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Abstract

We review the main techniques used in trust region algorithms for non-

linear constrained optimization.

1. Trust Region Idea

Constrained optimization is to minimize a function subject to finitely many al-

gebraic equation and inequality conditions. It has the following form

min
x∈ℜn

f(x) (1.1)

subject to ci(x) = 0, i = 1, 2, . . . , me; (1.2)

ci(x) ≥ 0, i = me + 1, . . . , m, (1.3)

where f(x) and ci(x) (i = 1, . . . , m) are real functions defined in ℜn, and m ≥ me

are two non-negative integers.

Numerical methods for nonlinear optimization problems can be grouped as

two types. One are line search methods and the other are trust region algorithms.

Line search algorithms at each iteration use a direction to carry a line search.

The direction is called the search direction, which is normally computed by solv-

ing a subproblem that approximates the original problem near the current iterate.

A line search means to search for a new point along the search direction. For

example, an exact line search is to find a point in the search direction which

minimize a certain merit function.

Trust region algorithms are relatively new algorithms. The trust region ap-

proach is strongly associated with approximation. Assume we have a current
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guess of the solution of the optimization problem, an approximate model can be

constructed near the current point. A solution of the approximate model can be

taken as the next iterate point. In fact, most line search algorithms also solve

approximate models to obtain search directions. However, in a trust region al-

gorithm, the approximate model is only “trusted” in a region near the current

iterate. This seems reasonable, because for general nonlinear functions local ap-

proximate models (such as linear approximation and quadratic approximation)

can only fit the original function locally. The region that the approximate model

is trusted is called trust region. A trust region is normally a neighbourhood

centered at the current iterate. The trust region is adjusted from iteration to

iteration. Roughly speaking, if computations indicate the approximate model

fit the original problem quite well, the trust region can be enlarged. Otherwise

when the approximate model works not good enough (for example, a solution of

the approximate model turns out to be a “bad” point), the trust region will be

reduced.

The key contents of a trust region algorithm are how to compute the trust

region trial step how to decide whether a trial step should be accepted. An

iteration of a trust region algorithm has the following form. At the beginning of

the iteration, a trust region is available. An approximate model is constructed,

and it is solved within the trust region, giving a solution sk which is called the

trial step. A merit function is chosen, which is used for updating the next trust

region and for choosing the new iterate point.

Most researches on trust region algorithms are mainly started in the 80s.

Hence trust region algorithms are less mature then line search algorithms, and

by now the applications of trust region algorithms are not as widely as that

of line search algorithms. However, trust region methods have two advantages.

One is that they are reliable and robust, another is that they have very strong

convergence properties.

2. Trust Region Subproblem

The most important part of a trust region algorithm is how it generates trial

steps. The trust region trial step sk is normally computed by solving a certain

subproblem. Such a subproblem is called a trust region subproblem, and it can be

viewed as a local approximation to the original nonlinear optimization problem.

Most trust region subproblems for nonlinear optimization can be regarded as

some kind of modification of the SQP subproblem of line search algorithm, which

has the following form:

min
d∈ℜn

gT

k
d +

1

2
dT Bkd = φk(d) (2.4)

s. t. ci(xk) + dT∇ci(xk) = 0 i = 1, 2, . . . , me; (2.5)
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ci(xk) + dT∇ci(xk) ≥ 0 i = me + 1, . . . , m (2.6)

where gk = g(xk) = ∇f(xk) and Bk is an approximate Hessian of the Lagrange

function.

The first type of trust region subproblems, being a slightly modification of

SQP subproblem (2.4)-(2.6), have the following form:

min
d∈ℜn

gT

k
d +

1

2
dT Bkd = φk(d) (2.7)

s. t. θkci(xk) + dT∇ci(xk) = 0 i = 1, 2, . . . , me; (2.8)

θkci(xk) + dT∇ci(xk) ≥ 0 i = me + 1, . . . , m (2.9)

||d|| ≤ ∆k (2.10)

where θk ∈ (0, 1] is a parameter (see Byrd, Schnabel and Shultz [1] and Vardi

[6]). Parameter θk is introduced to overcome the possible nonfeasibility of the

linearized constraints (2.5)-(2.6) in the trust region (2.10). Trial steps of the

trust region algorithms that apply null space techniques can also be reviewed as

solutions of (2.7)-(2.10).

Another trust region subproblem is obtained by replacing the linearized con-

straints (2.5)-(2.6) by a single quadratic constraint. It can be written as:

min
d∈ℜn

gT

k d +
1

2
dT Bkd = φk(d) (2.11)

s. t. ||(ck + AT

k d)−||2 ≤ ξk (2.12)

||d||2 ≤ ∆k, (2.13)

where ck = c(xk) = (c1(x), ..., cm(x))T , Ak = A(xk) = ∇c(xk)T , ξk ≥ 0 is

a parameter and the superscript “-” means that v−
i

= vi(i = 1, ..., me), v−
i

=

min[0, vi](i = me+1, ..., m). Algorithms that use (2.11)-(2.13) are given by Celis,

Dennis and Tapia [2] and Powell and Yuan [5].

Trust region subproblems can also derived by using exact penalty functions.

The following trust region subproblem is based on the L∞ exact penalty function:

min
d∈ℜn

gT

k
d +

1

2
dT Bkd + σk||(ck + AT

k
d)−||∞ = Φk(d) (2.14)

s. t. ||d|| ≤ ∆k. (2.15)

Trust region subproblems based on exact penalty functions are closely related to

subproblems of trust region algorithms for nonlinear systems of equations. Trust

region algorithms that compute the trial step by solving (2.14)-(2.15) are also

similar to trust region algorithms for nonsmooth optimization.
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3. Global Convergence

The convergence properties of trust region algorithms are generally analyzed

by considering the descent properties of the trial steps. A suitable approximation

of the merit function is used. We call this function approximate merit function.

The approximate merit function φ̄k(d) is strongly associated with the trust region

subproblems. The trial step sk computed by solving a trust region subproblem

will reduced the approximate merit function. In fact, normally the predicted

reduction predk is defined by φ̄k(0) − φ̄k(sk), which is the reduction in the ap-

proximate merit function. The approximate merit function also has the required

approximation property, that is

φ̄k(d) − φ̄k(0) = Pk(xk + d) − Pk(xk) + o(||d||) (3.16)

when ||d|| is very small, where Pk(x) is the merit function that is used to decide

whether sk can be accepted.

To prove convergence of a trust region algorithm, we normally show that the

predicted reduction satisfies certain lower bound condition such as

predk ≥ δǫk min[∆k, ǫk/||Bk||] (3.17)

where δ is some positive constant, and ǫk is the violation of the KT conditions

which is defined by

ǫk = ||c−
k
|| + ||gk − Akλk|| (3.18)

and λk being an approximate multiplier at the current point xk and it satisfies

that (λk)i ≥ 0, i > me. Then it is shown that the merit function will remain

the same for all large k. That is, there exist a integer k0 and a merit function

P (x) such that Pk(x) = P (x) for all k ≥ k0.

If ǫk is bounded away from zero, it can be shown that

predk ≥ δ̄∆k (3.19)

for all k, where δ̄ is a positive constant. Using the above inequality and certain

condition on the merit function P (x), we can prove that

∞∑

k=1

∆k < ∞. (3.20)

Thus ∆k → 0. This and relation (3.16) imply that

rk =
P (xk) − P (xk + sk)

predk

→ 1. (3.21)

The above limit shows that ∆k+1 ≥ ∆k which contradicts (3.20). Hence it is

shown that there exist a subsequence such that {ǫk} converges to zero.
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Global onvergence results of trust region algorithms depend on the sufficiently

reduction condition (3.17) instead of requiring that the trial step sk solves the

trus region subproblem exactly. Hence global convergence is also true when sk

is any approximate solution of the trust region subproblem provided it satisfies

condition (3.17).

4. Local Convergence

Local convergence of trust region algorithms are shown by establishing the

equivalence of the trust region trial step and the SQP step. To analyze local con-

vergence, it is always assumed that the sequence {xk} generated by the algorithm

converges to x∗. Global convergence results imply that x∗ is a KT point.

Let d∗
k

be the SQP step that is computed by solving the QP subproblem

(2.4)-(2.6). It is well known that under certain conditions the SQP step d∗
k

is

superlinearly convergent in the sense that

lim
k→∞

||xk + d∗
k
− x∗||/||xk − x∗|| = 0. (4.22)

Therefore to prove local superlinear convergence

lim
k→∞

||xk+1 − x∗||/||xk − x∗|| = 0, (4.23)

we need to show that

||sk − d∗
k
|| = o(||d∗

k
||) (4.24)

xk+1 = xk + sk (4.25)

holds for all large k. In order to have the property (4.24), the trust region sub-

problem should be a good approximation of the SQP subproblem. The validity

of (4.25) depends on suitable choice of the merit function.

For most algorithms, it can be shown that

sk = d∗k (4.26)

if k is sufficiently large and if ||sk|| < ∆k. Thus it is sufficient to show that the

trial step sk is acceptable and inactive with the trust region bound for all large k.

These are not true for some algorithms. For example, the SQP step will not be

acceptable if the merit function is nonsmooth. This is the so called Maratos effect.

To overcome the Maratos effect, we can either relax the condition for accepting

trial steps or compute a second order correction step. Relaxing conditions for

accepting trial step can be traced back to the watch-dog technique [3], and second

order correction step was first suggested by Fletcher [4].

A second order correction step ŝk is computed by solving another subproblem

that is called second order correction subproblem. The second oder correction
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subproblem is a slightly modification of the trust region subproblem that used

to compute the trial step. Assume that a trial step sk is calculated. Normaly

a second order correction subproblem can be constructed by replacing c(xk) by

c(xk +sk)−AT

k
sk in the trust region subproblem. For example, if the trial step sk

is computed by trust region subproblem (2.14)-(2.15), the second order correction

subproblem can be as follows

min gT

k d +
1

2
dT Bkd + σk||(c(xk + sk) + AT

k (d − sk))−||∞ (4.27)

s. t. ||d|| ≤ ∆k. (4.28)

A second order correction step satisfies that ||ŝk|| = O(||sk||
2). One nice property

of second order correction step is that inequality

P (xk + sk + ŝk) < P (xk) (4.29)

holds for all large k. Hence if condition (4.24) is satisfied, it follows from (4.22)

that that

lim
k→∞

||xk + sk + ŝk − x∗||/||xk − x∗|| = 0. (4.30)

Relation (4.29) imply that xk+1 = xk + sk + ŝk if k is large and if the second

order correction step is computed. Trust region algorithms with second order

correction techniques compute the second order correction step whenever the

trial step sk is unacceptable. Therefore it can be shown that, if k is large, either

xk+1 = xk +sk or xk+1 = xk +sk + ŝk. Consequently the superlinear convergence

(4.23) follows from (4.30), (4.24) and (4.22).
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