
Trust Region Algorithms for Nonlinear Equations �Ya-xiang YuanState Key Laboratory of Scienti�c and Engineering ComputingICMSEC, Chinese Academy of Sciences, Beijing 10080, ChinaAbstractIn this paper, we consider the problem of solving nonlinear equations F (x) = 0,where F (x) from <n to <m is continuously di�erentiable. We study a class of generaltrust region algorithms for solving nonlinear equation by minimizing a given normjjF (x)jj. The trust region algorithm for nonlinear equations can be viewed as anextension of the Levenberg-Marquardt algorithm for nonlinear least squares. Globalconvergence of trust region algorithms for nonlinear equations are studied and localconvergence analyses are also given.Key words: nonlinear equation, trust region, convergence.1. IntroductionWe consider the problem of solving nonlinear equations:fi(x) = 0; i = 1; :::; m (1.1)where fi(x) are nonlinear functions de�ned in <n. The system is called an overdeterminedsystem if m > n, an underdetermined system if m < n. Even if m = n, due to thenonlinearity of fi(x), system (1.1) may have no solutions. Hence, it is usual to minimizethe residual: minx2<n jjF (x)jj; (1.2)where F (x) = (f1(x); : : : ; fm(x))T is a vector function from <n to <m and jj:jj is a normin <m.When n = m, the classical Levenberg-Marquardt method (Levenberg (1944), Mar-quardt (1963)) for nonlinear equations computes trial steps bydk = (J(xk)TJ(xk) + �kI)�1J(xk)TF (xk) (1.3)�presented at Conference on Scienti�c Computation, Hong Kong, 17-19 March, 1994, this work wasdone when the author was visiting Hong Kong Baptist College, supported by Croucher Foundation1



2 Y. Yuanwhere J(xk) = rF (xk) is the Jacobi, and �k � 0 is a parameter being updated fromiteration to iteration. Levenberg-Marquardt step (1.3) is a modi�cation of the Newton'sstep dNk = �J(xk)�1F (xk): (1.4)The parameter �k can be viewed as a safeguard to prevent dk to be too large when J(xk)is nearly singular. Furthermore, when J(xk) is singular, the Newton's step is unde�ned.A positive �k guarantee that (1.3) is well de�ned.The original idea of Levenberg-Marquardt method is to modify the Newton's step inorder to overcome the di�culties caused by possible singularity or near singularity of theJacobi. Let �k = jj(J(xk)TJ(xk) + �kI)�1J(xk)TF (x)jj2; (1.5)it is easy to see that the Levenberg-Marquardt step (1.3) is the unique solution of thefollowing subproblem min jjF (xk) + J(xk)djj22 (1.6)subject to jjdjj22 � �2k: (1.7)Because of this, we can regard the Levenberg-Marquardt method as a trust region algo-rithm. The di�erence is that, the classical Levenberg-Marquadt method choose a suitable�k at each step, while trust region algorithms update �k. It is that directly controlling�k is preferable to adjusting �k (see Mor�e (1978)).A trust region algorithm requires the next iterate point xk+1 is chosen from the currenttrust region. Normally the trust region is a ball centered at the current iterate. Thus,the trust region trial step sk satis�es the \trust region" condition:jjdjj � �k; (1.8)where �k > 0 is the trust region radius which is updated each iteration.In the next section, we give a general trust region algorithm that is based on minimizinga penalty function, and brie
y discuss some special algorithms that belong our framework.In Section 3, global convergence results of the algorithm is proved. The �rst convergenceresult is that at least one accumulation point is a stationary point, which is a directconsequence of the convergence results for nonsmooth optimization given by Yuan (1985).The second result is that any accumulation point is a stationary point if a trial step isaccepted only when the actual reduction of the penalty function is at least a fraction ofthe predicted reduction (the reduction in the approximation model). In Section 4, localconvergence analyses are made. It is shown that if the algorithm converges to a �rst orderstrict minimum then the convergence rate is quadratic. Without the assumption that thelimit point is a �rst order strict minimum, the only known local analyses results are madeby Powell and Yuan (1984) which is only for the case that not all equations are satis�edat the limit point.2. Trust Region AlgorithmsTrust region algorithms for nonlinear equations are based on minimizing a certain



Trust Region Algorithms for Nonlinear Equations 3penalty function, such a penalty function attains its minimum at the solutions of thenonlinear equations.Let h(F ) be a function de�ned in <m. If h(F ) satis�es that h(0) = 0 and thath(F ) > 0; 8F 6= 0; F 2 <m; (2.1)then h(:) is a penalty for the nonlinear equations (1.1). The simplest penalty functionsare norm penalty functions, namely h(:) = jj:jj. In the following, we give a trust regionalgorithm that is based on the minimization of h(F (x)).At the beginning of each iteration, a trial step sk is computed by solving the subprob-lem: mind2<n h(Fk + Jkd) + 12dTBkd � �k(d) (2.2)s. t. jjdjj � �k; (2.3)where Bk 2 <n�n, jj:jj is a given norm in <n, and �k > 0 is the current trust regionbound. The �rst part of �k(d), h(Fk+Jkd) is the �rst order approximation of the penaltyfunction h(F (xk + d)). The second part of �k(d) is a second order approximation term.The di�erence between �k(0) and �k(sk) is the reduction of the approximation function�k(d) along the trial step sk, which can be served as a prediction of the reduction of thepenalty function. This predicted reduction is denoted by Predk, namely,Predk = �k(0)� �k(sk): (2.4)The actual reduction of the penalty function isAredk = h(F (xk))� h(F (xk + sk)) : (2.5)The ratio between these two reductionsrk = AredkPredk (2.6)plays a key role in trust region algorithms. The next iterate xk+1 is chosen by the followingformula: xk+1 = � xk + sk if rk � c0xk otherwise ; (2.7)where c0 2 [0; 1) is a constant. The trust region bound for the next iteration, �k+1 alsodepends on the value of rk:�k+1 2 � [c3jjskjj; c4�k] if rk < c2[�k; c1�k] otherwise ; (2.8)where ci(i = 1; 2; 3; 4) are positive constants that satisfy that c1 > 1 > c4 > c3 andc2 2 [c0; 1). The choices of the constants ci(i = 0; 1; :::; 4) are not crucial to the algorithm,for example we can let c0 = 0, c1 = 2, c2 = 0:25, c3 = 0:25, c4 = 0:5. See also Mor�e(1983), Fletcher (1987). However, the author thinks that there is a fundamental di�erence



4 Y. Yuanbetween algorithms that use c0 = 0 and those with c0 > 0, even though almost allalgorithms that use a positive c0 chooses a very small c0, say 0.0001. Usually, we can showweakly global convergence for algorithms with c0 = 0 and strongly global convergence forthose with c0 > 0. Here weekly global convergence means that at least one accumulation isa stationary point, while strongly global convergence means that all accumulation pointsare stationary point. We prefer the choice c0 = 0, because weakly global convergence isalso su�cient for �nding an approximation solution, and because c0 > 0 implies that apoint at which the penalty function has a lower value may be rejected.A general trust region algorithm for nonlinear equations based on penalty functionh(:) can be stated as follows:Algorithm 2.1Step 1 Given x1 2 <n, �1 > 0, � � 0, B1 2 <n�n symmetric;0 < c3 < c4 < 1 < c1, 0 � c0 � c2 < 1, c2 > 0, k := 1.Step 2 If h(F (xk)) � � then stop;Solve (2.2)-(2.3) giving sk.Step 3 Compute rk;Set xk+1 by (2.7);Choose �k+1 satisfying (2.8).Step 4 Update Bk+1;k := k + 1; go to Step 2.The algorithm stated above is very general as there are many choices of h(:). Forexample, Fletcher (1982) and Yuan (1983) assume that h(:) is a convex function, ElHallabi and Tapia (1993) let h(:) be any arbitrary norm jj:jj. The most commonly usedh(:) are the three norms jj:jj2, jj:jj1 and jj:jj1. We brie
y discuss them as follows:2.1. 2-norm Trust Region AlgorithmsTrust region algorithms that based on the 2-norm L2 for solving nonlinear equationsare studied by Mor�e (1978), Powell (1970). The trial step sk is computed by solving thesubproblem min jjFk + Jkdjj2 (2.9)s. t. jjdjj2 � �k; (2.10)where Fk = F (xk) and Jk = J(xk). If sk is an solution of (2.9)-(2.10), there exist �k � 0such that (JTk Jk + �kI)sk = �JTk Fk (2.11)�k(�k � jjskjj2) = 0: (2.12)First we have the following result:



Trust Region Algorithms for Nonlinear Equations 5Lemma 2.2 Let sk be a solution of (2.9)-(2.10), then there is a unique �k � 0 that satisfy(2.11)-(2.12).If jjJ+k Fkjj2 � �k, we can let sk = �J(xk)+F (xk): (2.13)Otherwise, �k > 0 and satis�esjj(JTk Jk + �kI)�1JTk Fkjj2 = �k: (2.14)Thus, similar to techniques for subproblems of trust region algorithms for unconstrainedoptimization (see, Gay (1981) and Mor�e and Sorenson (1983)), we can apply Newton'smethod to the nonlinear equation: (�) = 1jj(JTk Jk + �I)�1JTk Fkjj2 � 1�k = 0: (2.15)The reason for considering (2.15) instead of the simpler equationjj(JTk Jk + �I)�1JTk Fkjj2 ��k = 0; (2.16)is that the function  (�) is very close to a linear function. Thus Newton's method wouldgive a faster convergence. Applying Newton's method to (2.15), we can computing �k bythe following iterative scheme: �0k = 0; (2.17)�i+1k = �ik � (sik)T (JTk Jk + �ikI)�1sikjjsikjj32  1jjsikjj2 � 1�k! ; (2.18)where sik = �(JTk Jk + �ikI)�1JTk Fk. Due to the concavity of  (�), it can be seen that thesequence �ik converges to �k quadratically. From the concavity of  (�), we have that (�i+1k ) �  (�ik) +  0(�i+1k )(�i+1k � �ik)=  (�ik) 1�  0(�i+1k ) 0(�ik) ! ; (2.19)which implies that either  (�i+1k ) � 12 (�ik); (2.20)or  0(�i+1k ) � 12 0(�ik) (2.21)holds. The above inequalities show that for initial point �0k = 0, Newton's iteration (2.18)is a polynomial time algorithm.An important property of the trial step sk is the su�cient descent property:



6 Y. YuanLemma 2.3 Let sk be a solution of subproblem (2.9)-(2.10), thenjjFkjj2 � jjFk + Jkskjj2 � min "1; �kjjJ+k Fkjj2# �jjFkjj2 � jj(I � JkJ+k )Fkjj2� : (2.22)Proof De�ne s�k = �J+k Fk. If jjs�kjj2 � �k, then jjFk + Jkskjj2 = jjFk + Jks�kjj2, whichgives (2.22).Now Assume jjs�kjj2 > �k, we have thatjjFkjj2 � jjFk + Jkskjj2 � jjFkjj2 � jjFk + �kjjs�kjj2Jks�kjj2� �kjjs�kjj2 (jjFkjj2 � jjFk + Jks�kjj2) (2.23)which gives (2.22). 22.2. Du�-Nocedal-Reid AlgorithmFor the case that n = m, Du�, Nocedal and Reid (1987) gave a trust region algorithmbased on the minimization of the L1 norm. Their subproblem for computing the trial stepis as follows: min jjFk + Jkdjj1 (2.24)s. t. jjdjj1 � �k: (2.25)This subproblem can be expressed asmin nXi=1[pi + qi] (2.26)s. t. Jkd+ p� q = �Fk (2.27)��ke � d � �ke (2.28)p � 0; q � 0; (2.29)where e = (1; 1; :::; 1)T . The Jacobi of the linear constraints (except the bound constraints)of the above linear programming is as follows0B@ JTkI�I 1CA : (2.30)Therefore, when the simplex method is used for solving (2.26)-(2.29), the coe�cient matrixfor the basis corresponding to a simplex consists of columns of Jk, I and �I. This matrixis normally sparser than Jk. Du�, Nocedal and Reid (1987) use the subroutine LA05



Trust Region Algorithms for Nonlinear Equations 7of Harwell library to update e�ciently the LU decomposition of the linear programmingbases.Fletcher (1987) use the L1 penaltyP (x) = �f0(x) + jjF (x)jj1 (2.31)to solve the constrained optimization problem:min f0(x) (2.32)s. t. F (x) = 0: (2.33)Fletcher's approach, called Sl1QP method, is to use the approximation function:��k(d) = �dTrf0(xk) + jjFk + Jkdjj1 + 12dTBkd (2.34)It can be seen that ��k(d) = �k(d) if f0(x) � 0. In this sense, Fletcher's Sl1QP method isa L1 trust region algorithm when it is applied to solve nonlinear equations.2.3. Minimax AlgorithmsMadsen (1975) give a minimax algorithm for overdetermined systems of nonlinearequations. His algorithm is a two stage algorithm. In the �rst stage, linear subproblemsare used to compute trial step. In the second stage, quadratical models are used in orderto obtain a fast convergence rate. We consider the case that only linear models are used.The subproblem is as follows: min jjFk + Jkdjj1 (2.35)s. t. jjdjj1 � �k (2.36)The above subproblem can be rewritten as the following linear programming problem:min � (2.37)s. t. Jkd+ p = �Fk;(e I)��p � � 0;(e � I)��p � � 0;��ke � d � �ke : (2.38)Recently, Yuan (1992) gives an trust region algorithm for general constrained op-timization problems. For equality constrained problem (2.32)-(2.33), Yuan's algorithmcomputes trial steps sk by solvingmindTrf0(xk) + �kjjFk + Jkdjj1 + 12dTBkd (2.39)



8 Y. Yuans. t. jjdjj1 � �k; (2.40)where �k > 0 is a parameter updated each iteration. When we apply Yuan's algorithmto solve nonlinear equations (namely, f0(x) � 0), subproblem (2.39)-(2.40) is exactly thesame as (2.2)-(2.3) if we let h(F ) = jjF jj1.3. Global ConvergenceWe assume that h(:) is a convex function. We call a point as a stationary point if thelinear approximation of the penalty function can not be reduced:De�nition 3.1 x� is called a stationary point ifmind2<n h(F (x�) + J(x�)d) = h(F (x�)): (3.1)Denote �(x; d) = h(F (x))� h(F (x) + J(x)d) (3.2)��(x) = maxjjdjj�� �(x; d): (3.3)It is easy to see that x� is a stationary point if and only if�1(x�) = 0: (3.4)Due to the convexity of h(:), we have the following resultLemma 3.2 Let sk be a solution of (2.2)-(2.3), then inequalityPredk = �k(0)� �k(sk)� 12��k(xk)min"1; ��k(xk)jjBkjj2�2k # (3.5)holds.Using the above lemma, it is easy to establish the following global convergence result:Theorem 3.3 If � = 0 in Algorithm 2.1, and if there exists a positive constant c5 suchthat jjBkjj2 � c5k ; (3.6)and if �k is bounded above, then the sequence fxkg generated by the Algorithm 2.1 is notbounded away from stationary points.The techniques for proving Lemma 3.2 and Theorem 3.3 are basically the same as thoseof Powell (1970, 1975). For detailed proofs, please see Yuan (1985). The above globalconvergence result allows c0 = 0, which implies that any trial step sk that reduces thepenalty function will be accepted. If c0 > 0, then sk is acceptable only when the actualreduction is at least certain fraction of the predicted reduction. This slightly strongercondition for accepting trial steps imply a stronger global convergence result:



Trust Region Algorithms for Nonlinear Equations 9Theorem 3.4 Under the conditions of Theorem 3.3, if c0 > 0, and if fxkg and fjjBkjjgare uniformly bounded, then any accumulation points of fxkg are stationary points.Proof Let S be the set of all stationary points. If the theorem is not true, there exista positive number � and in�nite many k such thatdist(xk; S) � �; (3.7)where dist(x; Y ) = miny2Y jjx� yjj. Let K be the set of all indices thatdist(xk; S) � �=2: (3.8)By the de�nition of S, there exists a positive constant � such that�1(xk) � � (3.9)holds for all k 2 K. From the boundedness of �k, there exists a positive constant �� suchthat ��k � ���k (3.10)holds for all k 2 K. Therefore, we have thatPredk � �̂�k (3.11)for all large k 2 K. The above inequality implies thatlimk2K;k!1 rk = 1: (3.12)Thus, for all su�ciently large k 2 K,h(F (xk+1)) � h(F (xk)) + c0�̂�k: (3.13)Therefore, we have that Xk2K�k <1: (3.14)The above relation shows that there exists a �k 2 K such thatXk2K;k��k�k < �=4: (3.15)Now there are in�nitely many k in K such that (3.7) holds, which implies that thereexists a k̂ > �k and dist(xk̂; S) � � . Therefore, by induction it follows from (3.15) thatdist(xk; S) � �=2 holds for all k � k̂. Thus, k 2 K for all large k, which shows thatthe sequence xk converges to a non-stationary point. This contradicts to the previoustheorem. Therefore the theorem is true. 2The above convergence results can be applied to most know trust region algorithms fornonlinear equations. An exception is the L1 trust region algorithm of Du�, Nocedal and



10 Y. YuanReid (1987). Their algorithm requires a very strong condition for accepting trial steps.The condition is jjF (xk + sk)jj1 � jjF (xk)jj1 � �jjJ(xk)skjj1; (3.16)for some � > 0. It is shown by Yuan (1994) that the above condition may make thealgorithm stucked at a non-stationary point. Yuan's example is a system of 2 linearequations of 2 variables: f1(u; v) = �� 1� u = 0 (3.17)f2(u; v) = � + (1 + 1� )u� v = 0: (3.18)For any give � > 0, one can choose � > 0 and � > 0 properly such that condition (3.16)will not be satis�ed at (0; 0)T for any small �. More details can be found in Yuan (1994).Nocedal (1994) informed us that a similar example was also given by Powell in 1987. Ofcourse, if we replace condition (3.16) byjjF (xk + sk)jj1 � jjF (xk)jj1 � �[jjF (xk)jj1 � jjF (xk) + J(xk)skjj1]: (3.19)then convergent results of this section can be applied to the algorithm of Du�, Nocedaland Reid (1987), because (3.19) is the same as rk � �.4. Local ConvergenceIn this section, we study the local properties of Algorithm 2.1. Thus, throughout thissection we assume thatAssumption 4.1 fi(x)(i = 1; :::; m) are all twice continuously di�erentiable; xk gener-ated by Algorithm 2.1 converges to x�; fjjBkjjg is bounded.We call x� is a �rst order strict minimum of h(F ) if there exists a positive number �such that h(F (x� + d)) � h(F (x�)) + �jjdjj2; (4.1)for all small d.Theorem 4.2 Under the conditions of Assumption 4.1, if �k+1 � �k when jjskjj < �k,then xk converges to x� quadratically.Proof It is easy to see thath(F (x))� h(F (x) + J(x)(x� � x)) = h(F (x))� h(F (x�)) +O(jjx� x�jj22)� �jjx� x�jj2 +O(jjx� x�jj22) (4.2)So we have �jjx�x�jj(x) � �jjx� x�jj+O(jjx� x�jj22) (4.3)



Trust Region Algorithms for Nonlinear Equations 11which shows that there exists �� such that��k(xk) � ��min[�k; jjxk � x�jj2] (4.4)for all large k. Inequality (4.4) implies the existence of a positive constant �̂ thatPredk � �̂min[�k; jjxk � x�jj2] (4.5)for all large k. From the above inequality, we can show thatjjxk � x�jj < �k=2 (4.6)holds for all large k. Assume that (4.6) is not true, there exist ki(i = 1; 2; :::) such that�ki < �ki�1 and that �ki � 2jjxki � x�jj: (4.7)The above relation and the fact that �k+1 � c3jjskjj imply thatjjski�1jj = O(jjxki � x�jj2)= O(jjxki�1 � x�jj2): (4.8)(4.8) and (4.5) show that jjski�1jj = O(Predki�1); (4.9)which yields that rki�1 ! 1. This contradicts the assumption that �ki < �ki�1. Therefore(4.6) is true for all large k. Now we shows thatjjxk + sk � x�jj = O(jjxk � x�jj2) (4.10)Because x� is a �rst order strict minimum and Bk are bounded, we have thatO(jjxk � x�jj2) = �k(x� � xk)� �k(sk)� h(F (xk + sk)) +O(jjskjj2)� �jjxk + sk � x�jj+O(jjskjj2) (4.11)We claim that limk!1 jjskjj = 0: (4.12)If the above relation is not true, trial steps will be rejected for in�nitely many times. Thisimplies that trust region bound will be reduced by a fraction for in�nitely many times.Due to our assumption that the trust region bound does not increase if the current trustregion constraint is inactive, it follows that �k ! 0, which implies (4.12). Thus, we haveshown that (4.12) is true. Now (4.12), (4.11) and the fact that xk ! x� implies thatjjxk + sk � x�jj = O(jjxk � x�jj2) (4.13)



12 Y. YuanThe above relation and the fact that x� is a �rst order strict minimum imply that rk ! 1.Therefore xk+1 = xk + sk for all large k. This shows that xk converges quadratically. 2When n = m, x� is a �rst order strict minimum is equivalent to the assumption thatJ(x�) is non-singular at x�. The above superlinear convergence result shows that fBkgcan be any matrices as long as they are uniformly bounded. The simplest choice is to letBk = 0 for all k. This is indeed the case for many algorithms, for example, those givenby Du�, Nocedal and Tapia (1987), El Hallabi and Tapia (1993).Without assuming x� is a �rst order strict minimum, Powell and Yuan (1984) studiesconditions for the local superlinear convergence of Algorithm 2.1 when h(:) = jj:jj1 andh(:) = jj:jj1. They consider the case that x� is a stationary point but F (x�) 6= 0, andassume that the following second order su�cient conditions hold, that is, the Hessian ofthe Lagrange function is positive semi-de�nite in the null space of Jacobi. Their mainresult is as follows:Theorem 4.3 If h(:) = jj:jj1 or h(:) = jj:jj1, if xk generated by Algorithm 2.1 convergesto x�, if h(F (x�)) > 0 and the second order su�cient condition is satis�ed at x�, and ifjjskjj < �k for all su�ciently large k, then sk is a superlinear convergent step, namelylimk!1 jjxk + sk � x�jjjjxk � x�jj = 0 (4.14)if and only if limk!1 jjP �(W � � Bk)skjjjjskjj = 0 (4.15)where W � = Pmi=1 ��ir2fi(x�), P � is the projection from <n to the null space of the Jacobiat x�, and ��i are the Lagrange multipliers.More details can be found in Powell and Yuan (1984). The above result indicate thatwhen the null space of J(x�) is not empty, second order informations are need in order toget superlinear convergence.Unfortunately, the assumption that h(F (x�)) > 0 in Theorem 4.3 implies that thetheorem can not be applied to the case that xk converges to a solution of the nonlinearsystem F (x) = 0. Consider the following simple problemf1(u; v) � u+ v2 = 0 (4.16)f2(u; v) � u� v2 = 0 (4.17)where (u; v)T = x 2 <2. It can be see that x� = (0; 0)T is the unique solution. Forxk = (0; vk)T , consider the subproblemmin jjFk + Jkdjj (4.18)which gives a trial step sk = (0;�vk=2)T . Thus xk+1 = xk=2, the sequence converges onlylinearly. For this problem, jjF (x)jj is second order strict minimum in the sense thatjjF (x)jj2 � jjF (x�)jj2 + 12 jjx� x�jj22 (4.19)



Trust Region Algorithms for Nonlinear Equations 13for all small x. It satis�es the second order su�cient condition that the Hessian of theLagrange function is positive de�nite in the null space of the Jacobi. Now we considerthat the trial step sk is computed by minimizing (2.2)-(2.3). Due to the second ordersu�cient condition, it is reasonable to let Bk be a positive semi-de�nite matrix. BecauseBk is positive de�nite, this would produce a trial step sk whose length is at most jjxkjj=2.Therefore we can only get linear convergence.Another assumption, jjskjj < �k for all large k, in Theorem 4.3 may fail in compu-tations. Yuan (1984) gave a minimax problem that trust region bounds are active at alliterations. Consequently linear convergence can happen.5. DiscussionWe have discussed in this paper a general trust region algorithm for solving nonlin-ear equations. Our approach is to rewrite the system of equations into a minimizationproblem. Our local models are a linearized part and a second order term. It is showedthat the second order term does not a�ect the algorithm much when the iterate pointsconverges to a �rst order strict minimum.Our linear model are based on the Taylor expansion. In other words, we use theJacobi to build approximate functions. Thus our algorithm can be viewed as a trustregion globalization of Newton's method.In optimization, numerical methods that do not compute any derivatives are calleddirect methods. For nonlinear equations, there are also methods that do not compute theJacobi, such as the Brent method. Direct methods are of great interests, especially whenthe number of variables are very large. Therefore It is interesting to study trust regionalgorithms that use only function values.AcknowledgementsThis work was carried out during my visit at the Department of Mathematics of HongKong Baptist College, under the support of Croucher Foundation. I would like to thankProf. H.C. Huang and Dr. F.J. Hickernell for the excellent facilities and nice researchenvironment in the Department, and for the many valuable discussions that we had duringmy enjoyable visit there.References[1] I. Du�, J. Nocedal and J. Reid, \The use of linear programming for the solution ofsparse sets of nonlinear equations", SIAM J. Sci. Stat. Comput. 8(1987) 99-108.[2] M. El Hallabi and R. Tapia, \A global convergence theory for arbitrary norm trust-region methods for nonlinear equations" Report MASC TR 93-41, Rice University,Houston, USA.
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