
Global Convergence of the Method of Shortest Residuals ∗

Yu-hong Dai and Ya-xiang Yuan

State Key Laboratory of Scientific and Engineering Computing,

Institute of Computational Mathematics and Scientific/Engineering Computing,

Chinese Academy of Sciences, P. O. Box 2719, Beijing 100080, P. R. China

Email address: dyh@indigo14.cc.ac.cn, yyx@lsec.cc.ac.cn.

Abstract

The method of shortest residuals (SR) was presented by Hestenes and studied by
Pitlak. If the function is quadratic, and if the line search is exact, then the SR method
reduces to the linear conjugate gradient method. In this paper, we put forward the for-
mulation of the SR method when the line search is inexact. We prove that, if stepsizes
satisfy the strong Wolfe conditions, both the Fletcher-Reeves and Polak-Ribière-Polyak
versions of the SR method converge globally. When the Wolfe conditions are used, the
two versions are also convergent provided that the stepsizes are uniformly bounded; if
the stepsizes are not bounded, an example is constructed to show that they need not
converge. Numerical results show that the SR method is a promising alternative of the
standard conjugate gradient method.

Mathematics Subject Classification: 65k, 90c.

1. Introduction

The conjugate gradient method is particularly useful for minimizing functions of many
variables

min
x∈ℜn

f(x), (1.1)

because it does not require to store any matrices. It is of the form

dk =

{

−gk, for k = 1;
−gk + βkdk−1, for k ≥ 2,

(1.2)

xk+1 = xk + αkdk, (1.3)

where gk = ∇f(x), βk is a scalar, and αk is a stepsize obtained by a line search. Well-known
formulas for βk are called the Fletcher-Reeves (FR), Polak-Ribière-Polyak (PRP) formulas
(see [1, 8, 9]. They are given by

βFR
k =

‖gk‖2

‖gk−1‖2
(1.4)

∗This work was supported by National Science Foundation of China (19525101).

1

and

βPRP
k =

gT
k (gk − gk−1)

‖gk−1‖2
, (1.5)

where ‖·‖ is the Euclidean norm. This paper deals with another conjugate gradient method,
the method of shortest residuals(SR).

The SR method was presented by Hestenes in his monograph [2] on conjugate direction
methods. In the SR method the search direction dk is taken as the shortest vector of the
form

dk =
−gk + ηkdk−1

1 + ηk

, 0 < ηk < ∞, (1.6)

where d1 = −g1. It follows that dk is vertical to gk + dk−1, and hence its parameter satisfies
the relation

(−gk + ηkdk−1)
T (gk + dk−1) = 0. (1.7)

Assuming that the line search is exact, Hestenes obtains the solution of (1.7):

ηk =
‖gk‖2

‖dk−1‖2
. (1.8)

If the function is quadratic, and if the line search is exact, the vector dk+1 can be proved to
be also the shortest residual in the k-simplex whose vertices are −g1, · · ·, −gk+1 (see [2]).

The SR method can be viewed as a special case of the conjugate subgradient method
developed in Wolfe [14] and Lemaréchal [4] for minimizing a convex function which may be
nondifferentiable. Based on this fact, Pitlak [7] also called the above as Wolfe-Lemaréchal
method.

To investigate the equivalent form of the SR method for general functions and construct
other conjugate gradient methods, Pitlak [7] introduces the family of methods:

dk = −Nr{gk, −βkdk−1}, (1.9)

where Nr{a, b} is defined as the point from a line segment spanned by the vectors a and b
which has the smallest norm, namely,

‖Nr{a, b}‖ = min{‖λa + (1 − λ)b‖ : 0 ≤ λ ≤ 1}. (1.10)

If gT
k dk−1=0, one can solve (1.9) analytically and obtain

dk = −(1 − λk)gk + λkβkdk−1 (1.11)

and

λk =
‖gk‖2

‖gk‖2 + β2
k‖dk−1‖2

. (1.12)

In this case, it is easy to see that direction dk defined by (1.6) and (1.8) is corresponding to
(1.11)-(1.12) with

βk = 1. (1.13)

Pitlak points out in [7] that if the line search is exact, and if βk ≡ 1, the SR method is
equivalent to the FR method, and the corresponding formula of βk of the PRP method is

βk =
‖gk‖2

|gT
k (gk − gk−1)|

. (1.14)

2

One may argue that the corresponding formula of βk of the PRP method should be

βk =
‖gk‖2

gT
k (gk − gk−1)

. (1.15)

Note that if the line search is exact, the reduced method by (1.15) will produce the same
iterations as the PRP method. Powell [11]’s examples can also be used to show that the
method may cycle without approaching any solution point even if the line search is exact.
Thus we take (1.14) instead of (1.15).

For clarity, we now call method (1.3), (1.11) and (1.12) as the SR method provided that
scalar βk is such that the reduced method is the linear conjugate gradient method when the
function is quadratic and the line search is exact. At the same time, we call formulae (1.13)
and (1.14) for βk as the FR and PRP versions of the SR method, and abbreviate them by
FRSR and PRPSR respectively.

In this paper, we will investigate the convergence properties of the FRSR and PRPSR
methods with the stepsize satisfying the Wolfe conditions:

f(xk) − f(xk + αkdk) ≥ −δαkgT
k dk, (1.16)

g(xk + αkdk)T dk ≥ σgT
k dk, (1.17)

or the strong Wolfe conditions, namely, (1.16) and

|g(xk + αkdk)T dk| ≤ σ|gT
k dk|, (1.18)

where 0 < δ < σ < 1. In [7], Pitlak suggests the following search conditions:

f(xk) − f(xk + αkdk) ≥ δαk‖dk‖2, (1.19)

g(xk + αkdk)T dk ≥ −σ‖dk‖2, (1.20)

where 0 < δ < σ < 1, and he concludes that there exists a procedure which finds αk > 0
satisfying (1.19)-(1.20) in a finite number of operations (see Lemma 1 in [7]). However it is
possible that α̂ = 0 in his proof, the statement is not true. Consider

f(x) =
1

2
ǫx2, x ∈ ℜ1 (1.21)

where ǫ > 0 is constant. Suppose that at the k-th iteration xk = 1 and dk = −1 are
obtained. Then for any α > 0,

f(xk) − f(xk + αdk) =
1

2
ǫ − 1

2
ǫ(1 − α)2 = ǫα − 1

2
ǫα2. (1.22)

The above implies that (1.19) does not hold for any α > 0, provided that ǫ < δ. It is worth
noting that, for the SR method, we often have that gT

k dk = −‖dk‖2, which implies that
(1.19)-(1.20) are equivalent to (1.16)-(1.17).

This paper is organized as follows. In the next section, we give the formula of the SR
method under inexact line searches and provide an algorithm in which some safeguards are
employed. In Section 3, we prove that the FRSR and PRPSR algorithms converge with the
strong Wolfe conditions (1.16) and (1.18). If the Wolfe conditions (1.16)-(1.17) are used,
convergence is also guaranteed provided that the stepsizes are uniformly bounded. One
direct corollary is that the FRSR and PRPSR algorithms with (1.16)-(1.17) converge for
strictly convex functions. In Section 4, a function is constructed to show that, if we do
not restrict {αk}, the Wolfe conditions can guarantee neither algorithms to converge. The

3

example suits for both the FRSR and PRPSR algorithms. Numerical results are reported
in Section 5, which show that the SR method is a promising alternative of the standard
conjugate gradient method.

2. Algorithm

Expression (1.12) is deduced in the case of the exact line search. If the line search is
inexact, it is not difficult to deduce from (1.9) that scalar λk in (1.11) is given by

λk =
‖gk‖2 + βkgT

k dk−1

‖gk + βkdk−1‖2
, (2.1)

if we do not restrict λk ∈ [0, 1]. By direct calculations, we can obtain

gT
k dk = −‖dk‖2 (2.2)

and

‖dk‖2 =
β2

k

(

‖gk‖2‖dk−1‖2 − (gT
k dk−1)

2
)

‖gk + βkdk−1‖2
. (2.3)

It follows from (2.2) that dk is a descent direction unless dk 6= 0. On the other hand, from
(2.3) we see that dk = 0 if and only if gk and dk−1 are collinear. In the case when gk and
dk−1 are collinear, assuming that βkdk−1 = tgk, we can solve dk from (1.9) and (1.10) as
follows:

dk =

{−gk, if t < −1;
tgk, if −1 ≤ t ≤ 0;
0, if t > 0.

(2.4)

The direction dk vanishes if t ≥ 0. The following example shows this possibility. Consider

f(x, y) =
(1 + σ)

2
(x2 + y2). (2.5)

Given the starting point x1 = (1, 1)T , one can test the unit stepsize will satisfy (1.16) and
(1.18) if the parameters δ and σ such that δ ≤ (1+σ)(1−σ2). It follows that x2 = (−σ,−σ)T ,
and hence that t = 1/σ for the FRSR method, t = 1/(1 + σ) for the PRPSR method. Thus
we have t > 0 for both methods. In practice, to avoid numerical overflows we restart the
algorithm with

dk = −gk (2.6)

if the following condition is satisfied:

|gT
k dk−1| ≥ b1‖gk‖‖dk−1‖, (2.7)

where b1 ≤ 1 is a positive number.
For the PRPSR method, it is obvious that the denominator of βk possibly vanishes.

Thus to establish convergence results for the PRPSR method we must assume that |gT
k (gk −

gk−1)| > 0. In practice, we test the following condition at every iteration:

|gT
k (gk − gk−1)| > b2‖gk‖2, (2.8)

where 0 ≤ b2 < 1.
Now we give a general algorithm as follows.

4

Algorithm 2.1 Given a starting point x1. Choose I ∈ {0, 1}, and numbers 0 < b1 ≤ 1,
0 ≤ b2 < 1, ǫ ≥ 0.

Step 1. Compute ‖g1‖. If ‖g1‖ ≤ ǫ, stop; otherwise, let k = 1.

Step 2. Compute dk = −gk.

Step 3. Find αk > 0 satisfying certain line search conditions.

Step 4. Compute xk+1 by (1.3) and gk+1. Let k = k + 1.

Step 5. Compute ‖gk‖. If ‖gk‖ ≤ ǫ, stop.

Step 6. Test (2.7): if (2.7) does not hold, go to step (2). If I = 1, go to Step 8.

Step 7. Compute βk by (1.13), go to Step 9.

Step 8. Test (2.8): if (2.8) does not hold, go to Step 2; compute βk by (1.14).

Step 9. Compute λk by (2.1) and dk by (1.11), go to Step 3.

We call the above with I = 0 and I = 1 as the FRSR and PRPSR algorithms respectively.

3. Global Convergence

Throughout this section we make the following assumption.

Assumption 3.1 (1) f is bounded below in ℜn and is continuously differentiable in a neigh-
bor N of the level set L = {x ∈ ℜn : f(x) ≤ f(x1)}; (2) The gradient ∇f(x) is Lipschitz
continuous in N , namely, there exists a constant L > 0 such that

‖∇f(x) −∇f(y)‖ ≤ L‖x − y‖, for any x, y ∈ N . (3.1)

For some references, we formulate the following assumption.

Assumption 3.2 The level set L = {x ∈ ℜn : f(x) ≤ f(x1)} is bounded.

Note that Assumptions 3.1 and 3.2 imply that there is a constant γ such that

‖g(x)‖ ≤ γ, for all x ∈ L. (3.2)

We also formulate the following assumption.

Assumption 3.3 The function f(x) is twice continuously differentiable in N , and there
are numbers 0 < µ1 ≤ µ2 such that

µ1‖y‖2 ≤ yT H(x)y ≤ µ2‖y‖2, for all x ∈ N and y ∈ ℜn, (3.3)

where H(x) denotes the Hessian matrix of f at x.

Under Assumption 3.1, we state a useful result which was essentially proved by Zou-
tendijk [15] and Wolfe [12, 13].

5

Theorem 3.4 Let x1 be a starting point for which Assumption 3.1 is satisfied. Consider
any iteration of the form (1.2), where dk is a descent direction and αk satisfies the Wolfe
conditions (1.16)-(1.17). Then

∑

k≥1

(gT
k dk)2

‖dk‖2
< ∞. (3.4)

The above gives the following result:

Corollary 3.5 Let x1 be a starting point for which Assumption 3.1 is satisfied. Consider
Algorithm 2.1 where b1 = 1, b2 = 0, ǫ = 0, and where the line search conditions are (1.16)-
(1.17). Then

∑

k≥1

‖dk‖2 < ∞. (3.5)

Proof If the algorithm restarts, we also have (2.2) due to (2.6). So Theorem 3.4 and
relation (2.2) give the corollary. 2

If Algorithm 2.1 restarts at the k-th iteration, we have ‖gk‖ = ‖dk‖. Thus (3.5) implies
lim infk→∞ ‖gk‖ = 0 if Algorithm 2.1 restarts for infinitely many times. Thus we suppose
with loss of generality that (2.7) and (2.8) always hold in Algorithm 2.1. In addition, we
also suppose that gk 6= 0 for all k since otherwise a stationary point has been found. First,
we have the following theorem for the FRSR method.

Theorem 3.6 Let x1 be a starting point for which Assumption 3.1 is satisfied. Consider
Algorithm 2.1 with I = 0, b1 = 1 and ǫ = 0. Then we have that

lim inf
k→∞

‖gk‖ = 0, (3.6)

if the line search satisfies one of the following conditions:

(i) gT
k dk−1 = 0;

(ii) the strong Wolfe conditions (1.16)-(1.18);

(iii) the Wolfe conditions (1.16)-(1.17), and there exists M < ∞ such that

αk ≤ M, for all k. (3.7)

Proof We proceed by contradiction and assume that

lim inf
k→∞

‖gk‖ 6= 0. (3.8)

Then there exists a constant γ > 0 such that

‖gk‖ ≥ γ, for all k ≥ 1. (3.9)

From (2.3) and (1.13), we obtain

1

‖dk‖2
=

1

‖dk−1‖2
(1 + rk), (3.10)

6

where

rk =

‖dk−1‖2 + 2gT
k dk−1 +

(gT
k dk−1)

2

‖dk−1‖2

‖gk‖2 − (gT
k dk−1)

2

‖dk−1‖2

. (3.11)

Using (3.10) recursively, we get that

1

‖dk‖2
=

1

‖d1‖2

k
∏

i=2

(1 + ri). (3.12)

Noting that rk > 0, we deduce from (3.5) and (3.12) that
∑

k≥2

rk = ∞ (3.13)

because otherwise we have that 1/‖dk‖2 converges which contradicts with (3.5).
For (i), since gT

k dk−1 = 0, rk can be rewritten as

rk =
‖dk−1‖2

‖gk‖2
. (3.14)

From this and (3.9), we obtain

∑

k≥2

rk ≤ 1

γ

∑

k≥2

‖dk−1‖2 < ∞, (3.15)

which contradicts (3.13);
For (ii) and (iii), we conclude that there exists a positive number c1 such that for all

k ≥ 2,

|gT
k dk−1| ≤ c1‖dk−1‖2. (3.16)

In fact, for (ii), we see from (1.18) and (2.2) that (3.16) with c1 = σ. For (iii), we have from
(3.1), (2.2) and (3.7) that

|gT
k+1dk| = |(gk+1 − gk)T dk + gT

k dk|
≤ ‖gk+1 − gk‖‖dk‖ + |gT

k dk|
≤ αkL‖dk‖2 + ‖dk‖2

≤ (1 + LM)‖dk‖2. (3.17)

So (3.16) holds with c1 = 1 + LM . Due to (3.5), we see that

‖dk‖ → 0, as k → ∞, (3.18)

which implies that there exists an integer k1 such that

‖dk‖ ≤
√

2γ

2c1

, for all k ≥ k1. (3.19)

Applying (3.16) and this in (3.11), we obtain for all k ≥ k1

rk ≤ c2‖dk−1‖2, (3.20)

where c2 = 2(1 + c1)
2/γ2. Therefore we also have that

∑

k≥2
rk < ∞, which contradicts

(3.13). The contradiction shows the truth of (3.6). 2

7

Corollary 3.7 Let x1 be a starting point for which Assumption 3.3 is satisfied. Consider
Algorithm 2.1 with I = 0, b1 = 1 and ǫ = 0. Then if the line search satisfies (1.16)-(1.17),
we have (3.6).

Proof From (iii) of the above theorem, it suffices to show (3.7). By Taylor’s theorem, we
get that

f(xk + αdk) = f(xk) + αgT
k dk +

1

2
α2dT

k H(ξk)dk, (3.21)

for some ξk. This, (1.16), (3.3) and (2.2) imply that (3.7) holds with M = 2(1 − δ)/µ1,
which completes the proof. 2

For the PRPSR method, we first have the following theorem.

Theorem 3.8 Let x1 be a starting point for which Assumption 3.1 are satisfied. Consider
Algorithm 2.1 with I = 1, b1 = 1, b2 = 0 and ǫ = 0. Then we have (3.6) if the line search
satisfies (iii).

Proof We still proceed by contradiction and assume that (3.9) holds. It is obvious that if
the line search satisfies (iii), (3.16) still holds. From (1.14), (3.1), (3.7) and (3.9), we obtain

βk‖dk−1‖ =
‖gk‖2‖dk−1‖

|gT
k (gk − gk−1)|

≥ ‖gk‖2‖dk−1‖
L‖gk‖αk−1‖dk−1‖

≥ c3, (3.22)

where c3 = γ/LM . Using this and (3.9) in (2.3), we have the following estimation of 1/‖dk‖2

for all k ≤ 1:

1

‖dk‖2
=

(

1

β2
k‖dk−1‖2

+
2gT

k dk−1

βk‖gk‖2‖dk−1‖2
+

1

‖gk‖2

)(

1 − (gT
k dk−1)

2

‖gk‖2‖dk−1‖2

)−1

≤ 2

(

1

βk‖dk−1‖
+

1

‖gk‖

)2(

1 − (gT
k dk−1)

2

‖gk‖2‖dk−1‖2

)−1

≤ 2(c−1
3 + γ−1)2

(

1 − (gT
k dk−1)

2

‖gk‖2‖dk−1‖2

)−1

. (3.23)

So

∑

k≥1

(

1 − (gT
k dk−1)

2

‖gk‖2‖dk−1‖2

)

< ∞, (3.24)

which implies

lim inf
k→∞

(gT
k dk−1)

2

‖gk‖2‖dk−1‖2
= 1. (3.25)

Note that

gk−1 = gk − yk−1, (3.26)

and

lim inf
k→∞

‖yk−1‖ = lim inf
k→∞

αk−1‖dk−1‖ = 0. (3.27)

8

(3.25), (3.26) and (3.27) implies that

lim inf
k→∞

(gT
k−1dk−1)

2

‖gk−1‖2‖dk−1‖2
= 1. (3.28)

On the other hand, we have from (2.2), (3.9) and (3.18) that

lim inf
k→∞

(gT
k−1dk−1)

2

‖gk−1‖2‖dk−1‖2
= lim inf

k→∞

‖dk−1‖2

‖gk−1‖2
= 0. (3.29)

(3.28) and (3.29) give a contradiction. The contradiction shows the truth of (3.6). 2

From Theorem 3.8, one can see that the PRPSR method also converges for strictly convex
functions provided that stepsizes satisfy (1.16)-(1.17).

Corollary 3.9 Let x1 be a starting point for which Assumption 3.3 is satisfied. Consider
Algorithm 2.1 with I = 1, b1 = 1, b2 = 0 and ǫ = 0. Then if the line search satisfies
(1.16)-(1.17), we have (3.6).

Theorem 3.10 Let x1 be a starting point for which Assumptions 3.1 and 3.2 are satisfied.
Consider Algorithm 2.1 with I = 1, b1 = 1, b2 = 0 and ǫ = 0. Then we have (3.6) if the
line search satisfies (1.16) and (1.18).

Proof We proceed by contradiction and assume that (3.9) holds. At first, we conclude
that there must exist a number c4 such that

βk‖dk−1‖ ≤ c4, for all k ≥ 1. (3.30)

This is because otherwise there exists a subsequence {ki} and a constant, say also c3, such
that

βki
‖dki

‖ ≥ c3, for all i ≥ 1. (3.31)

Then we can prove the truth of (3.23) for the subsequence {ki}, which together with (3.5)
implies that (3.25) still holds. Then similarly to the proof of Theorem 3.8, we can obtain
(3.28) and (3.29), which contradicts with each other. Therefore (3.30) holds.

From (2.3), (3.19), (3.2) and (3.30), we can get that for all k ≥ k1

‖dk‖2 ≥ β2
k‖gk‖2‖dk−1‖2

2‖gk + βkdk−1‖2
≥ β2

k‖gk‖2‖dk−1‖2

4(‖gk‖2 + β2
k‖dk−1‖2)

≥ c5β
2
k‖dk−1‖2, (3.32)

where c5 = γ2/4(γ2 + c2
4). Making products of both sides in (1.11) with dk and applying

(2.2), we can get

βkdT
k−1dk = ‖dk‖2. (3.33)

Define uk = dk/‖dk‖. Then from (3.33), βk ≥ 0, (2.3), (3.16) and (3.32), we obtain

1

2
‖uk − uk−1‖2 = 1 − dT

k−1dk

‖dk−1‖‖dk‖
= 1 − ‖dk‖

βk‖dk−1‖

≤ β2
k‖dk−1‖2 − ‖dk‖2

β2
k‖dk−1‖2

=
(βk‖dk−1‖2 + gT

k dk−1)
2

‖dk−1‖2‖gk + βkdk−1‖2

≤ 2β2
k‖dk−1‖4 + 2(gT

k dk−1)
2

‖dk−1‖2‖gk + βkdk−1‖2
≤ 2c−1

5 ‖dk‖2 + 2c2
1‖dk−1‖2

‖gk + βkdk−1‖2
. (3.34)

9

Besides it, from (1.18), (2.2) and (3.30),

‖gk + βkdk−1‖2 ≥ ‖gk‖2 + 2βkgT
k dk−1

≥ ‖gk‖2 − 2βk‖dk−1‖2

≥ ‖gk‖2 − 2c4‖dk−1‖. (3.35)

Noting (3.5) and (3.9), we can deduce from (3.34) and (3.35) that

∑

k≥2

‖uk − uk−1‖2 < ∞. (3.36)

Let |Kλ
k,∆| denote the number of elements of

Kλ
k,∆ = {i : k ≤ i ≤ k + ∆ − 1, ‖si−1‖ = ‖xi − xi−1‖ > λ}. (3.37)

Using (3.36), we conclude that for any λ > 0, there exists ∆ ∈ N∗ and k0 such that

|Kλ
k,∆| ≤ ∆

2
, for any k ≥ k0, (3.38)

otherwise by the proof of Theorem 4.3 in [3] a contradiction can be similarly obtained. We
choose b = γ/2γ and λ = Lγ/c2

5b. Then we have from (3.2) and (3.9) that

βk ≥ ‖gk‖
‖gk‖ + ‖gk−1‖

≥ γ

2γ
= b, (3.39)

and when ‖sk−1‖ ≤ λ, we have from (3.1),

βk ≥ ‖gk‖
L‖sk−1‖

≥ γ

Lλ
=

1

c2
5b

, (3.40)

For this λ, let ∆, k0 be so given that (3.38) holds. Denote q = [(k − k1 + 1)/∆] and
t = k − k1 + 1 − q∆. It is obvious that k − k1 + 1 = q∆ + t and 0 ≤ t < ∆. Thus for any
k ≥ k2 = max{k1, k0}, we get from (3.32), and (3.38)-(3.40) that

‖dk‖2

‖dk1
‖2

≥
k
∏

i=k1

(c5βi)
2 ≥



cq∆+t
5 b

q·∆
2

+t

(

1

c2
5b

)q·∆
2





2

= (c5b)
2t ≥ min{c5b, (c5b)

2∆}, (3.41)

which contradicts (3.18). The contradiction shows the truth of (3.6). 2

4. A counter-example

In the above section, we prove that the FRSR and PRPSR algorithms converge with
the Wolfe conditions (1.16)-(1.17) provided that {αk} is uniformly bounded. However, if we
do not restrict the size of αk, they need not converge. This will be shown in the following
example. The example suits for both algorithms.
Example 4. 1 Consider the function

f(x, y) =

{

0, if (x, y) = (0, 0);
1
4λ(x

√

x2 + y2
)(x + y)2 + 1

4λ(
y

√

x2 + y2
)(x − y)2, otherwise, (4.1)

10

where λ is defined by

λ(t) =



















1, for |t| >

√
3

2 ;

1
2 + 1

2 sin(b1|t| + b2), for

√
2

2 ≤ |t| ≤
√

3
2 ;

0, for |t| <

√
2

2 .

(4.2)

In (4.2), b1 = 2(
√

3 +
√

2)π, b2 = −(5/2+
√

6)π. It is easy to see that function f defined by
(4.1) and (4.2) satisfies Assumption 3.1.

We construct an example such that for all k ≥ 2,

xk = ‖xk‖
(

cos k − 1
2 π

sin k − 1
2 π

)

, (4.3)

‖xk‖ = ‖xk−1‖ tan(
π

4
− τk−1), τk−1 ∈ (0,

π

8
), (4.4)

gk =
1

2
‖xk‖

(

cos(k − 1
2 π + π

4)

sin(k − 1
2 π + π

4)

)

, (4.5)

dk = ‖gk‖ sin τk

(

cos(k
2π + π

4 + τk)

sin(k
2π + π

4 + τk)

)

. (4.6)

Because we can use, for example spline fitting, we can choose the starting point and
assume that (4.3)-(4.6) hold for k = 2. Suppose that (4.3)-(4.6) hold for k. From (4.3), (4.6)
and the definition of f , we can choose α > 0 such that

xk+1 = ‖xk+1‖
(

cos k
2π

sin k
2π

)

, (4.7)

‖xk+1‖ = ‖xk‖ tan(
π

4
− τk). (4.8)

Thus we have that

gk+1 =
1

2
‖xk+1‖

(

cos(k
2π + π

4)

sin(k
2π + π

4)

)

. (4.9)

Since gk+1 is orthogonal to gk, we have gT
k+1gk = 0 and hence βk = 1 for both the FRSR

and PRPSR algorithms. Defining ηk = λk/(1 − λk), where λk is given by (2.1), direct
calculations show that

gT
k+1dk = ‖gk+1‖‖dk‖ cos τk, (4.10)

‖gk+1‖ = ‖gk‖ tan(
π

4
− τk), (4.11)

‖dk‖ = ‖gk‖ sin τk (4.12)

and consequently

ηk =
‖gk+1‖2 + gT

k+1dk

‖dk‖2 + gT
k+1dk

=
tan2(

π

4
− τk) + cos τk tan(

π

4
− τk) sin τk

cos τk tan(
π

4
− τk) sin τk + sin2 τk

=
tan(

π

4
− τk)

sin τk

ξk, (4.13)

11

where

ξk = cos τk − sin3 τk + cos τk sin2 τk. (4.14)

Therefore

dk+1 = (1 − λk)(−gk+1 + ηk+1dk)

= γk

[(

cos(k + 2
2 π + π

4)

sin(k + 2
2 π + π

4)

)

+ ξk

(

cos(k + 2
2 π + π

4 + τk)

sin(k + 2
2 π + π

4 + τk)

)]

, (4.15)

where γk = (1 − λk) tan(π
4 − τk)‖gk‖. Noting that ξk ≥ 1 for all τk ∈ (0, π/8), the above

relation indicates that

dk+1

‖dk+1‖
=

(

cos(k + 1
2 π + π

4 + τk+1)

sin(k + 1
2 π + π

4 + τk+1)

)

(4.16)

and

−π

4
+ τk ≤ τk+1 ≤ τk

2
. (4.17)

Because dT
k+1gk+1 < 0, we have that

0 < τk+1 ≤ τk

2
. (4.18)

Again we have τk+1 ∈ (0, π
8). Because dT

k+1gk+1 = −‖dk+1‖2, we have

dk+1 = ‖dk+1‖ sin τk+1

(

cos(k + 1
2 π + π

4 + τk+1)

sin(k + 1
2 π + π

4 + τk+1)

)

. (4.19)

By induction, we have (4.3)-(4.6) hold for all k ≥ 2. Now we test whether (1.16)-(1.17)
hold. First, due to gT

k+1dk > 0, (1.17) obviously holds. Further, from (2.2), (4.3) and (4.5),
we have

−αkgT
k dk = αk‖dk‖2 = ‖dk‖‖xk+1 − xk‖ =

2‖gk‖‖dk‖
cos τk + sin τk

. (4.20)

By the definition of f , (4.11) and (4.12),

fk − fk+1 =
1

2
(‖gk‖2 − ‖gk+1‖2) =

1

2
‖gk‖2

[

1 − tan2(
π

4
− τk)

]

=
2 cos τk sin τk

(cos τk + sin τk)2
‖gk‖2 =

2 cos τk‖gk‖‖dk‖
(cos τk + sin τk)2

∆
= −δkαkgT

k dk, (4.21)

where

δk =
cos τk

cos τk + sin τk

. (4.22)

Note that (4.18) implies that

τk → 0, as k → ∞. (4.23)

The above two relations indicate that for any positive number δ < 1, δk > δ for large k.
Therefore, if we choose a suitable starting point, (1.16) and (1.17) hold for any 0 < σ < δ < 1.

12

However, from (4.4) and (4.18), one can prove that

‖xk‖ = ‖x2‖
k−1
∏

i=2

tan(
π

4
− τi) → c6‖x2‖, as k → ∞ (4.24)

where c6 =
∏∞

i=1 tan(π
4 − τi) > 0. Thus any cluster point of {xk} is a non-stationary point.

In this example, we have from (4.20) that

αk =
2‖gk‖

(cos τk + sin τk)‖dk‖
=

2

(cos τk + sin τk) sin τk

, (4.25)

which, together with (4.23), implies that

αk → ∞, as k → ∞. (4.26)

The above example shows that if we only impose (1.16)-(1.17) on every line search, it is
possible that {αk} is not bounded, and the FRSR and PRPSR algorithms fail.

5. Numerical results

We tested the FRSR and PRPSR algorithms on SGI Indigo workstations. Our line search
subroutine computes αk such that (1.16) and (1.18) hold for δ = 0.01 and σ = 0.1. The
initial value of αk is always set to 1. Although in this case the convergence results, i. e.,
Theorems 3.6 and 3.10 hold for any numbers 0 < b1 ≤ 1 and 0 ≤ b2 < 1, we choose b1 = 0.9
and b2 = 0.1 to avoid numerical overflows.

We compared the numerical results of our algorithms with the Fletcher-Reeves method
and the Polak-Ribière-Polyak method. For the PRP algorithm, we restart it by setting
dk = −gk whenever a down-hill search direction is not produced.

We tested the algorithms on the 18 examples given by Morè, Garbow and Hillstrom [6].
The results are reported in Table 4.1. The column “P” denotes the number of the problems,
and “N” the number of variables. The numerical results are given in the form of I/F/G,
where I, F, G are numbers of iterations, function evaluations, and gradient evaluations
respectively. The stopping condition is

‖gk‖ ≤ 10−6. (5.1)

The algorithms are also terminated if the number of function evaluations exceed 5000. We
also terminate the calculation if the function value improvement is too small. More exactly,
algorithms are terminated whenever

[f(xk) − f(xk+1)]/[1 + |f(xk)|]) ≤ 10−16. (5.2)

13

Table 4.1
P N FRSR PRPSR FR PRP
1 3 90/266/116 53/168/78 106/358/133 61/224/93
2 6 302/768/743 158/395/375 317/816/434 126/265/205
3 3 3/7/5 3/7/5 3/7/5 3/7/5
4 2 >5000 Failed >5000 Failed
5 3 27/71/63 9/31/26 >5000 13/39/29
6 6 3/16/7 3/16/7 3/16/7 3/15/9
7 9 662/2077/1899 >5000 1424/4311/1456 >5000
8 8 30/122/113 30/130/118 28/81/56 Failed
9 3 29/69/46 12/29/19 15/40/24 10/28/18
10 2 Failed 14/56/21 Failed Failed
11 4 36/167/52∗ Failed Failed 31/152/52∗

12 3 Failed 84/278/230 >5000 579/1687/965
13 20 >5000 61/125/125 >5000 53/106/102
14 14 63/213/116 44/153/91 151/583/240 22/104/59
15 16 1449/3102/2899 41/119/65 >5000 187/569/247
16 2 22/59/40 19/53/36 32/92/45 9/28/16
17 4 >5000 49/169/86 1136/4737/1306 140/589/265
18 8 781/2164/1029 47/125/71 613/2014/728 28/81/39

In the table, a superscript “*” indicates that the algorithm terminated due to (5.2) but
(5.1) is not satisfied, and “Failed” means that dk is so small that a numerical overflow
happens while the algorithm tries to compute f(xk + dk).

From Table 4.1, We found that the FRSR and PRPSR algorithms perform better than
the Fletcher-Reeves and Polak-Ribière-Polyak algorithms respectively. Therefore, the SR
method will be a promising alternative of the standard conjugate gradient method.

It is known that if a very small step is produced by the FR method, then this behavior
may continue for a very large number of iterations unless the method is restarted. This
behavior was observed and explained by Powell [10], Gilbert and Nocedal [3]. In fact, the
statement is also true for the FRSR method. Let θk denote the angle between −gk and dk.
It follows from the definition of θk and (1.12) that

cos θk =
−gT

k dk

‖gk‖‖dk‖
=

‖dk‖
‖gk‖

. (5.3)

Suppose that at k-iteration a “bad” search direction is generated, such that cos θk ≈ 0, and
that xk+1 ≈ xk. Thus ‖gk+1‖ ≈ ‖gk‖, and by (5.3),

‖dk‖ ≪ ‖gk‖ ≈ ‖gk+1‖. (5.4)

From (2.1), (1.13), (1.18) and this, we see that

λk → 1, as k → ∞, (5.5)

which with (1.11) implies that

dk+1 ≈ dk. (5.6)

Hence, by this and (5.4),

‖dk+1‖ ≪ ‖gk+1‖, (5.7)

which together with (5.3) shows that cos θk+1 ≈ 0. The argument can therefore start all
over again.

14

Acknowledgements. The authors were very grateful to the referees for their valuable
comments and suggestions.

References

[1] Fletcher R. and Reeves C. (1964), Function minimization by conjugate gradients, Com-
put. J. 7, 149-154.

[2] Hestenes M. R. (1980), Conjugate direction methods in optimization, Springer-Verlag,
New York Heidelberg Berlin, 241-247.

[3] Gilbert J. C. and Nocedal J. (1992), Global convergence properties of conjugate gradient
methods for optimization, SIAM. J. Optimization. 2 (1), 21-42.

[4] Lemaréchal C. (1975), An extension of Davidon methods to nondifferentiable problems,
Mathematical Programming Study 3, 95-109.

[5] McCormick G. P. and Ritter K. (1975), Alternative Proofs of the convergence properties
of the conjugate-gradient method, JOTA: VOL. 13, NO. 5, 497-518

[6] Morè J. J., Garbow B. S. and Hillstrom K. E. (1981), Testing unconstrained optimization
software, ACM Transactions on Mathematical Software 7, 17-41

[7] Pitlak R. (1989), On the convergence of conjugate gradient algorithm, IMA Journal of
Numerical Analysis 14, 443-460.

[8] Polak E. and Ribière G. (1969), Note sur la convergence de directions conjugées, Rev.
Francaise Informat Recherche Operationelle, 3e Année 16, 35-43.

[9] Polyak B. T. (1969), The conjugate gradient method in extremem problems, USSR
Comp. Math. and Math. Phys. 9, 94-112.

[10] Powell M. J. D. (1977), Restart procedures of the conjugate gradient method, Math.
Program. 2, 241-254.

[11] Powell M. J. D. (1984), Nonconvex minimization calculations and the conjugate gradient
method, in: Lecture Notes in Mathematics vol. 1066, Springer-Verlag (Berlin) (1984),
pp. 122-141.

[12] Wolfe P. (1969), Convergence conditions for ascent methods, SIAM Review 11, 226-235.

[13] Wolfe P. (1971), Convergence conditions for ascent methods. II: Some corrections, SIAM
Review 13, 185-188.

[14] Wolfe P. (1975), A method of conjugate subgradients for minimizing nondifferentiable
functions, Math. Prog. Study 3, 145-173.

[15] Zoutendijk G. (1970), Nonlinear Programming, Computational Methods, in: Integer
and Nonlinear Programming (J.Abadie,ed.), North-Holland (Amsterdam), 37-86.

15

