λ1 ≥ λ2.
For the rest of the proof we consider three cases.
I) If (B + λ2I) is positive definite, the lemma is true because one can

show that the function

θ(λ) = gT (B + λI)−1g/||(B + λI)−1g|| ||g||, (2.26)

which gives the cosine of the angle between d = −(B + λI)−1g and −g, is
monotonically increasing for all λ ≥ max{0,−σn(B)}.

II) If B + λ1I is singular then λ1 = −σn(B), and we must have from
the conditions λ1 ≥ λ2 and (B + λ2I) ≥ 0 that λ1 = λ2 = −σn(B) and
g ∈ Range(B − σn(B)I). In this case, which is frequently called the hard
case, there may be many solutions to both trust region problems, and as
suggested by Moré and Sorensen (1983) we will choose a solution at the
boundary of the trust region. Therefore we have that

cos(< d∆1 , − g >) = gT (B − σn(B)I)+g/∆1||g||
≥ gT (B − σn(B)I)+g/∆2||g||
= cos(< d∆2 , − g >). (2.27)

III) To complete the proof, we assume that B + λ1I is positive definite
and λ2 = −σn(B). Again, we see that g ∈ Range(B − σn(B)I), and by
(2.11) we have that ||d∆2 || ≥ ||(B − σn(B)I)+g||. Using this, and the fact
that θ(λ) is monotonically increasing we obtain

cos(< d∆1 , − g >) = gT (B + λ1I)−1g/||(B + λ1I)−1g|| ||g||
≥ lim

λ→−σn(B)
gT (B + λI)−1g/||(B + λI)−1g|| ||g||

= gT (B − σn(B)I)+g/||(B − σn(B)I)+g|| ||g||
≥ gT (B − σn(B)I)+g/||d∆2 || ||g|| . (2.28)

This shows that the lemma is true. QED

All of these results concern the exact solution of the trust region problem.
We now consider an approximate solution d(λ) of (2.1)-(2.2), defined by

d(λ) = −(B + λI)−1g, (2.29)

where λ ≥ max{0,−σn(B)} is a parameter such that B + λI is positive
definite. Let us assume for the moment that d(λ) satisfies the inequality

∆/γ ≤ ||d(λ)|| ≤ ∆, (2.30)
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for some constant γ > 1. Lemma 2.1 shows that d(λ) is the solution of (2.1)
subject to ||d|| ≤ ||d(λ)||. Consequently (2.12) and (2.20) give

φ(0)− φ(d(λ)) ≥ 1
2
||g||min{∆/γ, ||g||/||B||} (2.31)

and
d(λ)T g ≤ −1

2
||g||min{∆/γ, ||g||/2||B||}. (2.32)

These two properties – the reduction (2.31) in the model, and the sufficient
descent condition (2.32) – will ensure that the algorithm possesses good
convergence properties. However imposing the lower bound in (2.30) on the
size of the step may not always be appropriate; for example a Newton step
could be shorter than ∆/γ. Therefore we now derive an alternate condition
that will ensure that (2.31) and (2.32) are satisfied, without imposing a lower
bound on the size of the step.

Inequality (2.14) suggests the following upper bound for λ

λ ≤ ||B||+ (1 + ε)||g||/∆, (2.33)

where ε > 0 is a small number that ensures that B + λI is positive definite.
Consider any λ ≥ max{0,−σn(B)} for which B+λI is positive definite, and
for which (2.33) and

||d(λ)|| ≤ ∆ (2.34)

hold. For any such λ we have from (2.29) that

d(λ)T g = −gT (B + λI)−1g

≤ −||g||2/(||B||+ λ)
≤ −||g||2/(2||B||+ (1 + ε)||g||/∆)

≤ −1
2
||g||min{∆/2, ||g||/(2||B||)}. (2.35)

Using (2.29) and (2.35) we obtain

φ(0)− φ(d(λ)) = −gT d(λ)− 1
2
d(λ)T (B + λI)d(λ) +

1
2
λ||d(λ)||2

= −1
2
gT d(λ) + λ||d(λ)||2

≥ 1
4
||g||min{∆/2, ||g||/(2||B||)}. (2.36)
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We conclude from (2.31)-(2.32) and (2.35)-(2.36) that if either (2.30) or
(2.33) hold, then a feasible trial step d(λ) satisfies

φ(0)− φ(d(λ)) ≥ τ ||g||min{∆, ||g||/||B||} (2.37)

and
d(λ)T g ≤ −τ ||g||min{∆, ||g||/||B||}, (2.38)

where τ = min{1/8, 1/2γ}. The following algorithm computes an approx-
imate solution of the trust region problem (2.1)-(2.2) that satisfies either
(2.30) or (2.33).

Algorithm 2.6

Step 1. Given constants γ > 1 and ε > 0, set λ := 0.
If B is positive definite go to Step 2; else
find λ ∈ [0, ||B||+(1+ε)||g||/∆] such that B+λI is positive
definite.

Step 2. Factorize B +λI = RT R, where R is upper triangular, and
solve RT Rd = −g for d.

Step 3. If ||d|| ≤ ∆ stop; else solve RT q = d for q, and compute

λ := λ +
||d||2
||q||2

γ||d|| −∆
∆

; (2.39)

go to Step 2.

Our update formula for λ is based on the Newton step for the nonlinear
equation

ψ(λ) =
1

||d(λ)|| −
γ

∆
= 0 (2.40)

instead of the equation

ψ̄(λ) =
1

||d(λ)|| −
1
∆

= 0 (2.41)

considered by Moré and Sorensen (1983), because we allow d(λ) to lie in the
interval [∆/γ, ∆]. Due to the concavity of the function ψ(λ) (cf. Dennis
and Schnabel (1983)), it is easy to see that d(λ) calculated by Algorithm 2.6
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satisfies either (2.30) or (2.33). Thus the trial step d(λ) computed by Algo-
rithm 2.6 always satisfies inequalities (2.37) and (2.38). In the next section
we describe a trust region method with backtracking line search based on
these ideas.

3. The Algorithm and Convergence

If the trial step dk is computed at each iteration by Algorithm 2.6, we
know that there exists a positive constant τ such that

φk(0)− φk(dk) ≥ τ ||gk||min{∆k, ||gk||/||Bk||} (3.1)

and
dT

k gk ≤ −τ ||gk||min{∆k, ||gk||/||Bk||}. (3.2)

Thus dk is a direction of sufficient descent in the sense that the angle
between dk and −gk will be bounded away from π/2 if ||gk|| is bounded
away from zero and ||Bk|| is bounded above. Hence, if the trial step dk

is not acceptable, that is if f(xk + dk) ≥ f(xk), we can safely perform a
backtracking line search along dk: we find the minimum positive integer i
such that

f(xk + αidk) < f(xk), (3.3)

where α ∈ (0, 1) is a positive constant. Backtracking need not be along the
line segment joining xk and xk + dk. We can let the trial points be any
sequence d

(i)
k satisfying

||d(i+1)
k || ∈ [α1, α2]||d(i)

k ||, 0 < α1 < α2 < 1, (3.4)

and
cos(< d

(i)
k , − gk) ≥ cos(< dk, − gk >) (3.5)

for i = 0, 1, 2, ..., with d
(0)
k = dk. It is clear that the choice d

(i)
k = αidk

(backtracking along the direction dk), as well as a variety of curved line
searches, satisfy (3.4)-(3.5). It also follows from Lemma 2.5 that (3.4)-
(3.5) are satisfied if d

(i)
k is chosen to be an exact solution of the trust re-

gion problem (1.2)-(1.3) with ∆k replaced by ∆(i)
k , where ∆(0)

k = ||dk|| and
∆(i+1)

k ∈ [α1, α2]∆
(i)
k .

We can now describe the trust region algorithm with a backtracking line
search.
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Algorithm 3.1

Step 1. Given x1 ∈ <n and ∆1 > 0, choose constants c1, c2, c3 and
c4 such that 0 < c3 < c4 < 1 < c1, 0 < c2 < 1; set k := 1.

Step 2. Solve (1.2)-(1.3) inaccurately so that ||dk|| ≤ ∆k, and so
that (3.1) and (3.2) are satisfied. (This can be done by
means of Algorithm 2.6.)

Step 3. Compute f(xk + dk). If f(xk + dk) < f(xk) go to Step 4;
else find the minimum positive integer ik such that

f(xk + d
(ik)
k ) < f(xk) (3.6)

where d
(i)
k is chosen so that (3.4)-(3.5) are satisfied; com-

pute
xk+1 = xk + d

(ik)
k (3.7)

∆k+1 ∈ {||xk+1 − xk||, c4∆k}; (3.8)

go to Step 5.

Step 4. Compute
xk+1 = xk + dk, (3.9)

and
ρk =

f(xk)− f(xk+1)
φk(0)− φk(dk)

. (3.10)

If ρk ≥ c2 and ‖dk‖ < ∆k, set ∆k+1 = ∆k, otherwise define

∆k+1 ∈
{

[c3||dk||, c4∆k] if ρk < c2

[∆k, c1∆k] if ρk ≥ c2 and ‖dk‖ = ∆k .

(3.11)

Step 5. Compute g(xk+1) and Bk+1; set k := k + 1; go to Step 2.

We will not specify how the matrices Bk are computed; they could be
defined to be exact Hessians or quasi-Newton approximations. We note
for future reference that the algorithm decreases the trust region radius if
backtracking takes place (see (3.8)) or if the ratio ρk of actual to predicted
reduction in the function is not large enough (see (3.11)).

To analyze the new algorithm we make the following assumptions.
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Assumptions 3.2
1) The sequence {xk} generated by Algorithm 3.1 is bounded, that is

xk ∈ S (3.12)

for all k, S being a closed convex set in <n.
2) f is twice differentiable in S and there exists a constant M such that

||∇2f(x)|| ≤ M for all x ∈ S. (3.13)

Under the above assumptions, we will prove that the sequence {xk}
generated by Algorithm 3.1 is globally convergent in the sense that

lim inf
k→∞

||gk|| = 0. (3.14)

We proceed by contradiction. If (3.14) were not true, there would exist a
constant 0 < δ < 1 such that

||gk|| ≥ δ > 0 (3.15)

for all k. This, together with (3.1) and (3.2), shows that there exists a
positive constant µ such that

φk(0)− φk(dk) ≥ µmin{∆k, 1/||Bk||} (3.16)

and
dT

k gk ≤ −µmin{∆k, 1/||Bk||} (3.17)

for all k.
We define I to be the set of integers k such that ρk ≥ c2 (see Step 4).

Since Algorithm 3.1 ensures that {f(xk)} is monotonically decreasing we
have

∞∑

k=1

[f(xk)− f(xk+1)] ≥
∑

k∈I

[f(xk)− f(xk+1)]

≥ c2

∑

k∈I

[φk(0)− φk(dk)]

≥ c2µ
∑

k∈I

min{∆k, 1/||Bk||}. (3.18)

Define the sequence
Mk = 1 + max

1≤i≤k
||Bi||. (3.19)
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Since Assumptions 3.2 imply that {f(xk)} is bounded below, we have from
(3.18) and (3.19), that

∑

k∈I

min{∆k, 1/Mk} < ∞, (3.20)

so that
lim
k→∞
k∈I

min{∆k,
1

Mk
} = 0. (3.21)

We now show that this limit holds also for k /∈ I. If I is finite, we have from
(3.8) and (3.11) that ∆k+1 ≤ c4∆k for all large k, so that {∆k} → 0, which
gives

lim
k→∞

min{∆k, 1/Mk} = 0. (3.22)

If I is infinite we consider an index j /∈ I, and let ĵ be the greatest integer
less than j such that ĵ ∈ I. Since {Mk} is monotonically increasing, and
since ∆j ≤ c1∆ĵ we see that

min{∆j ,
1

Mj
} ≤ c1 min{∆ĵ ,

1
Mĵ

}, (3.23)

which due to (3.21) implies (3.22).
Note that the limit (3.22) was established under the assumption that

||gk|| is bounded away from zero. It states that if the algorithm fails then
either {∆k} converges to zero or ‖Bk‖ is unbounded. We will use this limit
to arrive to a contradiction. The next two lemmas consider the two cases
under which the trust region is reduced by Algorithm 3.1, namely when
ρk < c2 (Step 4), and when xk+1 is defined as xk + dik

k in the backtracking
Step 3 of the algorithm.

Lemma 3.3 If inequality (3.15) and Assumptions 3.2 are satisfied, then

∆k ≥ ||dk|| ≥ min{µ(1− c2), 1}/Mk (3.24)

for all sufficiently large k for which xk+1 is defined by Step 4 of Algorithm
3.1, and for which ρk < c2.

Proof. The algorithm ensures that ||dk|| ≤ ∆k. If the second inequality is
false, there exist infinitely many ki (i = 1, 2, ...) such that

ρki
< c2 (3.25)
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and
||dki

|| < min{µ(1− c2), 1}/Mki
. (3.26)

The first inequality in (3.24), (3.22) and (3.26) show that

lim
i→∞

||dki
|| = 0. (3.27)

Using the mean value theorem, (3.13), (3.19) and (3.26) we obtain

ρki
= 1 +

1
2

(dT
ki

Bki
dki

− dT
ki
∇2f(ξki

)dki
)

φki
(0)− φki

(dki
)

> 1− 1
2
||dki

||µ(1− c2) + M ||dki
||2

φki
(0)− φki

(dki
)

. (3.28)

The limit (3.27) implies that for sufficiently large i

M ||dki
||2 ≤ 1

2
||dki

|| µ(1− c2). (3.29)

Moreover, (3.26) implies that ||dki
|| < 1/Mki

, and since we also know that
||dki

|| ≤ ∆k, we see that

||dki
||/ min{∆k, 1/Mki

} ≤ 1. (3.30)

Using (3.16), (3.29) and (3.30) in (3.28) we have for sufficiently large i

ρki
> 1− 3

4
||dki

|| µ(1− c2)
µmin{∆ki

, 1/Mki
}

≥ 1− 3
4
(1− c2) > c2, (3.31)

since c2 < 1. This contradicts (3.25). QED

We now show that a similar result holds if backtracking takes place.

Lemma 3.4 If inequality (3.15) and Assumptions 3.2 are satisfied, there is
a constant 0 < µ̄ ≤ 1 such that

∆k > ||xk+1 − xk|| ≥ µ̄min{µ(1− c2), 1}/Mk, (3.32)

for all sufficiently large k for which xk+1 is given by xk + dik
k in Step 3 of

Algorithm 3.1.
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Proof. The first inequality follows from (3.4). Assume that the second
inequality does not hold. Then there exist infinitely many k such that
xk+1 = xk + d

(ik)
k and

||xk+1 − xk|| = o(1/Mk). (3.33)

Hence we have from (3.13), (3.4), (3.5) and (3.17) that

f(xk)− f(xk + d
(ik−1)
k ) ≥ ||d(ik−1)

k || ||gk|| cos(< d
(ik−1)
k , − gk >)

−M ||d(ik−1)
k ||2/2

> ||xk+1 − xk|| ||gk|| cos(< dk, − gk >)
−M ||xk+1 − xk||2/(2α2

1)
≥ ||xk+1 − xk||µmin{∆k/||dk||, 1/||Bk|| ||dk||}

−M ||xk+1 − xk||2/(2α2
1)

≥ ‖xk+1 − xk‖µmin{1, 1/(Mk∆k)}
−M ||xk+1 − xk||2 /(2α2

1)
> (1/Mk)||xk+1 − xk|| [µmin{Mk, 1/(∆k)}

−M ||xk+1 − xk||Mk/(2α2
1)

]
. (3.34)

The sequence {∆k} is bounded above since we have assumed that the iterates
remain in a bounded set S, and since the algorithm only increases the trust
region if the step is at the boundary of the trust region. Using this fact and
(3.33) we see that the right hand side of (3.34) is positive for large k, which
contradicts our definition of ik. QED

Using these two lemmas we can establish a lower bound for ∆k, for all
iterates. We recall that c3 is the constant used in Step 4 of Algorithm 3.1
to reduce the size of the trust region.

Lemma 3.5 If inequality (3.15) and Assumptions 3.2 hold, then

∆k ≥ µ̄c3 min{µ(1− c2), 1}/Mk (3.35)

for all sufficiently large k.

Proof. If there are only finitely many k such that ∆k+1 < ∆k, there exists
a positive constant δ̄ such that ∆k > δ̄ for all k. Due to (3.22), we have
limk→∞ 1/Mk = 0, and hence (3.35) holds for all large k.
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Now assume that there are infinitely many k such that ∆k+1 < ∆k. From
Lemma 3.3 and Lemma 3.4, there exists an integer k̄ such that if k ≥ k̄ and
∆k+1 < ∆k then

∆k ≥ µ̄min{µ(1− c2), 1}/Mk. (3.36)

Let k̂ be an integer such that k̂ ≥ k̄ and ∆k̂+1 < ∆k̂. We now show that
(3.35) holds for any k ≥ k̂. If ∆k+1 < ∆k, then (3.36) holds, which implies
(3.35) since c3 < 1. If ∆k+1 ≥ ∆k, let k′ be the largest integer less than k
such that ∆k′+1 < ∆k′. We see from (3.8), (3.11), (3.24) and (3.32) that

∆k ≥ ∆k′+1 ≥ c3||xk′+1 − xk′||
≥ c3µ̄min{µ(1− c2), 1}/Mk′
≥ c3µ̄min{µ(1− c2), 1}/Mk, (3.37)

which is (3.35). QED

We now state a lemma given by Powell (1984).

Lemma 3.6 Let {∆k} and {Mk} be two sequences such that ∆k ≥ ν/Mk ≥
0 for all k, where ν is a positive constant. Let I be a subset of {1, 2, 3, ...}.
Assume that

∆k+1 ≤ c1∆k, i ∈ I (3.38)
∆k+1 ≤ c4∆k, i 6∈ I (3.39)
Mk+1 ≥ Mk, for all k (3.40)∑

k∈I

1/Mk < ∞ (3.41)

where c1 > 1, c4 < 1 are positive constants. Then

∞∑

k=1

1/Mk < ∞. (3.42)

We can now establish a global convergence result. We only need to
assume that ||Bk|| does not grow too rapidly.

Theorem 3.7 If Assumptions 3.2 are satisfied, and if Bk satisfies

∞∑

k=1

1/Mk = ∞, (3.43)
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where Mk is defined by (3.19), then the sequence {xk} generated by Algo-
rithm 3.1 is not bounded away from stationary points of f , that is

lim inf
k→∞

||gk|| = 0. (3.44)

Proof. If (3.44) is not true, there exists a positive constant δ such that (3.15)
holds for all k. In this case Lemma 3.5 shows that there exists a constant
ν > 0 such that ∆k ≥ ν/Mk for all sufficiently large k. Let I in Lemma
3.6 be the set of iterations for which ρk ≥ c2 (see (3.11)). Then (3.38)-
(3.40) hold from (3.8)-(3.11) and from the definition (3.19). We also know
that (3.15) implies (3.35), which together with (3.20) gives (3.41). Thus the
conditions of Lemma 3.6 are satisfied and (3.42) holds, contradicting (3.43).

QED

Based on this theorem, we can derive the following convergence results
for Newton’s method.

Corollary 3.8 Suppose that whenever Bk is positive definite and ‖B−1
k gk‖ ≤

∆k, the algorithm chooses the step dk = −B−1
k gk. Suppose also that Assump-

tions 3.2 are satisfied and that

Bk = ∇2f(xk) (3.45)

for all k. Then

1. The sequence {xk} generated by Algorithm 3.1 satisfies (3.44).

2. If f is convex it follows that

lim
k→∞

||gk|| = 0. (3.46)

3. If {xk} converges to a point x∗ then ∇2f(x∗) is positive semi-definite.

4. If {xk} converges to a point x∗ such that ∇2f(x∗) is positive definite,
the rate of convergence is quadratic, i.e.

||xk+1 − x∗|| = O(||xk − x∗||22) . (3.47)

Proof. Since Bk is given by (3.45) for all k, (3.43) is satisfied due to (3.13).
Hence it follows from Theorem 3.7 that (3.44) is true. If f(x) is convex, it
can be easily shown that (3.44) implies (3.46) from the fact that {f(xk)}
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is monotonically decreasing and that all stationary points of f are global
minimizers.

The rest of the proof is similar to those of Theorems 5.1.1 and 5.1.2 of
Fletcher (1987). QED

We have thus been able to establish convergence results for the new trust
region algorithm with line searches that are as strong as the results obtained
previously for pure trust region methods. Note that we did not need to
assume that the matrices Bk are bounded, but only that their norms increase
at most linearly with k. In contrast, to establish the global convergence
of line search methods, one normally needs to assume that the condition
number of Bk does not increase too rapidly - or one has to study the trace
and determinant of Bk (Powell (1976), Byrd, Nocedal and Yuan (1987)),
which is technically difficult.

4. Numerical Results

We have implemented the new algorithm and compared it both with a
line search algorithm and with a pure trust region algorithm. In the line
search algorithm, inexact line searches are carried out so that

f(xk+1) ≤ f(xk) + 0.01(xk+1 − xk)T gk (4.1)

and
|(xk+1 − xk)T gk+1| ≤ −0.9(xk+1 − xk)T gk (4.2)

for all k, and the BFGS formula is used to update Bk.
In the pure trust region algorithm, the trial step is computed by Algo-

rithm 2.6 with γ = 1.5, and Bk is updated by the BFGS formula. However
we do not update Bk if the curvature condition

sT
k yk > 0, (4.3)

does not hold, where
sk = xk+1 − xk (4.4)

yk = gk+1 − gk. (4.5)

For the new trust region algorithm with backtracking we implemented
two versions, one using the BFGS formula to update Bk, and skipping the
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update as in the pure trust region method, and the other using the SR1
formula to update Bk. To prevent overflow we apply the SR1 update only if

|sT
k yk| ≥ 10−6||sk|| ||yk||. (4.6)

Backtracking is performed along the direction of the failed trial step, and
is based on truncated quadratic interpolation. If f(xk + dk) ≥ f(xk) we
compute

αk = max{0.1, 0.5/[1 + (f(xk)− f(xk + dk))/dT
k gk], } (4.7)

set dk := αkdk, and repeat this process until a lower function value is ob-
tained.

When using the SR1 update, Bk may not be positive definite. Hence
we calculate the trial step using the subroutine GQTPAR which is designed
to handle the indefinite case based on the ideas described by Moré and
Sorensen (1983). We chose the initial trust region radius as ∆1 = 1, for all
trust region algorithms, and terminated the iterations when ‖gk‖ ≤ 10−8.
In all tests, the initial matrix B1 was chosen as the identity matrix. The
algorithms were coded in FORTRAN, using double precision, and the tests
were performed on a Sun Sparcstation 1.

We tested the algorithms on the 18 examples given by Moré, Garbow
and Hillstrom (1981). These are small problems, with a number of variables
ranging from 2 to 20. The results are given in Table 1. For the BFGS
algorithm with line searches (column 1), we list the numbers of iterations,
function and gradient evaluations. For the pure trust region algorithm using
BFGS updating (column 2), we only give the number of iterations, since this
equals the number of function and gradient evaluations (i.e. there is exactly
one function and gradient evaluation per iteration). For the new trust region
algorithm with backtracking (TR+BT), only the number of iterations and
function evaluations are given, as the number of gradient evaluations is the
same as the number of iterations.
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TABLE I
Results on the 18 problems of Moré, Garbow and Hillstrom

Line Search Pure Trust TR+BT TR+BT
BFGS Region BFGS BFGS SR1

n Iter (F-G) Iter Iter (F) Iter (F)
1 3 28(40 - 30) 26 24(26) 28(34)
2 6 36(45 - 40) 43 35(36) 137(178)
3 3 3(5 - 4) 6 5(6) 4(7)
4 2 158(220 - 174) 204 175(212) >300
5 3 19(32 - 27) 23 30(31) 44(55)
6 6 18(23 - 19) 17 17(17) 17(17)
7 9 68(76 - 69) 68 66(70) 45(61)
8 8 27(43 - 39) 52 70(82) 111(143)
9 3 8(12 - 10) 12 12(13) 23(41)

10 2 10(23 - 15) 37 36(37) 33(38)
11 4 25(43 - 29) 26 24(31) 23(27)
12 3 30(44 - 35) 36 30(34) >300
13 20 46(51 - 49) 53 46(51) 51(66)
14 14 128(179 - 133) 128 112(138) 135(190)
15 16 102(123 - 105) 92 76(87) 99(132)
16 2 13(17 - 14) 16 16(16) 18(20)
17 4 81(114 - 87) 76 67(79) 114(156)
18 8 21(35 - 23) 71 23(33) 32(50)

We observe that the pure trust region algorithm performed better than
the line search algorithm, in terms of function evaluations. It is also clear
that BFGS updating outperformed SR1 updating in the new trust region
method. When comparing the pure trust region algorithm and the new trust
region method with backtracking, both using BFGS updating, (columns 2
and 3) we observe the following: (i) the number of function evaluations is
similar – the pure trust region methods requires fewer function evaluations,
but the difference is not significant; (ii) the number of iterations required by
the new trust region method with backtracking is smaller than that of the
pure trust region method in most of the problems.

These results suggest that the trust region algorithm with backtracking
may be effective for solving large problems, but we will not discuss this here,
since an efficient implementation for large problems requires careful consid-
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eration and is the subject of future research. Instead we look more carefully
at the relative performance of BFGS and SR1 updating. The results in Ta-
ble 1 are quite unfavorable towards SR1, and to investigate whether they are
typical we tested a few additional medium-size problems. These problems
are listed in Liu and Nocedal (1989) – we have used the same numbering
system as in that paper. Surprisingly SR1 now clearly outperforms BFGS,
and we are unable to conclude that one updating formula is preferable to
the other one.

TABLE II
The new algorithm using two update
formulae on medium-size problems

TR + BT TR+BT
SR1 BFGS

n Iterations (F) Iterations (F)
1 50 32(37) 81(131)
2 50 51(73) 90(137)
3 50 50(74) 63(81)
7 100 85(124) > 300
8 121 117(156) 128(193)

11 100 60(89) 95(186)
15 100 133(175) 136(239)
16 100 68(95) 72(140)

5. Final Remarks

We have described an algorithm that does not resolve the trust region
subproblem when the trial step increases the objective function. Two other
approaches achieve the same goal. The first is the dogleg method, but this
is only applicable when the Hessian approximation Bk is positive definite,
and can be slow to converge when Bk is very ill-conditioned. The second
approach (Schultz et al (1985)) is a restricted subspace method where, after
computing an unsuccessful trial step dk, one reduces the trust region radius
and solves a subproblem of the form

min{φ(d) : ‖d‖ ≤ ∆, d ∈ {gk, dk}}.
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It follows from the results in Moré (1983) and Schultz et al (1985) that this
restricted subspace method possesses the same theoretical properties as the
algorithm proposed here; in particular, it is easy to show that (3.1)-(3.2)
hold.

Nevertheless, the backtracking line search approach described in this
paper may be more effective than adjusting the trust region radius in those
cases when the trial step is very poor. We also believe that Algorithm 2.6
is novel in that it always solves positive definite systems and avoids the so
called “hard case”. We have shown that it is possible to compute a trust
region step that it is sufficiently steep to allow for a safe backtracking line
search; this is a topic that has not received much attention in the literature.

Acknowledgments. We would like to thank Jorge Moré for providing us
with his subroutine GQTPAR, and Richard Byrd and Nick Gould for several
useful conversations on the topic of this paper.
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