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Abstract

In this paper, we analyse techniques of computing a search direction by mini-
mizing the approximate quadratic model in the 2 dimensional subspace spanned by
the current gradient and the last search direction. The classical conjugate gradient
methods are only the special cases where the objective function is quadratic and
line searches are exact. Based on our analyses on the case where line searches are
not exact, we construct new conjugate direction type algorithms.
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1. Introduction

Conjugate gradient algorithms for the nonlinear optimization are a class of numerical
algorithms for the unconstrained optimization problem:

min f(x) (1.1)

reR”

where f(x) is a general nonlinear function. Normally the initial direction d; is given by

d1 = —01 (12)

where we use the notations ¢g; = g(z1) = V f(z1). In the k—th iteration, a step-length oy
is calculated by a line search technique and the next iterate is set to

Tk+1 = Tk + Ckkdk . (13)
The search direction for the next iteration has the following form:

g1 = —Grt1 + Brdi (1.4)

where [ is a parameter. Two famous ways of choosing [ are

B = llgn+1ll2/11gell3 . (1.5)

and
Br = gusryi/ 96l l5 (1.6)

where yr = gr+1 — gk- (1.5) was given by Fletcher and Reeves [5], and (1.6) by Polak and
Ribiére [8], and Polyak [9], independently.
If (1.2) is satisfied, the objective function is a convex quadratic function

f(z) = %xTAx +b'r+c, (1.7)
and exact line searches are used, that is
ap = arg 10141613131 (g + ady) , (1.8)
then (1.5) and (1.6) are equivalent, and the conjugacy relation
di Ad; =0 . (1.9)

holds for all 4 # j. In fact, relation (1.9) is the original condition that was used to derive
conjugate gradient algorithms, and the name “conjugate gradient” also comes from this
relation. Under the conditions (1.2), (1.4), and (1.7)-(1.9), it can be shown that zy
is the minimum of the objective function in the subspace xy + span{gi, go,-.-, gx }, and
g1, 92, ---, gr are mutually orthogonal unless that g = 0. (for example see [4]). Hence the
solution will be found after at most n iterations. Some properties of conjugate gradient
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methods, including that conjugate gradient algorithms generate points that minimize the
objective function on subspaces, are given in [3].

If the first search direction is not the steepest descent direction, then even for quadratic
functions (1.4), it was first shown by Powell [10] that the conjugate gradient method
normally does not terminate within finitely many iterations. It is well known that the
conjugate gradient method converges at least linearly (for example, see [7]). However,
an upper bound for the rate of convergence is obtained by [13]. Therefore, unless finite
termination happens within n + 1 iterations, the conjugate gradient method converges
exactly linearly.

For general nonlinear functions, various choices of Sy give different conjugate algo-
rithms. If the objective function is uniformly convex, then the Fletcher-Reeves method
and the Polak-Rebiére-Polyak method both converge to the unique solution if exact line
searches are carried out at every iteration (for example, see [7]).

Practical numerical algorithms normally make inexact line searches instead of exact
line searches. For inexact line searches, a descent search direction dj, is needed, namely

digr <0 (1.10)
and a step-length oy is computed to satisfy:
f(xk + akdk) S f(.Tk) + blakd:,crgk (1.11)

and
di (@, + agdy) > badi g (1.12)

where 0 < b; < by < 1 are two constants. A direct corollary of (1.11) is that

dy, (gr+1— gr) >0 (1.13)

is always true. And it is worth to mention that (1.13) does not require any convexity
assumption of f(zx).

Without the convexity assumption of f(x), Powell [12] proved the global convergence
of the Fletcher-Reeves method provided exact line searches are used. Powell’s results are
extended to inexact line searches such that «y satisfies (1.11) and

|df g(xx, + opdy)| < —bad) gk (1.14)

with by € [b1,0.5) (see, [1]). Condition (1.14) is slightly stronger than (1.12), but there
exist techniques to compute oy that satisfies (1.11) and (1.14) (for example, see [4]).
Conjugate gradient methods are based on the conjugacy condition (1.9). A main rea-
son for constructing conjugate directions is that to minimize a convex quadratic function
in a subspace spanned by a set of mutually conjugate directions is equivalent to minimize
the objective function along each conjugate direction in turn. Hence it is not unexpected
that the performance of conjugate gradient algorithms is dependent on the accuracy of
the line searches. It can be said that conjugate direction methods are so constructed



that exact line searches are expected, though in real computations normally inexact line
searches are used.

Actually, the good property of conjugate directions, namely that the minimization
over a multi-dimensional subspace is equivalent to that over each conjugate directions in
turn, is only true for exact line searches. Hence when line searches are not exact, the
conjugacy property may have disadvantages. Suppose we minimize the convex quadratic
function (1.7) on a subspace spanned by a set of mutually conjugate directions {dy, ..., di }
Suppose that the line search along d; is not exact, that is oy # «] where o] is the step-
length that solves (1.8). Then no matter what line search searches that are used in the
following iterations, it is true that

(zpp1 — 29 Az — %) > (0 — of)?d] Ad, (1.15)

where z* = —A~'b is the minimum of the objective function (1.7). Hence we see that the
error left in the current iteration can not be eliminated in the following iterations as long
as the following search directions are conjugate to the current search direction.

In this paper, we compute search directions by minimizing an approximate quadratic
model in the 2-dimensional subspace spanned by the current gradient and the previous
search direction. The conjugate gradient method is a special case of our method when the
objective function is quadratic and line searches are exact. However, our main object is to
construct numerical algorithms that suit inexact line searches and that is also as simple
as conjugate gradient algorithms, namely the search direction is a linear combination of
the steepest descent direction and the previous search direction.

2. Quadratic Model for Span(gi+1,ds)

In this section, we derive a formula for search direction dy; by minimizing the approxi-
mate quadratic function on the subspace spanned by gx.1 and d.

Assume that at the k-th iteration an inexact line search is carried out, that is the
stepsize oy, satisfies (1.11)-(1.12). We use the notations

S = akdk = Tk41 — Tk (2.1)

Ye = Gk+1 — Y9k -

We consider the quadratic approximate function:
1
Fr+1(d) = gis1d + §dTBk+1d ; (2.3)

where By, € R"*" is an approximation to the Hessian V2 f(z;, ). Because we want the
search direction di,; to be a linear combination of g, and dj, we study the problem:

min d)k-i-l(d) 5 (24)

dey,

where Q = span{gx+1,dr}. Notice that standard conjugate gradient algorithms choose
search directions in the form of (1.4). This seems reasonable, because of any vector d € €
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not parallel to sy is parallel to a vector in the form of (1.4) with a suitable 5. However,
line search subroutines usually try a4 = 1 first. Hence it is important to have a good
prediction of the length of search directions. Therefore, we compute di;; in the form of
HMkGk+1 + ViSk-

If the vectors gxy1 and di are collinear, di,1 € €2 implies that dg,; is parallel to
the steepest descent direction. We can give an prediction of the initial steplength by
considering problem (2.4). Because gx.1 and dj, are collinear, (2.4) is equivalent to

. 1
min tge 15k + itQS;kaHsk. (2.5)

Remembering that By, is an approximation to V2f(zy,1), and because

V2f(37k+1)5k Yk (2.6)
we let By, satisfy the quasi-Newton equation:
By 15k = Y. (2.7)

From the above relation and (2.5), the next search direction can be set to be

T
_ Gk+15k
T

Sk Yk

d]c+1 == (28)

Now we assume that g1 and dj, are not collinear. Substitute d by pgri1 + vsk, (2.4)
gives that

: ||gk+1||%)T (u) 1 (gEHBngM g,ZHBkHsk) (u)
min + =(u, v . 2.9
() ER? ( 91{+18k v 2('u ) SZBIH—IQIH—I SkaHSk v (29)

Due to relation (2.7), (2.9) can be rewritten as

: HngH%)T (M) 1 ( Pk 9/{+1yk) (U)
min + = (u, v , 2.10
(1v)ER? ( gg+15k v Q(M ) Z/I?QIH-I Sgyk v ( )

where py = gf. 1 Bi+19k+1. We assume that py, satisfies the relation

pese Yk — (Grpati)” > 0, (2.11)

which is always true if the approximate Hessian By, is positive definite. Under condition
(2.11), the unique solution of (2.10) can be easily computed:

(,Ulc+1) _ < Pk 91?+1yk)_1 (H%HH%)

Vk+1 B Yi Gk+1 Sk Uk 91{+13k
_ -1 ( Sk Yk —ng+1yk) (\ng+1||%)
B ,Oké‘fyk - (gfﬂyk)z —yggkﬂ Pk 91{+13k

_ —1 (Sfykuglwl”% }gg+1ykgg+1§k) .
kaEyk - (91{+1yk)2 PkGrk1+15k — gk+1yk”9k+1”2

(2.12)



Thus, the search direction di,; can be chosen as

g1 = (gk+1,8k)<'uk+1>
Vi+1
]' T T T 2
= Gk+1Y69%+15k — S Yk ||k 9k
e g Gt iase = sl |geral Dges
+(91?+1yk||gk+1\|§ - pkgg+13k)3k] . (2.13)

If line searches are exact, that is gf,,s; = 0, from (2.13) we have that

||9k+1||%3£yk ( 91?+1y1c
g1 = —Ok41+ =758k | , (2.14)
T owsTyk — gL 1Yk T STy

Hence for any choice of pg, the search direction di., is parallel to a vector that can be
written in the form of (1.4) with

T
Ir+1Yk
Br = , 2.15
which is apparently equivalent to the Fletcher-Reeves formula (1.5) and the Polak-Ribiére-
Polyak formula (1.6) if (1.2), (1.7) and (1.8) are satisfied.
If line searches are not exact, different values of p; gives different dy, ;. First, (2.11)
is satisfied as long as

P € ((9hy1k)?/ 5k Yr, +00) . (2.16)

First we consider the two extrem cases. When p, — +o0, it follows from (2.13) that
pe — 0 and the direction dgy1/||dg+1][2 converges to —sign(gy, ,sx)sk. Similarly, when
pe — (9i1Yk)?/styk, we have that ||dgs1|l2 — +oo and the direction dyi1/||dks1]2
converges to the unit length vector parallel to the vector defined in (2.14). Hence it is
reasonable to choose p; not too large and not too close to (g7, ,yx)?/st yk. Actually, due
to the fact that py should be an approximation to ng+1Bk+1 gk+1, it is reasonable to require
or/||gk+1|3 to be bounded. Using relation (2.7), we have that

(91{+1Bk+19k+15£Bk+13k> ( (gg+1Bk+15k)2 >
(SszHQkTH)Q 5£Bk+13k

. 1 <(gf+1yk)2> . (2.17)

1 1 T
S
cos? < B G+, BR sk > k Yk

Pk

1 1
The quantity cos? < B2 1, B2, .8, > in the above equation is unknown, as By, is
q y k+19k+15 P15k ) +

unknown. Because the mean value of cos?# is %, it seems reasonable to replace cos? <
1

1 1
B2, 1Gk+1, B 15, > by % in (2.17). Thus, we obtain a particular formula for computing
o T 2T

Pt = 2(Gk11Yk)"/ Sk Y- (2.18)



T
Another simple way is to let By, be the BFGS update from the scaled matrix 2% 1

' Tskll2
that is . : )
Sk Yk SkSk YrYg
Bi = o | 1= 2.19
HskH%( ||sk||%> Ty (2:19)
which gives that
S{yk 2 T 2 2 T 9, T
Pk = HSkHQ(Hgk-I-lHQ - (gk;+1$k:) /||8k||2) -+ (gk:+1ylc) /Sk Yk - (220)
2

The one step limited memory BFGS method also uses matrix (2.19) to generate search
directions. In (2.20), we use (2.19) implicitly to define p,. However, our search direction
defined by (2.20) and (2.13) is not the same as that of the limited BFGS method. The
latter is

1 = _Bk_—ilgk+1
[Is[3 G415k
sfyk Jr+1 — Yk Sfyk
2 T 2 2 T
n ||Sk||721¢21yk_ 1+H3k|‘T2||yl;H2 gk;lsk Sk (2.21)
(st yx) (Sk Yr) Sk Yk

which is normally not in the subspace (2.

3. Algorithm and Convergence Analysis

In this section, we give a general numerical algorithm for unconstrained optimization,
and prove the global convergence of the algorithm.
The algorithm is as follows:

Algorithm 3.1

Step 1 Given x1 € R", € > 0,
given 1 > by > by > 0;
k =1, choose dy such that d¥ g, < 0.

Step 2 Calculate step-length oy, satisfying (1.11)-(1.12);
set Tpy1 = T + apdy ;
compute ggi1 = Vf(zri1);
if ||gk+1ll2 < € then stop.

Step 3 If g1 and dy not collinear then go to Step 4;
define diy1 by (2.8);
go to Step 5.

Step 4 Choosing py satisfying (2.11);
compute dg1 by (2.13);



Step 5 k:=k+1, go to Step 2.
The above algorithm has the following convergence property:

Theorem 3.2 Assume that the objective function f(x) is convez, V2 f(x) is uniformly
bounded, and assume that € = 0 is chosen in Algorithm 3.1. If there exist two positive
constants M and 0 such that

SminfL, [[gesalalsTue < prsTon — (g7 10e)? < Vsl (3.1)

holds for all k, then the algorithm either stops at a stationary point such that V f(zy) =0
or generates a sequence {xy} such that either

ligglf|\Vf(xk)||2 =0. (3.2)
or
llgglff(xk) —00. (3.3)

Proof Assume the theorem is not true, the algorithm would generate a sequence {xy}
such that f(zy) is bounded below and that

g/l > 6 (3.4)

holds for all k£, where § is a positive constant. Because f(xx) is bounded below, from line
search condition (1.11) we have that

o0

> —spgr < 0. (3.5)

k=1
The other line search condition (1.12) implies that
spyr > —(1 — ba) sy g (3.6)
It follows from (3.5) and (3.6) that

(5% 9x)°
Sgyk

< 00. (3.7)

M8

B
Il
—

Because V2f(x) is bounded, it is easy to see that siyx = O(||sx|[3). Therefore (3.7)

implies that
= (digr)?

L lel13
4),

|d
Since dj. 1 is the solution of proble (2.

< 00. (3.8)

gk

it follows that

—dii1Grher = 2[Pk41(0) — Gppr (dit)]
> 2[pk+1(0) = Prr1(—||grr1l[39k+1/ pr)]
= ||grs1ll5/ Pk (3.9)
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Line search condition (1.12) implies that

by
|G 15%] < T bskyk (3.10)

It follows from the convexity of f(z) and the boundedness of matrix V2 f () that ||yx||2/st yk
are uniformly bounded (see, [11]). Therefore, it follows from (3.9), (2.13) and (3.1) that

|| drt1]]2 1
—dT+ < ——I10(Iskllal|yrll2) + O(prlgi 15k lllsell2)]
k+19k+1 Sk Yk

otz y 4 o115,/1)

J—5Tg
. ( el 1 |2>
< <\/7 ||d’“H2> . (3.11)

The above inequality and relation (3.5) imply that for all sufficiently large k, the in-
equality —||dg1]l2/df 19641 < —||dk||2/df g holds, which indicates that the sequence
{I|dx||3/(dEgx)?, k = 1,2,...} is bounded above. Therefore (df gx)?/||dx||3 is bounded
away from zero, which contradicts (3.8). This shows that the theorem is true. QED

For general nonlinear functions, the global convergence can also be proved if

IN

kli)rgo s, =0 (3.12)
and
kll)rgo PrGrs1Sk = 0. (3.13)

Theorem 3.3 Assume that the objective function f(x) is twice continuously differentiable
and V? f(x) is uniformly bounded, assume that e = 0 is chosen in Algorithm 8.1. If (3.12)
and (3.13) are satisfied, then the algorithm either stops at a stationary point such that
Vf(zr) =0 or generates a sequence {xy} such that either (3.2) or (3.3) holds.

Proof Assume the theorem does not hold, then (3.4) and (3.5) are true. Because the
analysis from (3.5) to (3.8) is independent of the convexity of f(z), it can be seen that
(3.8) is still true.

Limit (3.12) and the boundedness of V?f(x) implies that

lim |[yg||o = 0. (3.14)
k—o0

It follows from (2.13), (3.13), (3.14) and (3.10) that

||dk+1||2 3Hgk+1\|§||8k||2\|yk||2 + Pk||8k||2\91?+13k|
—digkr T SEUklgells — 207 vkl gkl 397 Sk + or(9h 1 58)?
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[Iskllz [ |yxll2 + 02kl gi15k]
sk¥i [0 — 21[yxll2l gk 1581/ sk yn
|| |2
—dzfgk

(3.15)

holds for all large k. This, due to our arguments in the proof of Theorem 3.2, contradicts
(3.8). Therefore, our theorem is true. QED.
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4. Numerical Results and Discussion

Numerical tests have been done on a DECstation 2100. Programs are written in
FORTRAN with double precision. Our line search subroutine computes oy such that
(1.11) and (1.14) hold for b; = 0.01 and b, = 0.9. For all algorithms, the first search
direction is the steepest descent direction d; = —g¢;.

We tested two choices for pg. namely (2.18) and (2.20). In Algorithm A, we compute
pr by (2.18). Hence pysiyr — (g8119%)* = (9i,1yx)? In order to avoid possible numerical
overflow in computing di.1 by (2.12), we modified py if needed to satisfy the following
inequality:

Pest Yk = (Gerye)” = 0.1 Ykl [ g 13- (4.1)

The motivation for the above inequality is due to (3.1). Hence py is given by

pi = max(2(g ye)*/5E ks (9F o)/ sEui + 0.1 g ). (4.2)

In Algorithm B, the parameter py is computed by (2.20). If g5, and s are collinear, then
pkséyk—(ggﬂyk)Q = 0. Hence we choose d,1 by (2.8) whenever 1— (g7 1 5£)?/||gk+11/3]|sx]]5 <
10~

We compared the numerical results of our algorithms with the one step limited memory
BFGS method, the Fletcher-Reeves method and the Polak-Ribiére-Polyak method. For
the Fletcher-Reeves method and the Polak-Ribiére-Polak method, we restart the algorithm
by setting dy = —g, whenever an up-hill search direction is given.

We tested the algorithms on the 18 examples given by Moré, Garbow and Hillstrom
[6]. The results are given in Table 4.1, where n is the number of variables, I, F', G are
numbers of iterations, function evaluations, and gradient evaluations respectively. The
stopping condition is ||gx||» < 107%. The algorithms are also terminated if the number of
function evaluation exceeds 500. We also terminate the calculation if the function value
improvement is too small. More exactly, algorithms are terminated whenever

[f () = f )]/ (L + [ f(ma)]) < 1077, (4.3)

In the table, a supscript “*” indicates that the algorithm terminated due to (4.3) but
condition ||gx||2 < 107° is not satisfied, and “Failed” means that dj, is so large that an
numerical overflow happens while the algorithm tries to compute f(zy + di).

From Table 4.1, we found that our algorithm with p; given by (2.20) performs similar
to the Limited Memory BFGS method. Both our algorithm and the Limited Memory
BFGS method are much better than the Fletcher-Reeves method and the Polak-Ribiére-
Polyak method. And our algorithm is slightly better than the Limited Memory BFGS
method when pj is computed by (4.2).
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Results of (2.18)
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Results of LBFGS
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L-BFGS F-R P-R-P (2.18) (2.20)

n I-F-G I-F-G I-F-G I-F-G I-F-G
113 62-142-65 96-293-100 95-290-98 85-145-94 45-88-50
216 Failed >500 >500 >500 Failed
313 4-10-6 25-56-25 9-16-11 4-8-5 4-10-6
42 Failed >500 Failed 188-307-236* Failed
513 |102-259-109 | 52-89-56 162-264-186 54-89-65 61-147-68
6|6 17-21-18 33-122-34 23-83-25 17-21-18 17-21-18
719 >500 >500 >500 >500 >500
818 58-169-75 39-76-49 >500 43-73-60 50-139-62
913 13-21-14 18-36-18 30-64-33 12-21-13 13-21-14

10 | 2 31-188-35* >500 15-86-20%* 26-34-28* 31-188-35%*
11 1|4 57-107-59* >500 64-265-71%* 47-74-49%* 48-87-52*
123 Failed >500 >500 >500 Failed

13| 20 60-87-65 >500 124-143-135 59-85-62 70-108-73
14 | 14 | 43-126-57 | 116-379-122 | 50-155-58 35-69-47 45-129-59
15| 16 | 122-331-128 >500 158-423-164 | 117-169-129 | 119-320-132
16 | 2 19-38-20 94-265-95 17-42-19 21-35-24 19-38-20
17 | 4 >500 49-147-49 >500 155-241-169 >500

18 | 8 42-70-45 >500 37-101-41 34-55-37 49-78-52

A straightforward generalization of our approach is to compute the search
direction dy,1 by minimization the quadratic function (2.3) in the subspace
Span(gk+1,dk, d,—1). Similar to our analysis from (2.7) to (2.13), we can choose

Ak+1 = PkGr1 + ViSk + TkSk—1,

and compute uy, v and 7, by minimizing a quadratic function in $3.

Assume the approximation matrix By, satisfy the quasi-Newton equation (2.7) and
also the following relation

Bri1sg-1 = yp—1 - (4.5)
Then minimizing the quadratic function (2.3) is equivalent to
T T
lgrall3\" (1 1 [ pe GEaYe 9oyt (K
o hs15k vi+g|v Yi 9kl SkYk  Sk_1Uk v| . (46)
o Jis1Sk-1 T T GeiiVh-1 St_1Yk  St_1Yk—1 T

Again, here pj, is an approximation to gi,Byi1gk+1. However one difficulty is that the
quadratic function in (4.6) may not be convex. For example, if the submatrix

( SEUk Sk Uk—1 )

4.7
85%-1 Szfﬂlk—l ( )

has a negative eigenvalue, then the quadratic function in (4.6) can never be convex no
matter how large the the parameter py is.
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One way to overcome this difficulty is to replacing the terms g,arlyk,l and si_,yp by
zeros. In this case, the new search direction di,; is given by

A1 = g1 — Sk—104415k—1/Sp1Yk—1 (4.8)

where dy; is the right hand side of (2.13).
If we replace only s}y, by zero, then the objective function in (4.6) reduces to

T T
e A AN 7 Pe GhaYe Gy (K
Gy 15k v +§ v Yrogrir Stk 0 v . (4.9)
G Sk—1 T T Gk 0 SE_1Yk—1 T

We find that the above quadratic function is strictly convex if and only if

Dy = prst YrSk1Uk—1 — Sk Uk(Ghp1¥r-1)" — Sk 1Uk—1(gk10x)° > 0. (4.10)

Hence, when p;, satisfies the above inequality, the unique solution (p, vg, 7¢)" of (4.9) can
be easily computed as follows:

1 S{ykszfﬂﬂcfl _Szllyk—lglqc:rlyk —Sfykglzﬂykﬂ ||gk+1H§
D, _nglykﬂglzﬂyk Ok glz;lykglz;lyk*l gl?+15k (4.11)
B\ —stuegboave—r 9 kgt ve— Kk 9h415K-1

where 0y = prsi_ 1 Ye—1 — (9741Uk—1)? and kx = ppstye — (gh41yk)>. Similar to (4.2), p
can be set to

pre = pr + max[py, 0.1/ g1 |13] (4.12)

where pp = (g5 19k)*/ sk Yk + (9hs1¥k—1)%/Sk_1Yk-1-
Another way is to use a two-step limited memory BFGS update matrix:

T T T
s _ Sk_18 _
B, = k—1Yk 21 (I— k—1 k—21> n y; 1Yk—1 (4.13)
[Isk—1ll3 lsk-allz ) Sk-1¥k
Bysksi By | YUk
Biy1 = By— —2-* . (4.14)
Sk Brsk Sk Yk
In this case, the minimization of quadratic function (2.3) reduces to
T T
||91c+1||§ 1 (H Xk 91{+1yk Nk u
" Ir/nTi)rémg Gis15k v+g|Y Yigker Stk Si_uk | | v (4.15)
” Ghp15k-1 T T Mk Sk_1Yk &k T

where Xx = i1 Br+19k+1, M = 9ip1Brpisk—1 and & = si_ Bgi1Sk—1 can be easily
computed.

In table 4.2, we give numerical results of our algorithm with different choices of dg4
from Span(gx+1, Sk, Sk—1). Asin Table 4.1, for comparison, we also given the 2-step limited
memory BFGS method that uses dyy1 = —By |1 gk+1 and By is defined by (4.13)-(4.14).
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The column under heading (4.8) are the numerical results of the algorithm with dy4
given by (4.8), dp;1 by (2.13) and p; by (4.2). The column under heading (4.12) are the
numerical results of our algorithm with dy,; given be (4.5), (4.11) and (4.12). The last
column of Table 4.2 are the numerical results of our algorithm with dy; given by (4.5)
where the parameters iy, Vg, 7, are computed by solving (4.15), and x; = 91{+1Bk+19k+1,
Mk = 9its1Br15k—1 and & = si_ Br15k—1 with Byy1 defined by (4.13)-(4.14).

TABLE 4.2

L-BFGS (4.8) (4.12) (4.15)

n I-F-G I-F-G I-F-G I-F-G
113 31-63-33 92-140-100 45-66-47 35-86-40

216 Failed >500 206-256-222 Failed

313 5-10-7 4-8-5 4-8-5 3-5-4

412 Failed 151-270-173* | 219-348-244* Failed
513 22-47-28 55-95-64 62-83-72 23-54-29
6|6 17-21-18 13-18-15 11-16-13 12-21-13

719 >500 >500 >500 >500
818 48-97-57 59-100-64 58-92-68 43-84-50
913 12-18-14 20-30-23 12-21-14 11-18-13
10 | 2 15-49-17* 33-57-35* 42-59-44* 15-45-16*
11 | 4 64-114-66* 68-117-73* 58-77-62* 32-61-36*

1213 Failed >500 119-172-135 Failed
13 | 20 60-96-63 78-111-80 81-122-84 65-93-67
14 | 14 35-72-43 46-77-48 55-85-62 34-72-44

15 | 16 40-93-41 215-326-230 | 144-183-153 | 142-478-147
16 | 2 16-23-17 20-32-22 26-36-27 15-23-16
17 | 4 | 157-415-177 | 103-171-116 | 224-318-244 | 124-323-141

18 | 8 34-59-37 51-90-55 30-49-32 30-47-34

First, comparing the column under heading (4.8) with that under heading (2.18) in

T
Table 4.1, we found that the technique of adding the term —%sk,l to the search
k—19k—

direction obtained from Span(giy1,sk) did not provide any improvement. Not surpris-
ingly, we found that (4.15) performs very similar to the two step limited memory BFGS
method, as in (4.15) we use the two step limited memory BFGS matrix to compute xy,
ne and &. Both algorithms are slightly better than (4.8). Our algorithm with dj; given
by (4.11) and py given by (4.12) seems the best among all the algorithms listed in Table
4.2. Tt successfully solved problems 2 and 12 while all other algorithms failed.

We have presented a new numerical method for unconstrained optimization. Our
approach is to generate search directions based on minimizations on subspaces. The new
method can be viewed as a generalization of the conjugate gradient method as it reduces
to the conjugate gradient method when line searches are exact and the objective function
is strict convex and quadratic. In some sense, the search direction of the conjugate
gradient method is an optimal search direction when line searches are exact, as quadratic
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termination is ensured. However, when line searches are not exact, conjugate directions
may not be the best choice. Our method is based on minimizations on Span(gyy1, S), it
makes use of the accuracy of line searches. Numerical results indicate that our approach
provides an improvement over conjugate directions.
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