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Abstract

In this paper, we consider the problem of solving nonlinear equations F'(z) = 0,
where F(z) from R" to R is continuously differentiable. We study a class of general
trust region algorithms for solving nonlinear equation by minimizing a given norm
||F(z)||. The trust region algorithm for nonlinear equations can be viewed as an
extension of the Levenberg-Marquardt algorithm for nonlinear least squares. Global
convergence of trust region algorithms for nonlinear equations are studied and local
convergence analyses are also given.
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1. Introduction

We consider the problem of solving nonlinear equations:
filx) =0, i=1,..m (1.1)

where f;(z) are nonlinear functions defined in R". The system is called an overdetermined
system if m > n, an underdetermined system if m < n. Even if m = n, due to the
nonlinearity of f;(z), system (1.1) may have no solutions. Hence, it is usual to minimize
the residual:

min [|F(@)]. (1.2)
where F(z) = (fi(z),..., fm(x))" is a vector function from R" to R™ and ||.|| is a norm

in R™.
When n = m, the classical Levenberg-Marquardt method (Levenberg (1944), Mar-
quardt (1963)) for nonlinear equations computes trial steps by
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where J(zy) = VF(xy) is the Jacobi, and o, > 0 is a parameter being updated from
iteration to iteration. Levenberg-Marquardt step (1.3) is a modification of the Newton’s
step

dY = —J(zp) ' F(xg). (1.4)

The parameter oy can be viewed as a safeguard to prevent dj to be too large when J(xy)
is nearly singular. Furthermore, when .J(xy) is singular, the Newton’s step is undefined.
A positive oy, guarantee that (1.3) is well defined.

The original idea of Levenberg-Marquardt method is to modify the Newton’s step in
order to overcome the difficulties caused by possible singularity or near singularity of the
Jacobi. Let

pe = [ (J(@r)" T (@x) + orl) T ()" F(@)]]2, (1.5)

it is easy to see that the Levenberg-Marquardt step (1.3) is the unique solution of the
following subproblem
min ||F(zy) + J(vx)d|]3 (1.6)

subject to ||d||3 < pi. (1.7)

Because of this, we can regard the Levenberg-Marquardt method as a trust region algo-
rithm. The difference is that, the classical Levenberg-Marquadt method choose a suitable
o, at each step, while trust region algorithms update A,. It is that directly controlling
Ay is preferable to adjusting oy (see Moré (1978)).

A trust region algorithm requires the next iterate point xy; is chosen from the current
trust region. Normally the trust region is a ball centered at the current iterate. Thus,
the trust region trial step s satisfies the “trust region” condition:

ld]| < Ay, (1.8)

where Aj > 0 is the trust region radius which is updated each iteration.

In the next section, we give a general trust region algorithm that is based on minimizing
a penalty function, and briefly discuss some special algorithms that belong our framework.
In Section 3, global convergence results of the algorithm is proved. The first convergence
result is that at least one accumulation point is a stationary point, which is a direct
consequence of the convergence results for nonsmooth optimization given by Yuan (1985).
The second result is that any accumulation point is a stationary point if a trial step is
accepted only when the actual reduction of the penalty function is at least a fraction of
the predicted reduction (the reduction in the approximation model). In Section 4, local
convergence analyses are made. It is shown that if the algorithm converges to a first order
strict minimum then the convergence rate is quadratic. Without the assumption that the
limit point is a first order strict minimum, the only known local analyses results are made
by Powell and Yuan (1984) which is only for the case that not all equations are satisfied
at the limit point.

2. Trust Region Algorithms

Trust region algorithms for nonlinear equations are based on minimizing a certain
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penalty function, such a penalty function attains its minimum at the solutions of the
nonlinear equations.
Let h(F) be a function defined in R™. If h(F) satisfies that ~A(0) = 0 and that

h(F) >0, VF #0, FeR", (2.1)

then h(.) is a penalty for the nonlinear equations (1.1). The simplest penalty functions
are norm penalty functions, namely A(.) = ||.||. In the following, we give a trust region
algorithm that is based on the minimization of h(F'(z)).

At the beginning of each iteration, a trial step sj is computed by solving the subprob-
lem:

. 1
min h(Fy + Jid) + idTBkd = ¢p(d) (2.2)
s. t. l|ld|| < Ay, (2.3)
where B, € R"*", ||.|| is a given norm in R”, and A, > 0 is the current trust region

bound. The first part of ¢y (d), h(F), + Jid) is the first order approximation of the penalty
function h(F(xy + d)). The second part of ¢ (d) is a second order approximation term.

The difference between ¢ (0) and ¢ (s) is the reduction of the approximation function
o1 (d) along the trial step si, which can be served as a prediction of the reduction of the
penalty function. This predicted reduction is denoted by Predy, namely,

P?"(Bdk == ¢k(0) - ¢k(5k) (24)
The actual reduction of the penalty function is

The ratio between these two reductions

_ Aredy
~ Pred,

plays a key role in trust region algorithms. The next iterate x,; is chosen by the following
formula:

T+ s ifry > ¢
= : 2.7

Th1 {ajk otherwise ’ (2.7)
where ¢y € [0,1) is a constant. The trust region bound for the next iteration, Ay also
depends on the value of r:

[63||Sk||a C4Ak] if T < Cy
A1 € { [Ar, 1A otherwise ’ (2-8)

where ¢;(i = 1,2,3,4) are positive constants that satisfy that ¢; > 1 > ¢4 > ¢3 and
¢3 € [cg, 1). The choices of the constants ¢;(i = 0,1, ...,4) are not crucial to the algorithm,
for example we can let ¢g = 0, ¢; = 2, ¢ = 0.25, ¢35 = 0.25, ¢4 = 0.5. See also Moré
(1983), Fletcher (1987). However, the author thinks that there is a fundamental difference
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between algorithms that use ¢¢ = 0 and those with ¢y > 0, even though almost all
algorithms that use a positive ¢y chooses a very small ¢y, say 0.0001. Usually, we can show
weakly global convergence for algorithms with ¢y = 0 and strongly global convergence for
those with ¢y > 0. Here weekly global convergence means that at least one accumulation is
a stationary point, while strongly global convergence means that all accumulation points
are stationary point. We prefer the choice ¢y = 0, because weakly global convergence is
also sufficient for finding an approximation solution, and because ¢y > 0 implies that a
point at which the penalty function has a lower value may be rejected.

A general trust region algorithm for nonlinear equations based on penalty function
h(.) can be stated as follows:

Algorithm 2.1

Step 1 Given x1 € R", A1 >0, € > 0, By € R™™" symmetric;
0<C3<C4<1<Cl,0§00§02<1,CQ>0,kZ:]_.

Step 2 If h(F(xy)) < € then stop;
Solve (2.2)-(2.3) giving sk.

Step 3 Compute ry;
Set w1 by (2.7);
Choose Ay satisfying (2.8).

Step 4 Update Byyy;
k:=k+1; go to Step 2.

The algorithm stated above is very general as there are many choices of h(.). For
example, Fletcher (1982) and Yuan (1983) assume that A(.) is a convex function, El
Hallabi and Tapia (1993) let h(.) be any arbitrary norm ||.||. The most commonly used
h(.) are the three norms ||.||5, ||.|/1 and ||.||sc. We briefly discuss them as follows:

2.1. 2-norm Trust Region Algorithms

Trust region algorithms that based on the 2-norm L, for solving nonlinear equations
are studied by Moré (1978), Powell (1970). The trial step s; is computed by solving the

subproblem

sote |dls < Ay, (2.10)

where Fy = F(xy) and Jy, = J(xg). If s; is an solution of (2.9)-(2.10), there exist o > 0
such that

or(Ag — ||skll2) = 0. (2.12)

First we have the following result:
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Lemma 2.2 Let si be a solution of (2.9)-(2.10), then there is a unique oy > 0 that satisfy
(2.11)-(2.12).
If || J;f Filla < Ay, we can let
sk = —J(xp)TF(xy). (2.13)
Otherwise, o}, > 0 and satisfies
V(I T+ oxD) "I Flls = A (2.14)

Thus, similar to techniques for subproblems of trust region algorithms for unconstrained
optimization (see, Gay (1981) and Moré and Sorenson (1983)), we can apply Newton’s
method to the nonlinear equation:

1 1
(T T+ o) I El, Ak

¥(o) 0. (2.15)

The reason for considering (2.15) instead of the simpler equation
(T T + o) TN Fylls — Ap =0, (2.16)

is that the function ¢ (o) is very close to a linear function. Thus Newton’s method would
give a faster convergence. Applying Newton’s method to (2.15), we can computing oy by
the following iterative scheme:

. ST o) s (1 1
UIZCH _ O-Izc . (Sk) ( k ki+30k ) Sk ( : _ ) 7 (2.18)
JEAALE Isill2 Aw

where st = —(J]'J, +oL1) " "JI'F}. Due to the concavity of 1)(c), it can be seen that the
sequence ot converges to o, quadratically. From the concavity of 1)(c), we have that

b(op™) > (og) + ¢ (of ) (o) = at)

= ¢(o}) (1 — M) : (2.19)

which implies that either
b(oh), (2.20)
or

V(o) < S¢'(ok) (2.21)

holds. The above inequalities show that for initial point o) = 0, Newton’s iteration (2.18)
is a polynomial time algorithm.
An important property of the trial step s, is the sufficient descent property:
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Lemma 2.3 Let s be a solution of subproblem (2.9)-(2.10), then

Ay

Fyllo — || Frx + J > min |1, ———
Il = 1+ sl > min 1 %

MfWrWU—hﬁﬁka- (2.22)

Proof Define sj = —J;f Fy.. If ||si|]a < Ag, then ||F), + Jisklla = || Fk + Jisi||2, which
gives (2.22).
Now Assume ||si|]2 > Ay, we have that

A
[ Fello — [ Fe + Jesella > ||FkH2*||Fk+—HS*T‘ Tkl |2
k2
Ay .
> ([ Flle — [Pk + Jesil]2) (2.23)
|[s%]]2

which gives (2.22). O

2.2. Duff-Nocedal-Reid Algorithm

For the case that n = m, Duff, Nocedal and Reid (1987) gave a trust region algorithm
based on the minimization of the L; norm. Their subproblem for computing the trial step
is as follows:

st |d]lee < A (2.25)

This subproblem can be expressed as

min Y [p; + ¢ (2.26)
i=1
s. t. Jkd—i-p—q: *Fk (227)
—Ake S d S Ake (228)
p>0, ¢=>0, (2.29)
where e = (1,1, ..., 1)". The Jacobi of the linear constraints (except the bound constraints)

of the above linear programming is as follows

i
I (2.30)
~I

Therefore, when the simplex method is used for solving (2.26)-(2.29), the coefficient matrix
for the basis corresponding to a simplex consists of columns of Ji, I and —I. This matrix
is normally sparser than Jy. Duff, Nocedal and Reid (1987) use the subroutine LA05
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of Harwell library to update efficiently the LU decomposition of the linear programming
bases.
Fletcher (1987) use the L; penalty

P(x) = pfo(z) + [[F(x) L (2.31)
to solve the constrained optimization problem:
min  fo(x) (2.32)

s. t.  F(x)=0. (2.33)

Fletcher’s approach, called Sl;QP method, is to use the approximation function:
- 1
or(d) = pd"V fo(zy) + || Fy + Jid||1 + 5dTBkd (2.34)

It can be seen that ¢y (d) = ¢x(d) if fo(x) = 0. In this sense, Fletcher’s SI;QP method is
a Ly trust region algorithm when it is applied to solve nonlinear equations.

2.3. Minimax Algorithms

Madsen (1975) give a minimax algorithm for overdetermined systems of nonlinear
equations. His algorithm is a two stage algorithm. In the first stage, linear subproblems
are used to compute trial step. In the second stage, quadratical models are used in order
to obtain a fast convergence rate. We consider the case that only linear models are used.
The subproblem is as follows:

sote |1l < Ay (2.36)

The above subproblem can be rewritten as the following linear programming problem:

min g (2.37)

s. t. Jrd 4+ p = —F,

© (") =0

p

(e I)(“)zo,

p

Recently, Yuan (1992) gives an trust region algorithm for general constrained op-
timization problems. For equality constrained problem (2.32)-(2.33), Yuan’s algorithm
computes trial steps s; by solving

1
mind?'V fo(z1) + op|| Fi + Jied|] oo + 5dTBkd (2.39)
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sote [d]]ee < A, (2.40)

where g, > 0 is a parameter updated each iteration. When we apply Yuan’s algorithm
to solve nonlinear equations (namely, fy(z) = 0), subproblem (2.39)-(2.40) is exactly the
same as (2.2)-(2.3) if we let h(F) = ||F||-

3. Global Convergence

We assume that A(.) is a convex function. We call a point as a stationary point if the
linear approximation of the penalty function can not be reduced:

Definition 3.1 x* is called a stationary point if

52& h(F(z*) + J(2")d) = h(F(z")). (3.1)

Denote
§(w;d) = h(F(x)) = h(F(2) + J(x)d) (3-2)
() = max €(z; d). (3-3)

It is easy to see that z* is a stationary point if and only if
m(z*) = 0. (3.4)
Due to the convexity of h(.), we have the following result

Lemma 3.2 Let si be a solution of (2.2)-(2.3), then inequality

Pred, = ¢r(0) — ¢p(si)
> lnAk () min [1, o (k) ]

—r 3.5
2 By oAl (3.5)

holds.

Using the above lemma, it is easy to establish the following global convergence result:

Theorem 3.3 If ¢ = 0 in Algorithm 2.1, and if there exists a positive constant cs such
that
[Bill2 < esk (3.6)

and if Ay, is bounded above, then the sequence {xy} generated by the Algorithm 2.1 is not
bounded away from stationary points.

The techniques for proving Lemma 3.2 and Theorem 3.3 are basically the same as those
of Powell (1970, 1975). For detailed proofs, please see Yuan (1985). The above global
convergence result allows ¢y = 0, which implies that any trial step s, that reduces the
penalty function will be accepted. If ¢y > 0, then s, is acceptable only when the actual
reduction is at least certain fraction of the predicted reduction. This slightly stronger
condition for accepting trial steps imply a stronger global convergence result:
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Theorem 3.4 Under the conditions of Theorem 3.3, if ¢co > 0, and if {x} and {| Bg||}
are uniformly bounded, then any accumulation points of {xy} are stationary points.

Proof Let S be the set of all stationary points. If the theorem is not true, there exist
a positive number 7 and infinite many & such that

dist(zy, S) > T, (3.7)
where dist(z,Y’) = minyey ||z — y||. Let K be the set of all indices that
dist(xy, S) > 7/2. (3.8)
By the definition of S, there exists a positive constant ¢ such that
m(xg) >0 (3.9)

holds for all k£ € K. From the boundedness of Ay, there exists a positive constant § such
that )

holds for all £ € K. Therefore, we have that
Pred, > 6\ (3.11)
for all large £ € K. The above inequality implies that

i =1. 12
kEIl(l,gcnﬂoo "k 1 (3 )

Thus, for all sufficiently large k € K,

h(F(xgs1)) < h(F(zy)) + COSAk. (3.13)
Therefore, we have that
> Ay < oo (3.14)
keK
The above relation shows that there exists a k& € K such that
Z Ap < T1/4. (3.15)
kEK k>k

Now there are infinitely many %k in K such that (3.7) holds, which implies that there
exists a k& > k and dist(z;,S) > 7. Therefore, by induction it follows from (3.15) that
dist(ax, S) > 7/2 holds for all k > k. Thus, k € K for all large k, which shows that
the sequence xj converges to a non-stationary point. This contradicts to the previous
theorem. Therefore the theorem is true. O

The above convergence results can be applied to most know trust region algorithms for
nonlinear equations. An exception is the L; trust region algorithm of Duff, Nocedal and
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Reid (1987). Their algorithm requires a very strong condition for accepting trial steps.
The condition is
1 (e + si) [0 < [1F(zi)l[y = Bl () skl (3.16)

for some § > 0. It is shown by Yuan (1994) that the above condition may make the
algorithm stucked at a non-stationary point. Yuan’s example is a system of 2 linear
equations of 2 variables:

filu,v) = a—<u= (3.17)

fo(u,v) = a+(1+<)u—v=0. (3.18)

For any give 3 > 0, one can choose a > 0 and § > 0 properly such that condition (3.16)
will not be satisfied at (0,0)” for any small A. More details can be found in Yuan (1994).
Nocedal (1994) informed us that a similar example was also given by Powell in 1987. Of
course, if we replace condition (3.16) by

1 (ke + se) o < NI (ee)ll = BIEF (r) [[n = [1F (ex) + T (2x) sk[ 1] (3.19)

then convergent results of this section can be applied to the algorithm of Duff, Nocedal
and Reid (1987), because (3.19) is the same as r, > f3.

4. Local Convergence

In this section, we study the local properties of Algorithm 2.1. Thus, throughout this
section we assume that

Assumption 4.1 f;(z)(i = 1,...,m) are all twice continuously differentiable; xy gener-
ated by Algorithm 2.1 converges to x*; {||Bg||} is bounded.

We call z* is a first order strict minimum of h(F) if there exists a positive number §
such that
h(F(z* 4+ d)) > h(F(z*)) + d||d||2, (4.1)

for all small d.

Theorem 4.2 Under the conditions of Assumption 4.1, if Ay < Ay when ||sg]| < Ay,
then xp converges to x* quadratically.

Proof It is easy to see that

W(F(2)) = h(F(2) + J(2)(2* —2)) = h(F(x)) — h(F(z")) + O(|[z — 2|}
> bz — ']+ O(le — 2*|3) (4.2)

So we have
Mo (8) > 8l[2 — 2] + O([ — 2|2 (43
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which shows that there exists § such that
na, (zg) > Smin[Ag, ||z, — 2*[|5] (4.4)
for all large k. Inequality (4.4) implies the existence of a positive constant 5 that
Predy > dmin[Ay, [|zp — z*||2] (4.5)
for all large k. From the above inequality, we can show that
zp — 2" || < Ay/2 (4.6)

holds for all large k. Assume that (4.6) is not true, there exist k;(i = 1,2, ...) such that
Ay, < Ag,—1 and that
Ay, < 2la, — o (4.7)

The above relation and the fact that Ag,q > c3)/sk|| imply that

llskiall = Olzx; = 27[l2)
= Ol 1 — 7 I1). (48)
(4.8) and (4.5) show that
sk, 11l = O(Predy, ), (49)

which yields that r;,_y — 1. This contradicts the assumption that Ay, < Ay, _;. Therefore
(4.6) is true for all large k. Now we shows that

|z + 86— 2| = O([Jwg — 2*[]*) (4.10)
Because x* is a first order strict minimum and Bj are bounded, we have that

O(||mg — T*HQ) = ¢op(z” — xy)

> ok(sk)

> h(F(zg + 1)) + O(||sl*)

> §l|ag + sk — 2|+ O(||s] ) (4.11)
We claim that

kl;rglo |sk|| = 0. (4.12)

If the above relation is not true, trial steps will be rejected for infinitely many times. This
implies that trust region bound will be reduced by a fraction for infinitely many times.
Due to our assumption that the trust region bound does not increase if the current trust
region constraint is inactive, it follows that Ay — 0, which implies (4.12). Thus, we have
shown that (4.12) is true. Now (4.12), (4.11) and the fact that x; — 2* implies that

|2k + sk — 2*[] = O(l|zx — 7|]") (4.13)
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The above relation and the fact that x* is a first order strict minimum imply that r, — 1.
Therefore w1 = xp + s; for all large k. This shows that x; converges quadratically. O

When n = m, z* is a first order strict minimum is equivalent to the assumption that
J(z*) is non-singular at z*. The above superlinear convergence result shows that {By}
can be any matrices as long as they are uniformly bounded. The simplest choice is to let
By, = 0 for all k. This is indeed the case for many algorithms, for example, those given
by Duff, Nocedal and Tapia (1987), El Hallabi and Tapia (1993).

Without assuming x* is a first order strict minimum, Powell and Yuan (1984) studies
conditions for the local superlinear convergence of Algorithm 2.1 when A(.) = ||.||s and
h(.) = ||.|li. They consider the case that z* is a stationary point but F(z*) # 0, and
assume that the following second order sufficient conditions hold, that is, the Hessian of
the Lagrange function is positive semi-definite in the null space of Jacobi. Their main
result is as follows:

Theorem 4.3 If h(.) = ||.||i or h(.) = ||.||1, if & generated by Algorithm 2.1 converges
to x*, if h(F(z*)) > 0 and the second order sufficient condition is satisfied at x*, and if
l|sk]| < Ax for all sufficiently large k, then s is a superlinear convergent step, namely

H.’Ek—l‘sk*.’E*H o

lim =0 (4.14)
P
if and only if

k=00 [l l]

where W* = Y \iV2 f;(x*), P* is the projection from R™ to the null space of the Jacobi
at x*, and \; are the Lagrange multipliers.

More details can be found in Powell and Yuan (1984). The above result indicate that
when the null space of J(x*) is not empty, second order informations are need in order to
get superlinear convergence.

Unfortunately, the assumption that h(F(z*)) > 0 in Theorem 4.3 implies that the
theorem can not be applied to the case that x; converges to a solution of the nonlinear
system F'(x) = 0. Consider the following simple problem

filu,v) =u+0v* =0 (4.16)

folu,v) =u—v”> =0 (4.17)
where (u,v)l = x € R2. Tt can be see that z* = (0,0)? is the unique solution. For
xr, = (0,v;)T, consider the subproblem

which gives a trial step sy = (0, —v;/2)". Thus x4, = 2/2, the sequence converges only
linearly. For this problem, ||F'(x)|| is second order strict minimum in the sense that

% 1 *
1 @)o 2 [[F ()]s + Flle = 2713 (4.19)
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for all small x. It satisfies the second order sufficient condition that the Hessian of the
Lagrange function is positive definite in the null space of the Jacobi. Now we consider
that the trial step s; is computed by minimizing (2.2)-(2.3). Due to the second order
sufficient condition, it is reasonable to let B, be a positive semi-definite matrix. Because
B4 is positive definite, this would produce a trial step s, whose length is at most ||zx||/2.
Therefore we can only get linear convergence.

Another assumption, ||s|| < Ay for all large &, in Theorem 4.3 may fail in compu-
tations. Yuan (1984) gave a minimax problem that trust region bounds are active at all
iterations. Consequently linear convergence can happen.

5. Discussion

We have discussed in this paper a general trust region algorithm for solving nonlin-
ear equations. Qur approach is to rewrite the system of equations into a minimization
problem. Our local models are a linearized part and a second order term. It is showed
that the second order term does not affect the algorithm much when the iterate points
converges to a first order strict minimum.

Our linear model are based on the Taylor expansion. In other words, we use the
Jacobi to build approximate functions. Thus our algorithm can be viewed as a trust
region globalization of Newton’s method.

In optimization, numerical methods that do not compute any derivatives are called
direct methods. For nonlinear equations, there are also methods that do not compute the
Jacobi, such as the Brent method. Direct methods are of great interests, especially when
the number of variables are very large. Therefore It is interesting to study trust region
algorithms that use only function values.
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