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Abstract

In this paper, we review the trust region algorithms for nonlinear optimization. The
philosophy and the fundamental ideas of trust region algorithms are discussed. Model
algorithms for unconstrained optimization, constrained optimization, and nonsmooth
optimization are given. Main techniques for global convergence and local superlinear
convergence are analyzed.
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1. Introduction

Nonlinear optimization is to minimize a function, possibly subject to finitely many algebraic
equation and inequality conditions. It has the following form

min
x∈ℜn

f(x) (1.1)

subject to ci(x) = 0, i = 1, 2, . . . ,me; (1.2)

ci(x) ≥ 0, i = me + 1, . . . ,m, (1.3)

where f(x) and ci(x) (i = 1, . . . ,m) are real functions defined in ℜn, at least one of these
functions is nonlinear, and m ≥ me are two non-negative integers. If m = me = 0, problem
(1.1) is an unconstrained optimization problem, otherwise it is a constrained problem.

Numerical methods for nonlinear optimization problems are iterative. At the k−th
iteration, a current approximate solution xk is available. A new point xk+1 is computed by
certain techniques, and this process is repeated until a point can be accepted as a solution.

The classical type of methods for optimization are line search algorithms, which obtain
a search direction in each iteration, and search along this direction to obtain a better point.
The search direction is normally computed by solving a subproblem that approximates the
original problem near the current point, therefore it guarantees that there exist better points
along the direction. Most of the known methods for optimization are line search algorithms.

Trust region algorithms are relatively new algorithms. The trust region approach is
strongly associated with approximation. Assume we have a current guess of the solution
of the optimization problem, an approximate model can be constructed near the current
point. A solution of the approximate model can be taken as the next iterate point. In
fact, most line search algorithms also solve approximate models to obtain search directions.
However, in a trust region algorithm, the approximate model is only “trusted” in a region
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near the current iterate. This seems reasonable, because for general nonlinear functions local
approximate models (such as linear approximation and quadratic approximation) can only
fit the original function locally. The region that the approximate model is trusted is called
trust region. A trust region is normally a neighbourhood centered at the current iterate.
The trust region is adjusted from iteration to iteration. Roughly speaking, if computations
indicate the approximate model fit the original problem quite well, the trust region can be
enlarged. Otherwise when the approximate model works not good enough (for example, a
solution of the approximate model turns out to be a “bad” point), the trust region will be
reduced.

The key contents of a trust region algorithm are how to compute the trust region trial
step how to decide whether a trial step should be accepted. An iteration of a trust region
algorithm has the following form. At the beginning of the iteration, a trust region is available.
An approximate model is constructed, and it is solved within the trust region, giving a
solution sk which is called the trial step. A merit function is chosen, which is used for
updating the next trust region and for choosing the new iterate point.

Most researches on trust region algorithms are mainly started in the 80s. Hence trust
region algorithms are less mature then line search algorithms, and by now the applications
of trust region algorithms are not as widely as that of line search algorithms. However, trust
region methods have two advantages. One is that they are reliable and robust, another is
that they have very strong convergence properties.

2. Levenberg-Marquardt Method

Levenberg-Marquardt method, first given by Levenberg[15] and re-derived by Marquardt[21],
is a method for solving nonlinear equations. This method is often mentioned when the his-
tory of trust region algorithms is discussed. The reason is that the technique of trust region
is, in some sense, equivalent to that of the Levenberg-Marquardt method.

Consider a system of nonlinear equations

fi(x) = 0, i = 1, ...,m, (2.1)

where fi(x)(i = 1, ...,m) are continuous differentiable functions in ℜn. We try to compute a
least square solution, which means that we need to solve the nonlinear least squares problem

min
x∈ℜn

||F (x)||22 (2.2)

where F (x) = (f1(x), ....fm(x))T . The Gauss-Newton method for problem (2.2) is iterative,
and at the current iterate xk, the Gauss-Newton step is

dk = −(A(xk)T )+F (xk) (2.3)

where A(x) = ∇F (x)T is the Jacobi matrix, and A+ is the generalized inverse of A. It is
easy to see that the Gauss-Newton step is the minimum norm solution of the subproblem

min
d∈ℜn

||F (xk) +A(xk)T d||22 (2.4)

which is an approximation to the original problem (2.2) near the current iterate xk. One
difficulty of using the Gauss-Newton step is that the Jacobi matrix A(xk) may be ill condi-
tioned, which normally leads to a very big step dk. And a very long step dk usually causes
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the algorithm to break down, because of either numerical overflows or failure in line searches.
The Levenberg-Marquardt method chooses the step as follows

dk = −(A(xk)A(xk)T + λkI)
−1A(xk)F (xk) (2.5)

where λk ≥ 0 is a parameter which is updated from iteration to iteration (see, [18]). The
original idea of Levenberg-Marquardt method is introducing the parameter λk to overcome
the ill condition of A(xk), or in other words, to prevent ||dk||2 being too large.

It is easily seen that dk given by (2.5) is a stationary point of the convex function:

P (d) = ||F (xk) +A(xk)Td||22 + λk||d||
2
2 . (2.6)

Thus, (2.5) is a solution of

min
d∈ℜn

||F (xk) +A(xk)T d||22 + λk||d||
2
2 . (2.7)

Subproblem (2.7) is a modification of (2.4). The additional term λk||d||
2
2 can be viewed as

a penalty term which prevents ||dk|| from being too large.

Define

∆k = ||(A(xk)A(xk)T + λkI)
−1A(xk)F (xk)||2 , (2.8)

then for any ||d||2 ≤ ∆k, because dk is a solution of (2.7), it can be shown that

||F (xk) +A(xk)T d||22 = P (d) − λk||d||
2
2quad ≥ P (dk) − λk||d||

2
2

= ||F (xk) +A(xk)Tdk||
2
2 + λk(||dk||

2
2 − ||d||22)

≥ ||F (xk) +A(xk)Tdk||
2
2. (2.9)

This verifies that dk is also a solution of the following problem

min
d∈ℜn

||F (xk) +A(xk)T d||22 (2.10)

s. t. ||d||2 ≤ ∆k . (2.11)

Now it is obvious that problem (2.10)-(2.11) is a trust region subproblem, as condition (2.11)
is clearly a trust region type constraint. It is in this sense that we can view the classical
Levenberg-Marquardt method as a trust region algorithm. Indeed, a trust region algorithm
for nonlinear least squares is similar to the Levenberg-Marquardt method, except that the
bound ∆k is updated from iteration to iteration instead of the parameter λk. The following
is a trust region algorithm for nonlinear least squares problems:

Algorithm 2.1 (Trust Region Algorithm for Nonlinear Least Squares)

Step 1 Given x1 ∈ ℜn, ∆1 > 0.

Step 2 Solve (2.10)-(2.11), giving sk;
If ||F (xk)||2 = ||F (xk +A(xk)T sk||2 then stop;
Compute

rk =
||F (xk)||2 − ||F (xk + sk)||2

||F (xk)||2 − ||F (xk) + A(xk)T sk||2
. (2.12)



4 Y. Yuan

Step 3 Let

xk+1 =

{

xk + sk if rk > 0,
xk otherwise;

(2.13)

Set

∆k+1 =







||sk||2 if rk < 0.1,
2∆k if rk > 0.9 and ||sk||2 > ∆k/2,
∆k otherwise;

(2.14)

Step 4 k := k + 1, go to Step 2.

In the above algorithm, the trust region radius ∆k is updated from iteration to iteration
directly, while the Levenberg-Marquardt method updates the parameter λk, which in turn
modifies the value ∆k from (2.8) implicitly. Modifying ∆k directly has the advantage of
controlling and monitoring the length of dk easily. Hence, nowadays it is regarded that trust
region approach is better than the original Levenberg-Marquardt method. For more details,
see [18].

Algorithm 2.1 can be modified for solving L1 norm minimization ([9]) and general norm
minimization problems([10]).

3. Unconstrained Optimization

In this section, we consider trust region algortihms for unconstrained optimization prob-
lem:

min
x∈ℜn

f(x) (3.1)

where f(x) is a nonlinear continuous differentiable function in ℜn. At each iteration, a trial
step is calculated by solving the subproblem

min
d∈ℜn

gT
k d+

1

2
dTBkd = φk(d) (3.2)

s. t. ||d||2 ≤ ∆k (3.3)

where gk = ∇f(xk) is the gradient at the current approximate solution, Bk is an n × n
symmetric matrix which approximates the Hessian of f(x) and ∆k > 0 is a trust region
radius. Let sk be a solution of (3.2)-(3.3). The predicted reduction is defined by the
reduction in the approximate model, that is

Predk = φk(0) − φk(sk). (3.4)

Unless the current point xk is a stationary point and Bk is positive semi-definite, the pre-
dicted reduction Predk is always positive. The actual reduction is the reduction in the
objective function:

Aredk = f(xk) − f(xk + sk). (3.5)

And we define the ratio between the actual reduction and the predicted reduction by

rk =
Aredk

Predk

(3.6)

which is used to decide whether the trial step is acceptable and to adjust the new trust
region radius.

A general trust region algorithm for unconstrained optimization can be given as follows.
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Algorithm 3.1 (Trust Region Algorithm for Unconstrained Optimization)

Step 1 Given x1 ∈ ℜn, ∆1 > 0, ǫ ≥ 0, B1 ∈ ℜn×nsymmetric;
0 < τ3 < τ4 < 1 < τ1, 0 ≤ τ0 ≤ τ2 < 1, τ2 > 0, k := 1.

Step 2 If ||gk||2 ≤ ǫ then stop;
Solve (3.2)-(3.3) giving sk.

Step 3 Compute rk;

xk+1 =

{

xk if rk ≤ τ0 ,
xk + sk otherwise ;

(3.7)

Choose ∆k+1 that satisfies

∆k+1 ∈

{

[τ3||sk||2, τ4∆k] if rk < τ2,
[∆k, τ1∆k] otherwise;

(3.8)

Step 4 Update Bk+1;
k := k + 1; go to Step 2.

The constants τi (i=0,..,4) can be chosen by users. Typical values are τ0 = 0, τ1 =
2, τ2 = τ3 = 0.25, τ4 = 0.5. For other choices of those constants, please see [13], [11], [19],
[27], etc.. The parameter τ0 is usually zero (e.g. [13], [26]) or a small positive constant
(e.g. [9] and [31]). The advantage of using zero τ0 is that a trial step is accepted whenever
the objective function is reduced. Hence it would not throw away a “good point”, which is
a desirable property especially when the function evaluations are very expensive. Another
intuitive argument for preferring τ0 = 0 is as follows. Consider the case that rk > 0. No
matter how small the ratio rk is, the objective function f(x) has a smaller function value at
xk + sk than at xk. Hence intuitively one would expect that the minimum of the objective
function should be closer to xk + sk than to xk. In other words, it is more likely that the
solution of the original problem is in the half space S1 = {s | ||xk + sk + s|| ≤ ||xk + s||}
instead of S2 = {s | ||xk + s|| ≤ ||xk + sk + s||} (see Picture 3.1). Normally trust region
algorithms reduce the new trust region bound to at most a half of ||sk|| whenever sk is
rejected (xk+1 = xk), Hence for those algorithms that reject sk, the trust region for the next
iteration will be {s | ||xk +s|| ≤ ∆k+1 ≤ ||sk||/2} which is a subset of S2. That contradicts
to our above rough analyses that indicate the solution is more likely in S1. Hence we believe
it is better to set xk+1 = xk + sk in this case, which will enable the next trust region in S1.
That is to say, intuitively it is better to set xk+1 = xk + sk whenever rk > 0.

Picture 3.1
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||xk + s|| ≤ ∆k+1 ||xk + sk + s|| ≤ ∆k+1
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But, the price we pay for letting τ0 = 0 is that the global convergence result is only

lim inf
k→∞

||gk||2 = 0 (3.9)

instead of
lim

k→∞
||gk||2 = 0 (3.10)

which can be achieved if τ0 > 0. However, given a positive tolerance ǫ, (3.9) is also sufficient
to guarantee a finite termination of Algorithm 3.1, namely (3.9) ensures that the convergence
test ||gk||2 ≤ ǫ in Step 2 of Algorithm 3.1 will be satisfied for some k.

The subproblem (3.2)-(3.3) has been studied by many authors. And the following lemma
is well known (for example, see [14] and [20]):

Lemma 3.2 A vector d∗ ∈ ℜn is a solution of the problem

min
d∈ℜn

gTd+
1

2
dTBd = φ(d) (3.11)

subject to ||d||2 ≤ ∆ (3.12)

where g ∈ ℜn, B ∈ ℜn×n is a symmetric matrix, and ∆ > 0, if and and only if there exists
λ∗ ≥ 0 such that

(B + λ∗I)d∗ = −g (3.13)

and that B + λ∗I is positive semi-definite, ||d∗||2 ≤ ∆ and

λ∗(∆ − ||d∗||2) = 0. (3.14)

Let d∗ be a solution of problem (3.11)-(3.12) and λ∗ be the multiplier satisfying conditions
in the above lemma. If B + λ∗I is positive definite, then d∗ is uniquely defined by

d∗ = −(B + λ∗I)−1g. (3.15)

The case where B + λ∗I has zero eigenvalues is called “hard case”. In this case, relation
(3.13) implies that g is in the range space of B + λ∗I and d∗ can be written in the form:

d∗ = −(B + λ∗I)+g + v, (3.16)

where v is a vector in the null space of B+λ∗I. On other hand, if g is in the range space of
B + λ∗I then any vector d∗ given by (3.16) is also a solution of (3.11)-(3.12) provided that
||d∗||2 ≤ ∆ and that λ∗(∆ − ||d∗||2) = 0.

Unless in the hard case, λ∗ is also the unique solution of the following equation

ψ(λ) =
1

||(B + λI)−1g||2
−

1

∆
= 0. (3.17)

Function ψ(λ) is well defined for λ ∈ (−σn(B),+∞), where σn(B) is the least eigenvalue of
B. ψ(λ) is concave and strictly monotonically increasing in (−σn(B),+∞) (For example,
see [8]). In fact, the first order and second order derivatives of ψ(λ) can be easily computed,
thus Newton’s method can be used to calculate λ∗. The Newton’s iteration is

λ+ = λ−
ψ(λ)

ψ′(λ)

= λ−
gT (B + λI)−3g

||(B + λI)g||32

[

1

||(B + λI)−1g||2
−

1

∆

]

. (3.18)
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Based on Newton’s iteration (3.18), numerical algorithms for problem (3.11)-(3.12) have
been given by [14] and [20].

In the hard case, we have that

λ∗ = −σn(B), (3.19)

where σn(B) is the least eigenvalue of B. If −σn(B) = 0, we can easily see that −B+g is
a solution of problem (3.11)-(3.12). Hence the “real” hard case is that (3.19) is satisfied
and σn(B) < 0. For any λ ∈ (−σn(B),+∞), Newton’s step will normally make the matrix
B + λ+I have negative eigenvalue. Hence Newton’s step (3.18) can only be used to adjust
the lower bound λL. Based on these observations, we suggest to use the Newton’s step for
an equivalent equation

ψ̃(µ) = ψ(
1

µ
) = 0. (3.20)

Lemma 3.3 (Powell, 1970) Let S be any subspace in ℜn, and let dS be any solution of the
following problem

min
d∈S,||d||2≤∆

φ(d) . (3.21)

If g ∈ S then the inequality

φ(0) − φ(dS) ≥
1

2
||g||2 min[∆, ||g||2/||B||2]. (3.22)

is satisfied.

Specifically, when S = ℜn we have that

φ(0) − φ(d∗) ≥
1

2
||g||2 min[∆, ||g||2/||B||2]. (3.23)

This shows that the reduction in the trust region model will not be very small unless either
||g||2∆ or ||g||22/||B||2 is very small. This property is very important for proving convergence
of trust region algorithms.

The global convergence analyses of trust region algorithms depend on the fact that the
predicted reduction satisfies (3.23). Hence, instead of solving (3.2)-(3.3) exactly, we can
compute a trial step sk that satisfies

φk(o) − φk(sk) ≥ τ min{∆k, ||gk||2/||Bk||2} , (3.24)

where τ is some positive constant. A trial step sk satisfying inequality (3.24) is called a
“sufficient reduction” step. To compute a vector sk satisfying (3.24) is usually much easier
than solving (3.2)-(3.3) exactly. The vector sk can be calculated by dog-leg type techniques
or by searching in the two dimensional space spanned by the steepest descent direction
and Newton’s step. For more details, please see [6], [25], [30] and [34]. The subproblem
(3.2)-(3.3) can also be solved approximately by a preconditioned conjugate gradient method
which can be regarded as a generalized dog-leg technique (see [32]).

Lemma 3.4 Assume that f(x) is differentiable and ∇f(x) is uniformly Lipschitz continu-
ous. Let xk be generated by Algorithm 3.1 with sk is so computed that (3.24) is satisfied for
all k. If there exists a positive constant δ such that

||gk||2 ≥ δ > 0, ∀ k, (3.25)
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then there exists a constant η > 0 such that

∆k ≥ η
1

Mk

(3.26)

holds for all k, where Mk is defined by

Mk = 1 + max
1≤i≤k

||Bk||2. (3.27)

Proof If the lemma is not true, then (3.25) holds and there exist a subsequence {ki} such
that

lim
i→∞

∆ki
Mki

= 0. (3.28)

Because Mk ≥ 1 for all k, (3.28) indicates that ∆ki
→ 0. Due to the monotonicity of Mk,

we can assume that ∆ki
< ∆ki−1 for all i. Using the notation ī = ki−1, from (3.25), (3.24),

(3.28) and the fact that ∆k+1 ≥ τ3||sk||2 for all k, we can show that

lim
i→∞

||sī||2Mī = 0. (3.29)

Inequalities (3.29), (3.25) and (3.24) imply that

φī(0) − φī(sī) ≥ τ̄ ||sī||2 (3.30)

holds for all large i, where τ̄ is some positive constant. Due to the uniformly Lipschitz
continuity of ∇f(x) and relation (3.29), we have that

Aredī = f(xī) − f(xī + sī) = −gT
ī sī +O(||sī||

2
2)

= φī(0) − φī(sī) +O(||sī||
2
2) +O(||sī||

2
2||Bī||2)

= φī(0) − φī(sī) + o(||sī||2)

= Predī + o(||sī||2). (3.31)

The above relation and inequality (3.30) show that

lim
i→∞

rki−1 =
Aredī

Predī

= 1, (3.32)

which shows that
∆ki

≥ ∆ki−1 (3.33)

for all large i. This contradicts our assumption that ∆ki
< ∆ki−1 for all i. Hence the lemma

is true. 2

The first convergence result for Algorithm 3.1 was given by [24]. Later he showed that
global convergence is always guaranteed provided that the matrices Bk satisfy that

||Bk||2 ≤ β1(1 +

k
∑

i=1

||sk||2), ∀ k (3.34)

([26] or
||Bk||2 ≤ β1k, ∀ k (3.35)

([27]), where β1 is any positive constant. To prove the global convergence of Algortihm 3.1
under condition (3.35), the following lemma is needed.
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Lemma 3.5 (Powell, 1984a) Let {∆k} and {Mk} be two sequences such that ∆k ≥ ν/Mk ≥
0 for all k, where ν is a positive constant. Let I be a subset of {1, 2, 3, ...}. Assume that

∆k+1 ≤ τ1∆k, k ∈ I (3.36)

∆k+1 ≤ τ4∆k, k 6∈ I (3.37)

Mk+1 ≥Mk, ∀ k (3.38)
∑

k∈I

1/Mk <∞ (3.39)

where τ1 > 1, τ4 < 1 are positive constants. Then

∞
∑

k=1

1/Mk <∞. (3.40)

Theorem 3.6 Assume that f(x) is differentiable and ∇f(x) is uniformly Lipschitz contin-
uous. Let xk be generated by Algorithm 3.1 with sk satisfies (3.24). If Mk defined by (3.27)
satisfy that

∞
∑

k=1

1

Mk

= ∞, (3.41)

if ǫ = 0 is chosen in Algorithm 3.1, and if {f(xk)} is bounded below, then it follows that

lim inf
k→∞

||gk||2 = 0. (3.42)

Proof If the theorem is not true, there exists a positive constant δ such that (3.25)
holds for all k. Hence, Lemma 3.4 shows that there exists a positive constant ν such that
∆k ≥ ν/Mk holds for all k. Define the set

I = {k | rk ≥ τ2}, (3.43)

then inequality (3.36) and (3.37) follow from our update formula (3.8). The assumption
that f(xk) is bounded below also implies that

+∞ >

∞
∑

k=1

(f(xk) − f(xk+1))

≥
∑

k∈I

τ2[φk(0) − φk(sk)]

≥
∑

k∈I

τ2τδmin[∆k, δ/||Bk||2]

≥
∑

k∈I

τ2τδmin[ν, δ]/Mk (3.44)

which shows that inequality (3.39) is also true. Now inequality (3.38) follows from the
definition of Mk. Therefore, from Lemma 3.5, inequality (3.40) holds, which contradicts
(3.41). The contradiction shows that the theorem is true. 2

Powell’s result is strengthen by Shultz, Schnabel and Byrd (1985) with some additional
conditions:

Theorem 3.7 Under the conditions of Theorem 3.6, if τ0 > 0 and {||Bk||2} is bounded,
then the sequence {xk} generated by Algorithm 3.1 satisfies

lim
k→∞

||gk||2 = 0. (3.45)
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The condition (3.41) is weaker than the uniformly boundedness of Bk, and it allows
the matrices Bk to be updated by some known quasi-Newton formulae such as Powell’s
symmetric Broyden (BSP) formula (see, [24], [26]) or by the BFGS method.

Powell(1970a) shows that the superlinear convergence of his trust region algorithm where
Bk is updated by the PSB formula under the assumption that the trial steps sk(k = 1, 2, ...)
satisfy a “strict linear independence condition”. Similar to that of [7], Powell(1975) estab-
lishs the superlinear convergence property of Algorithm 3.1. The following theorem is a
slightly generalized form of Powell’s superlinear convergence result.

Theorem 3.8 Assume the trial step sk computed in Step 2 of Algorithm 3.1 is a solution
of subproblem (3.2)-(3.3). If ǫ = 0 and the sequence {xk} generated by Algorithm (3.1)
converges to x∗, if ∇2f(x) is continuous in a neighbourhood of x∗ and ∇2f(x∗) is positive
definite, and if the condition

lim
k→∞

||(∇2f(x∗) −Bk)sk||2/||sk||2 = 0 (3.46)

is satisfied, then the sequence xk converges to x∗ Q-superlinearly in the sense that

lim
k→∞

||xk+1 − x∗||2/||xk − x∗||2 = 0. (3.47)

Proof Due to (3.13), for each k, there exists a λk ≥ 0 such that

(Bk + λkI)sk = −gk. (3.48)

Hence we have that
sT

kBksk + sT
k gk = −λk||sk||

2
2 ≤ 0. (3.49)

The positive definiteness of ∇2f(x∗) implies that there exists a positive constant η such that

sT∇2f(x∗)s ≥ η||s||22, ∀ s ∈ ℜn. (3.50)

The inequalities (3.49), (3.50) and relation (3.46) show that

||sk||2||gk||2 ≥ −sT
k gk ≥ sT

kBksk

= sT
k ∇

2f(x∗)sk + o(||sk||
2
2)

≥ η||sk||
2
2 + o(||sk||

2
2) (3.51)

Thus, it follows that

||sk||2 ≤
2

η
||gk||2 (3.52)

holds for all large k. Similarly it can be shown that

φk(0) − φk(sk) = −gT
k sk −

1

2
sT

kBksk

= −gT
k sk − sT

kBksk +
1

2
sT

kBksk

≥
1

2
sT

kBksk ≥
1

2
η||sk||

2
2 + o(||sk||

2
2). (3.53)

and that

Predk −Aredk = f(xk + sk) − f(xk) − gT
k sk −

1

2
sT

kBksk

=
1

2
sT

k (∇2f(x∗) −Bk)sk + o(||sk||
2
2)

= o(||sk||
2
2). (3.54)
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Now relations (3.53) and (3.54) imply that

lim
k→∞

rk = 1, (3.55)

which shows that ∆k+1 ≥ ∆k and xk+1 = xk + sk for all large k. Therefore ||sk||2 < ∆k,
consequently

Bksk = −gk (3.56)

holds for all sufficiently large k. Now (3.56), (3.46), (3.52) and the fact that xk+1 = xk + sk

for large k shows that

lim
k→∞

||gk+1||2
||gk||2

= 0. (3.57)

Due to the positive definiteness of ∇2f(x∗), it can be shown that (3.57) is equivalent to
(3.47). 2

The above theorem requires weaker conditions than the original superlinear convergence
result of [26]. For example, we do not assume any boundedness conditions for Bk.

It is also shown by [26] that Bk updated by the PSB formula gives the limit (3.46),
consequently superlinear convergence follows. However, Powell’s superlinear convergence
result requires that Bk is updated at every iteration, even at a failed iteration. As updating
Bk requires the evaluation of g(xk + sk), therefore even at an unacceptable point xk + sk

which satisfies f(xk + sk) > f(xk) we still have to compute g(xk + sk). To avoid the
evaluation of g(xk + sk) when sk is unacceptable, Khalfan (1989) suggests to update Bk by
the following formula

Bk+1 = Bk + 2[f(xk + sk) − f(xk) − sT
k gk −

1

2
sT

kBksk]
sks

T
k

||sk||42
(3.58)

whenever f(xk+sk) ≥ f(xk), thus there is no needs to compute g(xk+sk) at such iterations.
Superlinear convergence remains true after this modification. More details can be seen in
[16].

If Bk = ∇2f(xk) for all k, Algorithm 3.1 is called Newton’s method with trust regions.
In this special case, a stronger global convergence result can be established.

Theorem 3.9 Assume that Bk = ∇2f(xk) for all k, and assume that sk is an approximate
solution of subproblem (3.2)-(3.3) such that the predicted reduction is at least a fraction
of the maximum reduction of the model, If ǫ = 0, then the sequence {xk} generated by
Algorithm 3.1 satisfies that

lim inf
k→∞

{||gk||2 +max[−σn(∇2f(xk)), 0]} = 0. (3.59)

Moreover, if τ0 > 0, then we have that

lim
k→∞

{||gk||2 +max[−σn(∇2f(xk)), 0]} = 0. (3.60)

A direct corollary of the above theorem is that if Newton’s method with trust regions
converges to x∗, then ∇f(x∗) = 0 and ∇2f(x∗) is positive semi-definite. Similar to Theo-
rem 3.8, it can be shown that Newton’s method with trust regions converges quadratically.
More details about Newton’s method with trust region techniques can be found in [13], [30],
[31] and [32].

A solution sk of the trust region subproblem (3.2)-(3.3) is also a sufficiently descently
direction. Hence simply throwing away sk whenever f(xk +sk) ≥ f(xk) may not be the best
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choice, as condition sT
k gk < 0 implies that a line search can be carried out along sk. [22]

gives a trust region algorithm that carries a backtracking line search whenever the computed
trial step sk is unacceptable.

4. Constrained Optimization

For constrained problems, most trust region subproblems can be regarded as some kind
of modification of the SQP subproblem of line search algorithm, which has the following
form:

min
d∈ℜn

gT
k d+

1

2
dTBkd = φk(d) (4.1)

s. t. ci(xk) + dT∇ci(xk) = 0 i = 1, 2, . . . ,me; (4.2)

ci(xk) + dT∇ci(xk) ≥ 0 i = me + 1, . . . ,m (4.3)

where gk = g(xk) = ∇f(xk) and Bk is an approximate Hessian of the Lagrange function.
The first type of trust region subproblems, being a slightly modification of SQP sub-

problem (4.1)-(4.3), have the following form:

min
d∈ℜn

gT
k d+

1

2
dTBkd = φk(d) (4.4)

s. t. θkci(xk) + dT∇ci(xk) = 0 i = 1, 2, . . . ,me; (4.5)

θkci(xk) + dT∇ci(xk) ≥ 0 i = me + 1, . . . ,m (4.6)

||d|| ≤ ∆k (4.7)

where θk ∈ (0, 1] is a parameter (see Byrd, Schnabel and Shultz [2] and Vardi [35]). Pa-
rameter θk is introduced to overcome the possible nonfeasibility of the linearized constraints
(4.2)-(4.3) in the trust region (4.7). Trial steps of the trust region algorithms that apply
null space techniques can also be reviewed as solutions of (4.4)-(4.7) (for example, see [23]).

Another trust region subproblem is obtained by replacing the linearized constraints (4.2)-
(4.3) by a single quadratic constraint. It can be written as:

min
d∈ℜn

gT
k d+

1

2
dTBkd = φk(d) (4.8)

s. t. ||(ck +AT
k d)

−||2 ≤ ξk (4.9)

||d||2 ≤ ∆k, (4.10)

where ck = c(xk) = (c1(x), ..., cm(x))T , Ak = A(xk) = ∇c(xk)T , ξk ≥ 0 is a parameter and
the superscript “-” means that v−i = vi(i = 1, ...,me), v

−
i = min[0, vi](i = me + 1, ...,m).

Algorithms that use (4.8)-(4.10) are given by Celis, Dennis and Tapia [3] and Powell and
Yuan [29].

Trust region subproblems can also derived by using exact penalty functions. The follow-
ing trust region subproblem ([39]) is based on the L∞ exact penalty function:

min
d∈ℜn

gT
k d+

1

2
dTBkd+ σk||(ck +AT

k d)
−||∞ = Φk(d) (4.11)

s. t. ||d|| ≤ ∆k. (4.12)
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Trust region subproblems based on exact penalty functions are closely related to subproblems
of trust region algorithms for nonlinear systems of equations. Trust region algorithms that
compute the trial step by solving (4.11)-(4.12) are also similar to trust region algorithms for
nonsmooth optimization.

Once a trial step sk is computed by solving the trust region subproblem, the predicted
reduction Predk is defined by the reduction of some approximate function φ̄k(d). It should
be noted that in general φk(d) − φ̄(d). A merit function Pk(x) is used to define the actual
reduction Aredk. Pk(x) is normally some penalty function. And the functions φ̄k(d) and
Pk(x) are so constructed that

φ̄k(d) − φ̄k(0) = Pk(xk + d) − Pk(xk) + o(||d||) (4.13)

when ||d|| is very small.
The algorithm can be stated as follows:

Algorithm 4.1 (Trust Region Algorithm for Constrained Optimization)

Step 1 Given x1 ∈ ℜn, ∆1 > 0, ǫ ≥ 0, B1 ∈ ℜn×nsymmetric;
0 < τ3 < τ4 < 1 < τ1, 0 ≤ τ0 ≤ τ2 < 1, τ2 > 0, k := 1.

Step 2 If ||gk||2 ≤ ǫ then stop;
Solve a trust region subproblem, giving sk.

Step 3 Compute rk = Predk/Aredk;
Set xk+1 by (3.7);
Choose ∆k+1 that satisfies (3.8)

Step 4 Update Bk+1;
k := k + 1; go to Step 2.

Similar to unconstrained optimization, convergence of trust region algorithms for con-
strained optimization depends on some lower bound condition of the predicted reduction,
such as

predk ≥ δǫk min[∆k, ǫk/||Bk||] (4.14)

where δ is some positive constant, and ǫk is the violation of the KT conditions which is
defined by

ǫk = ||c−k || + ||gk −Akλk|| (4.15)

and λk being an approximate multiplier at the current point xk and it satisfies that (λk)i ≥
0, i > me. Then it is shown that the merit function will remain the same for all large k.
That is, there exist a integer k0 and a merit function P (x) such that Pk(x) = P (x) for all
k ≥ k0.

If ǫk is bounded away from zero, it can be shown that

predk ≥ δ̄∆k (4.16)

for all k, where δ̄ is a positive constant. Using the above inequality and certain condition
on the merit function P (x), we can prove that

∞
∑

k=1

∆k <∞. (4.17)
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Thus ∆k → 0. This and relation (4.13) imply that

rk =
P (xk) − P (xk + sk)

predk

→ 1. (4.18)

The above limit shows that ∆k+1 ≥ ∆k which contradicts (4.17). Hence it is shown that
there exist a subsequence such that {ǫk} converges to zero.

Global onvergence results of trust region algorithms depend on the sufficiently reduction
condition (4.14) instead of requiring that the trial step sk solves the trus region subproblem
exactly. Hence global convergence is also true when sk is any approximate solution of the
trust region subproblem provided it satisfies condition (4.14).

Local convergence of trust region algorithms are shown by establishing the equivalence
of the trust region trial step and the SQP step. To analyze local convergence, it is al-
ways assumed that the sequence {xk} generated by the algorithm converges to x∗. Global
convergence results imply that x∗ is a KT point.

Let d∗k be the SQP step that is computed by solving the QP subproblem (4.1)-(4.3). It
is well known that under certain conditions the SQP step d∗k is superlinearly convergent in
the sense that

lim
k→∞

||xk + d∗k − x∗||/||xk − x∗|| = 0. (4.19)

Therefore to prove local superlinear convergence

lim
k→∞

||xk+1 − x∗||/||xk − x∗|| = 0, (4.20)

we need to show that

||sk − d∗k|| = o(||d∗k||) (4.21)

xk+1 = xk + sk (4.22)

holds for all large k. In order to have the property (4.21), the trust region subproblem
should be a good approximation of the SQP subproblem. The validity of (4.22) depends on
suitable choice of the merit function.

For most algorithms, it can be shown that

sk = d∗k (4.23)

if k is sufficiently large and if ||sk|| < ∆k. Thus it is sufficient to show that the trial step sk

is acceptable and inactive with the trust region bound for all large k. These are not true for
some algorithms. For example, the SQP step will not be acceptable if the merit function is
nonsmooth. This is the so called Maratos effect. To overcome the Maratos effect, we can
either relax the condition for accepting trial steps or compute a second order correction step.
Relaxing conditions for accepting trial step can be traced back to the watch-dog technique
[4], and second order correction step was first suggested by Fletcher [12].

A second order correction step ŝk is computed by solving another subproblem that is
called second order correction subproblem. The second oder correction subproblem is a
slightly modification of the trust region subproblem that used to compute the trial step.
Assume that a trial step sk is calculated. Normaly a second order correction subproblem
can be constructed by replacing c(xk) by c(xk + sk)−AT

k sk in the trust region subproblem.
For example, if the trial step sk is computed by trust region subproblem (4.11)-(4.12), the
second order correction subproblem can be as follows

min gT
k d+

1

2
dTBkd+ σk||(c(xk + sk) +AT

k (d− sk))−||∞ (4.24)
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s. t. ||d|| ≤ ∆k. (4.25)

A second order correction step satisfies that ||ŝk|| = O(||sk||
2). One nice property of second

order correction step is that inequality

P (xk + sk + ŝk) < P (xk) (4.26)

holds for all large k. Hence if condition (4.21) is satisfied, it follows from (4.19) that that

lim
k→∞

||xk + sk + ŝk − x∗||/||xk − x∗|| = 0. (4.27)

Relation (4.26) imply that xk+1 = xk +sk + ŝk if k is large and if the second order correction
step is computed. Trust region algorithms with second order correction techniques compute
the second order correction step whenever the trial step sk is unacceptable. Therefore it can
be shown that, if k is large, either xk+1 = xk + sk or xk+1 = xk + sk + ŝk. Consequently
the superlinear convergence (4.20) follows from (4.27), (4.21) and (4.19).

5. Nonsmooth Optimization

If one of f(x), ci(x)(i = 1, ...,m) is nonsmooth, or in other words nondifferentiable, prob-
lem (1.1)-(1.1) is called a nonsmooth optimization problem, or a nondifferentiable optimiza-
tion problem. From exact penalty function theory, under certain conditions the constrained
nonsmooth problem (1.1)-(1.3) is equivalent to a unconstrained nonsmooth optimization

min
x∈ℜn

f(x) + σ||c−(x)||. (5.1)

Therefore, it is quite common to study nonsmooth optimization by considering only uncon-
strained nonsmooth optimization problems.

A special class of nonsmooth optimization problems are “composite nonsmooth opti-
mization” problem

min
x∈ℜn

f̄(x) = f(x) + h(F (x)), (5.2)

where F (x) = (f1(x), f2(x), ..., fm(x))T , h(.) is a convex functioned defined in ℜm, and f(x),
fi(x)(i = 1, ...,m) arem+1 continuous differentiable functions defined in ℜn. It is quite clear
that one direct application of (5.2) is to solve constrained smooth optimization problems.
This form of the objective function in (5.2) occurs frenquently in discrete approximation
and data fitting calculations. Another special subclass of (5.2) is the minimization of some
norm of a set of nonlinear equations (see, [9], [10], [17], and [28]). Algorithms for (5.2) can
be extended to general nonsmooth optimization (for example, see [5] and [33]).

For the simplification of notation, we denote g(x) = ∇f(x), A(x) = ∇F (x)T , and

ψρ(x) = h(F (x)) − min
||d||≤ρ

[g(x)T d+ h(F (x) +A(x)T d)], (5.3)

DF (x; d) = gTd+ sup
λ∈∂h(F (x))

λTA(x)T d , (5.4)

where ρ ≥ 0 and where ∂h(F (x)) is the subgradient of h(.), evaluated at F (x). x∗ is called
a stationary point of f̄(x) if

DF (x∗; d) ≥ 0, ∀ d ∈ ℜn, (5.5)



16 Y. Yuan

which is the same as the first order condition of [13].
One can prove that a sequence {xk | k = 1, 2, ...} has an accumulation point at which

the first order condition holds is equivalent to the limit

lim inf
k→∞

ψ1(xk) = 0. (5.6)

A model trust region algorithm that is first given by Fletcher (1982a). The subproblem
in the k-th iteration is

min
d∈ℜn

gT
k d+

1

2
dTBkd+ h(Fk +AT

k d) = φk(d) (5.7)

s. t. ||d|| ≤ ∆k (5.8)

where ||.|| is a given norm in ℜn and ∆k > 0 is the trust region bound in the k-th iteration.
It is easy to see that function φk(d) defined in (5.7) is the sum of a quadratic function and
a convex function. φk(d) is also convex if Bk is positive semi-definite. Another special case
is that h(F ) is a polyhedral convex function of the form

h(F ) = max
1≤i≤I

(uT
i F + βi), (5.9)

where ui ∈ ℜm, βi ∈ ℜ (i = 1, ..., I) are given vectors and constants respectively, and where
I is a positive integer. In this case, φk(d) is a piecewise quadratic function. If the norm ||.||
in (5.8) is the infinite norm or the 1-norm, subproblem (5.7)-(5.8) can be solved by using
techniques such as in [1], and it can can also be rewritten as linearly constrained quadratical
programming calculations.

Let sk be a solution of subproblem (5.7)-(5.8). The prediction reduction and the actual
reduction are defined by

Predk = φk(0) − φk(sk) (5.10)

Aredk = f̄(xk) − f̄(xk + sk). (5.11)

The algorithm can be stated as follows.

Algorithm 5.1 (Trust Region Algorithm for Composite Nonsmooth Optimization)

Step 1 Given x1 ∈ ℜn, ∆1 > 0, ǫ ≥ 0, B1 ∈ ℜn×nsymmetric;
0 < τ3 < τ4 < 1 < τ1, 0 ≤ τ0 ≤ τ2 < 1, τ2 > 0, k := 1.

Step 2 If ψ1(xk) ≤ ǫ then stop;
Solve (5.7)-(5.8) giving sk.

Step 3 Compute rk = Predk/Aredk;
Set xk+1 by (3.7);
Choose ∆k+1 that satisfies (3.8)

Step 4 Update Bk+1;
k := k + 1; go to Step 2.

Similar to (3.23), the following descent condition for the trust region trial step holds.

Lemma 5.2 Let sk be a solution of (5.7)-(5.8), then inequality

φk(0) − φk(sk) ≥
1

2
ψ∆k

(xk)min{1, ψ∆k
(xk)/||Bk||2∆

2
k} (5.12)

holds.
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Using the above lemma, we can easily establish the following global convergence result.

Theorem 5.3 Let ǫ = 0 in Algorithm 5.1, if there exist positive constants τ5 and τ6 such
that

||Bk||2 ≤ τ5 + τ6

k
∑

i=1

∆i (5.13)

holds for all k, if ∆k is bounded above and if f̄(xk) is bounded below, then (5.6) holds, or
in other words, {xk} is not bounded away from stationary points of f̄(x).

Similar to Lemma 3.4, we can prove the following lemma (Details can be found in [37]):

Lemma 5.4 If there exists a constant δ > 0 such that ψ1(xk) ≥ δ holds for all k, then there
exists a constant η > 0 such that

∆k ≥ η
1

Mk

(5.14)

holds for all k.

Now, using the above lemma and Lemma 3.5, one can show the following convergence
result.

Theorem 5.5 Theorem 5.3 is still true if condition (5.13) is replaced by

∞
∑

k=1

1

Mk

= ∞, (5.15)

where Mk is defined in the previous section.

Unfortunately, Algorithm 5.1 may not converge superlinearly.

Lemma 5.6 (Yuan, 1984) For any given 0 ≤ τ0 < τ2 < 1 < τ1, there exist τ3, τ4 ∈ (0, 1)
such that by suitable choices of initial point and initial trust region bound, Algorithm 5.1
applied to the problem given in the beginning of this section may converge only linearly,
though Bk = G∗

∞, and strict complementarity and second order sufficiency conditions are
satisfied.

To overcome this difficulty, Fletcher (1982b) presents a trust region algorithm with a
second order correction. On some iterations, the following “second order correction” sub-
problem

min
d∈ℜn

φ̂k(d) ≡ φk(sk + d)

+h(F (xk + sk) +AT
k d) − h(F (xk) +AT

k (sk + d)) (5.16)

s. t. ||sk + d|| ≤ ∆k, (5.17)

is also solved. It is shown that Fletcher’s second order correction method is superlinearly
convergent ([38]).
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