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Abstract. We extend an interesting theorem of Yuan [12] for two quadratic forms to three matrices. Let
C1, C2, C3 be three symmetric matrices in<n×n, if max{xTC1x, xTC2x, xTC3x} ≥ 0 for all x ∈ <n, it is
proved that there existti ≥ 0 (i = 1,2, 3) such that

∑3
i=1 ti = 1 and

∑3
i=1 ti Ci has at most one negative

eigenvalue.
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1. Introduction

A very interesting result about two quadratic forms was given by Yuan [12]. It reads as
follows:

Theorem 1. LetC1,C2 ∈ <n×n be two symmetric matrices andA andB be two closed
sets in<n such that

A∪ B = <n . (1)

If we have

xTC1x ≥ 0, x ∈ A, xTC2x ≥ 0, x ∈ B , (2)

then there exists at ∈ [0,1] such that the matrix

tC1 + (1− t)C2 (3)

is positive semi-definite.

The above theorem is very useful in the studying of optimal conditions for the
two-ball trust region subproblem:

min gTd+ 1

2
dT Bd (4)

s.t. ‖ c+ ATd ‖ ≤ ξ (5)

‖ d ‖2 ≤ 1, (6)
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which is an important subproblem of some trust region algorithms for nonlinear con-
strained optimization. Problem (4)–(6) was first given by Celis, Dennis and Tapia [2], and
it is also called CDT problem. More details about the CDT problem and its applications
can be found in [2], [4], [8], [12] and [13].

Crouzeix et al. [3] pointed out that Yuan’s result is actually an alternate theorem.
They also extended Theorem 1 to a locally convex topological linear space. For any
symmetric matricesC1 andC2, Theorem 1 shows that

max{xTC1x, xTC2x} ≥ 0 (7)

for all x, if and only if there exists a convex linear combination ofC1 andC2 which is
positiv semi-definite. The main object of this paper is to generalize this result from two
matrices to three matrices. The two matrix case was also found very useful for analyzing
global optimal conditions for the minimization of a quadratic function subject to one
quadratic constraint (for example, see Moré [6]). As discussed by Peng and Yuan [7],
the three matrix cas is closely related to the following problem

min xTC1x (8)

s.t. xTC2x ≤ 0 , (9)

xTC3x ≤ 0 . (10)

An example was given by Crouzeix et al. [3] that Theorem 1 cannot be extended to
more than two matrices and copositive matrices in a simple way. IfCi (i = 1,2,3) are
symmetric matrices in<n×n, Peng and Yuan [7] showed that when 0 solves (8)–(10),
there exists(α, β) ∈ <2, such thatC1+αC2+βC3 has at most two negative eigenvalues.
If αC2 + βC3 is indefinite for all(α, β) ∈ <2 ((α, β) 6= 0) and if the least eigenvalue
of C1 + α0C2 + β0C3 is negative, where(α0, β0) maximizes the least eigenvalue of
C1+ αC2+ βC3, it is shown by Peng and Yuan [7] thatC1+ α0C2+ β0C3 has at most
two negative eigenvalues andα0, β0 must be greater than 0.

In this paper, we first give a different proof for Theorem 1. Then we present a similar
result for quadratic forms with special structure. Finally we present a result about three
quadratic forms which is stronger than the results in [7].

Throughout the paper, we use cor
i=1(Ci ) to represent the convex linear combination

of matricesCi , i.e. cori=1(Ci ) = {∑r
i=1 ti Ci |∑r

i=1 ti = 1, ti ≥ 0}. C1, C2, C3 andC
denote symmetric matrices in<n×n, and<n+ denotes the nonnegative orthant of<n. We
write C ≥ 0 if C is positive semi-definite, andC > 0 if C is positive definite.

2. Results and their proofs

First we introduce an interesting result of Brickman [1] which will be used for our
new proof of Theorem 1 and for establishing Lemma 3 which is needed in the proof of
Theorem 3.

Lemma 1. Assume thatC1,C2 are two symmetric matrices in<n×n. Define

R̃(C1,C2) =
{
(xTC1x, xTC2x)|x ∈ <n

}
,

R(C1,C2) =
{
(xTC1x, xTC2x)|x ∈ <n, ‖ x ‖ = 1

}
.
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ThenR̃(C1,C2) is a convex cone in<2. If n 6= 2, thenR(C1,C2) is a convex set in<2.

It should be noted that the conditionn 6= 2 is indispensable. A simple counter
example can be found in [1].

Unlike the detailed analysis of the least eigenvalue of the convex linear combination
of C1 and C2 used in [12], we give a simpler proof for Theorem 1 (forn 6= 2) by
applying Lemma 1 and the separating theorem.

Proof. Denote<2−− = {(x1, x2)|x1 < 0, x2 < 0}. Since (1) and (2) is equivalent to
max{xTC1x, xTC2x} ≥ 0 for everyx ∈ <n, then

<2−− ∩ R̃(C1,C2) = ∅ , (11)

whereR̃(C1,C2) is defined in Lemma 1. By Lemma 1 and the separating theorem for
convex cones, there exists(α, β) ∈ <2 ((α, β) 6= 0) such that

inf{αxTC1x+ βxTC2x} ≥ 0≥ sup{αx1+ βx2} (12)

for everyx ∈ <n and(x1, x2) ∈ <2−−. It is obvious thatα ≥ 0, β ≥ 0. From (12) we
haveαC1+ βC2 ≥ 0.

ut
It is worthwile to note that Theorem 1 is also true whenx is restricted in a subspace

in <n.
Crouzeix et al. [3] pointed out that Theorem 1 cannot be parallely extended to

three matrices and they gave a nice counter example. In the following we give another
example:

C1 =
(

1 0
0 −1

)
, C2 =

(−1 0.5
0.5 0

)
, C3 =

(−1 −0.5
−0.5 0

)
. (13)

It is easy to see that max{xTC1x, xTC2x, xTC3x} ≥ 0. But for any convex combination
C = t1C1 + t2C2 + t3C3, we havec22 < 0, if t1 > 0, andc11 = −1, if t1 = 0,
whereci j denotes thei -th row, j -th column element of matrixC. Therefore for every
C ∈ co(C1,C2,C3), C cannot be positiv semi-definite.

For the special case when all matrices are diagonal, we can easily generalize The-
orem 1.

Theorem 2. Let r be any positive integer. IfCi (i = 1,2, . . . , r) are all diagonal
matrices in<n×n and max1≤i≤r {xTCi x} ≥ 0 for every x ∈ <n, then there exists
a C ∈ cor

i=1(Ci ) such thatC is positive semi-definite.

Proof. Let Ci = diag(c(i)11, . . . , c
(i)
nn). It follows from our assumptions that:

max
1≤i≤r


n∑

j=1

c(i)j j x2
j

 ≥ 0 , (14)
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for x = (x1, . . . , xn)
T ∈ <n. That is to say the linear inequality system:

n∑
j=1

c(i)j j yj < 0 , i = 1, . . . , r (15)

y ≥ 0 . (16)

has no solution. By Theorem 21.1 in [9] we can show that there exists a nonzero
(α1, . . . , αr ) ∈ <r+ satisfying

r∑
i=1

αi c
(i)
j j ≥ 0 , j = 1, . . . ,n , (17)

i.e.

r∑
i=1

αi Ci ≥ 0 . (18)

Then it follows what we need.
ut

Though Theorem 1 cannot be parallely extended to three matrices, we will show
that there exists aC ∈ co(C1,C2,C3) such thatC has at most one negative eigenvalue
if

max
{

xTC1x, xTC2x, xTC3x
}
≥ 0, ∀x ∈ <n . (19)

If

max
{

xTC2x, xTC3x
}
≥ 0, ∀x ∈ <n , (20)

it follows from Theorem 1 that there existsC ∈ co(C2,C3) such thatC is positive
semi-definite. Because co(C2,C3) ⊂ co(C1,C2,C3), we only need to study under the
assumption that (20) fails. This assumption and (19) imply that the following problem

min xTC1x (21)

s.t. xTC2x < 0 , (22)

xTC3x < 0 , (23)

has optimal objective value 0. It should be noted that (19) does not guarantee a zero
solution for problem (8)–(10). For example, ifCi (i = 1,2,3) are given by (13). We
can see that (19) holds, but problem (8)–(10) is unbounded. First we establish a lemma
which shows that we can focus our attentions to problem (8)–(10).

Lemma 2. If (19) holds andxTCi x ≤ 0 for i = 1,2,3, then either there is a convex
linear combination ofC1, C2 and C3 which has at most one negative eigenvalue or
xTCi x = 0 for all i .
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Proof. If the lemma is not true, there existsx0 ∈ <n such that

xT
0 C1x0 < 0 , (24)

xT
0 C2x0 ≤ 0 , (25)

xT
0 C3x0 ≤ 0 . (26)

It follows from (19) that either (25) or (26) holds as an equality. IfxT
0 C3x0 < 0

then xT
0 C2x0 = 0. Therefore,x0 is a local minimizer ofxTC2x, as (19) indicates

xTC2x ≥ 0 for all x close tox0. ThusC2x0 = 0 and(x0+ td)TC2(x0+ td) = t2dTC2d
for all d ∈ <n, which implies thatC2 is positive semi-definite. This contradicts our
assumptions. Similarly it is impossible to havexT

0 C2x0 < 0. Thus it follows for (24)–(26)
that

xT
0 C1x0 < 0 , xT

0 C2x0 = xT
0 C3x0 = 0 . (27)

If C2x0 andC3x0 are linearly independent, then there exists anx sufficiently close tox0
such that

xTC1x < 0 , xTC2x < 0 , xTC3x < 0 , (28)

which contradicts (19). ThusC2x0 andC3x0 must be linearly dependent, which shows
that there exists ann−1 dimensional subspaceSn−1 such thatC2x0 ⊥ Sn−1 and
C3x0 ⊥ Sn−1. Therefore for alld ∈ Sn−1 we have

(x0+ td)TC2(x0+ td) = t2dTC2d , (29)

(x0+ td)TC3(x0+ td) = t2dTC3d . (30)

(19), (27), (29) and (30) imply that

max{dTC2d,dTC3d} ≥ 0, ∀d ∈ Sn−1 . (31)

Applying Theorem 1 in subspaceSn−1 yields that there exists a matrix in co(C2,C3)

having at most one negative eigenvalue, which contradicts the assumption. The contra-
dictions prove the lemma.

ut
The above lemma implies that if (19) holds and if every matrix in co(C1,C2,C3)

has more than one negative eigenvalue, then

max
{

xTC1x, xTC2x, xTC3x
}
≤ 0 (32)

is equivalent to

xTC1x = xTC2x = xTC3x = 0 . (33)

Therefore, we only need to study the case when 0 solves problem (8)–(10).
We will need the following Lemmas 3, 4, 6, 7 and 8 to obtain Theorem 3 which shows

that there exists a matrix in co(C1,C2,C3) which has at most one negative eigenvalue,
if 0 solves problem (8)–(10).
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Lemma 3. Assume thatC1,C2 ∈ <n×n are symmetric andn ≥ 3, then there exist
α, β ∈ < satisfyingα2+ β2 > 0 such thatαC1 + βC2 is positive definite if and only if
NC1 ∩ NC2 = {0}, whereNQ = {x|xT Qx = 0}.
Proof. By the definition ofR(C1,C2) in Lemma 1,NC1 ∩ NC2 = {0} if and only if
0 /∈ R(C1,C2). Becausen ≥ 3, R(C1,C2) is a convex set in<2 by Lemma 1. Moreover,
it is obvious thatR(C1,C2) is closed. It follows from the separating theorem for closed
convex sets that 0/∈ R(C1,C2) if and only if there exists(α, β) ∈ <2, such that
αxTC1x+ βxTC2x > 0, for everyx ∈ <n, i.e.αC1+ βC2 is positive definite in<n.

ut
Remark 1.It is easy to see the above lemma is true forn = 1. But it fails forn = 2. Let

C1 =
(

0 −1
−1 −1

)
, C2 =

(
1 1
1 0

)
, (34)

it is easy to verify thatNC1 ∩ NC2 = {0}. While for any(α, β) ∈ <2, αC1+βC2 cannot
be positive definite. Moreover, Lemma 3 is also true ifx is restricted in a subspace in
<n as long as the dimension of the subspace is not 2.

Our analysis also depends on the following theorem, which is given by Moré [6].

Lemma 4. If C1 andC2 are two symmetric matrices in<n×n, thenC1+αC2 is positive
definite in<n for someα ∈ < if and only if

xTC1x > 0 , ∀0 6= x ∈ <n , xTC2x = 0 . (35)

It should be noted that the lemma does not depend on the dimension of the linear
space and it is true ifx is restricted in any subspace in<n.

In the next three lemmas, we consider the problem of eigenvalue changes when
a matrix is perturbed. Lemmas 6 and 7 will be used in the proof of Theorem 3. We give
Lemma 5 and its proof because one can use the same techniques to prove Lemmas 6
and 7 whos proofs are omitted. Lemma 5 shows that if a given eigenvalue cannot be
increased for all perturbation along a certain direction, then the peturbation matrix
cannot be positive definite in the subspace spanned by eigenvectors related to the given
eigenvalue.

Lemma 5. Assume thatλk(α) is thek-th largest eigenvalue ofC1+αC2 andλk(α) has
a local minimum atα0. ThenC2 is neither positive definite nor negative definite on any
subspaceX ⊃ Xk, whereC1, C2 are two symmetric matrices in<n×n, Xk denotes the
subspace spanned by the eigenvectors ofC1+ α0C2 related toλk(α0).

Proof. If the lemma is not true, without loss of generality, we assume:

C1+ α0C2 = diag(D1, λk(α0)Ir , D2) , (36)

D1 = diag(d1, . . . ,dr1) , (37)

D2 = diag(dr2+1, . . . ,dn) , (38)

dn ≤ . . . ≤ dr2+1 < λk(α0) < dr1 ≤ . . . ≤ d1 , (39)

r1+ r = r2 , r2 ≥ k , (40)
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andC2 is positive definite inXk. Thus there exists aε > 0 such that

xTC2x > ε , ∀x ∈ Xk,1 , (41)

whereXk,1 = {x|x ∈ Xk, ‖ x ‖ = 1}. Hence there exists an open neighborhood ofXk,1,
sayU, such that

xTC2x > ε , ∀x ∈ U . (42)

It is easy to show that there exists aε0 > 0 such that

xT(C1+ α0C2)x ≥ λk(α0)+ ε0 , (43)

for all x ∈ span{er2+1, . . . ,en}⊥ \U satisfying‖ x ‖ = 1. Because

n− k+ 1> dim(span{er2+1, . . . ,en}) , (44)

then for any subspaceX with dimensionn− k+ 1, there exists

v ∈ X , ‖ v ‖ = 1 , v ∈ span{er2+1, . . . ,en}⊥ . (45)

Therefore by the famous Courant–Fischer theorem (see [10]), there exists av ∈ <n

satisfying (45) such that

λk(α0+ α) = min
dim(X )=n−k+1

max
x∈X ,‖x‖2=1

xT(C1 + α0C2)x+ αxTC2x

≥ vT(C1 + α0C2)v+ αvTC2v . (46)

If v ∈ U, (45) and (42) give that

vT(C1 + α0C2)v ≥ λk(α0) , v
TC2v > ε . (47)

If v /∈ U, it follows from (43) that

vT(C1 + (α0+ α)C2)v ≥ λk(α0)+ ε0/2 . (48)

for all sufficiently smallα > 0. Now (46)–(48) imply thatλk(α0 + α) > λk(α0) for
sufficiently smallα > 0, which contradicts our assumption. Thus we complete our
proof.

ut
Remark 2.It is easy to see from our proof that ifλk(α0) is a one sided local maximum,
λk(α0) ≥ λk(α), for α ∈ (α0, α0+ ε) (ε > 0), thenC2 cannot be positive definite inX .
Similarly one can prove that ifλk(α0) ≥ λk(α), for α ∈ (α0 − ε, α0) (ε > 0), thenC2
cannot be negative definite inX .

The following two lemmas are generalizations of the above lemma from one
parameter to two parameters. Their proofs are more complicated and are omitted because
basically they follow the same approach of the proof of Lemma 5.
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Lemma 6. Assumeλk(α, β) is the k-th largest eigenvalue ofC1 + αC2 + βC3 and
λk(α0, β0) is a local maximum. ThenαC2+βC3 cannot be positive definite in subspace
X ⊃ Xk for (α, β) ∈ <2, whereC1,C2,C3 are symmetric matrices in<n×n,Xk denotes
the subspace spanned by the eigenvectors ofC1+ α0C2+ β0C3 related toλk(α0, β0).

Remark 3.Similarly to Remark 2, forC1 + αC2 + βC3, if λk(α0, β0) ≥ λk(α, β) for
all (α, β) ∈ Nε(α0, β0), andα ≥ α0, β ≥ β0, then we can show that for(α, β) ∈ <2+,
αC2 + βC3 cannot be positive definite inX . Similarly if λk(α0, β0) ≥ λk(α, β) for
(α, β) ∈ Nε(α0, β0), andβ ≥ β0, thenαC2 + βC3 cannot be positive definite inX .
WhereNε(α0, β0) denotes a ball in<2 centered at(α0, β0) with a radiusε.

Lemma 7. Assume thatλk is thek-th largest eigenvalue of the symmetric matrixC1
andλi = λk (i = r1 + 1, . . . , r2), wherer2 > r1 are two nonnegative integers. LetXk

be the subspace spanned by the eigenvectors ofC1 related toλk. Denoteλk(α) thek-th
eigenvalue of matrixC1 + αC2. Then we have that

(1) If C2 is indefinite inXk, thenλr1+1(α) > λr1+1, λr2(α) < λr2 whenα is small
enough andα > 0;

(2) If C2 is positive semi-definite inXk and C2 6= 0 in Xk, thenλi (α) ≥ λi (i =
r1 + 1, . . . , r2) whenα is small enough andα > 0. Moreover,λr1+1(α) > λr1+1.

To establish our main result, we also need the following lemma.

Lemma 8. If for everyC ∈ co(C1,C2,C3), C has at least two negative eigenvalues.
Thenλn−1(α, β) attains its maximum in<2+, whereλn−1(α, β) is defined as in Lemma 6.

Proof. By the assumption,̄λn−1(α, β) < 0, for allα2+β2 = 1 satisfyingα ≥ 0, β ≥ 0,
whereλ̄n−1(α, β) denotes the (n−1)-largest eigenvalue ofαC2 + βC3.

Due to the continuity of̄λn−1(α, β),

λ̄n−1 = max
α2+β2=1,α≥0,β≥0

λ̄n−1(α, β) < 0 . (49)

It is easy to see that

λn−1(α, β) ≤ λ̄n−1(α, β)+ ‖ C1 ‖2
≤ λ̄n−1

√
α2+ β2+ ‖ C1 ‖2 , (50)

which, together with (49), shows thatλn−1(α, β) → −∞ asα2 + β2 → ∞ (α ≥ 0,
β ≥ 0). Therefore there exists(α0, β0) ∈ <2+ such thatλn−1(α0, β0) maximizes
λn−1(α, β).

ut
With the above results, we can show an important theorem for our main result in the

following.

Theorem 3. If 0 solves the problem (8)–(10), then there exists a matrixC ∈
co(C1,C2,C3), such thatC has at most one negative eigenvalue.
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Proof. If the theorem is not true, there existC1,C2,C3 such that 0 solves (8)–(10),
and every matrix in co(C1,C2,C3) has at least two negative eigenvalues. By Lemma 8,
assume(α0, β0) ∈ <2+ such thatλn−1(α0, β0) maximizesλn−1(α, β) in <2+, where
λn−1(α, β) is defined in Lemma 6. Define

X = span{x|(C1+ α0C2+ β0C3)x = λi x, λi < 0} . (51)

We will discuss three cases according to the values ofα0, β0.

Case 1.α0 = β0 = 0.

It follows from Remark 3 thatαC2+ βC3 cannot be positive definite inX for every
α ≥ 0, β ≥ 0. Therefore there exists 06= x0 ∈ X satisfyingxT

0 C2x0 ≤ 0, xT
0 C3x0 ≤ 0.

OtherwisexTC3x > 0 for 0 6= x ∈ X , xTC2x ≤ 0, then there existsα ∈ < such that
αC2 + C3 > 0 in X by Lemma 4. The first sentence of this paragraph implies that
α < 0, thusxTC2x ≤ 0 for everyx ∈ X , xTC3x ≤ 0, which gives a contradiction. The
definition ofX andα0 = β0 = 0 give that

xT
0 C1x0 = xT

0 (C1+ α0C2+ β0C3)x0 < 0 , (52)

which contradicts the assumption that 0 solves (8)–(10).

Case 2.α0+ β0 > 0, α0β0 = 0.

Without loss of generality, assumeα0 > 0, β0 = 0. It follows from Remark 3 that
αC2+βC3 cannot be positive definite inX for all (α, β) ∈ <2 with β ≥ 0. If xTC3x > 0
for 0 6= x ∈ X , xTC2x = 0. Then there existsα ∈ < such thatαC2 + C3 > 0 inX by
Lemma 4, which gives a contradiction. Therefore there exists 06= x0 ∈ X , such that
xT

0 C2x0 = 0, xT
0 C3x0 ≤ 0. Thus (52) holds, which contradicts our assumption.

Case 3.α0 > 0, β0 > 0.

It follows from Lemma 6 thatαC2+ βC3 cannot be positive definite inX for every
(α, β) ∈ <2. If dim(X ) ≥ 3, it follows from Lemma 3 that there existsx0 ∈ X such
that xT

0 C2x0 = xT
0 C3x0 = 0, which yields (52). This is a contradiction. Therefore we

can assume that dim(X ) = 2.
If dim(Xn−1) = 1 (whereXk is defined in Lemma 6). SinceαC2 + βC3 cannot be

positive definite inXn−1 for every(α, β) ∈ <2 by Lemma 6,C2,C3 must be equal to 0
in Xn−1, which yields (52) for everyx0 ∈ Xn−1. This is a contradiction.

If dim(Xn−1) = 2, i.e.Xn−1 = X , thenλn(α0, β0) = λn−1(α0, β0) and(α0, β0)

maximizesλn−1(α, β), λn(α, β) in <2+ simultaneously. If there exists(α, β) ∈ <2 such
thatαC2+βC3 is indefinite inX , (α0, β0) cannot maximizeλn−1(α, β), λn(α, β) in<2+
simultaneously by (1) of Lemma 7. SinceαC2+ βC3 cannot be either positive definite
or indefinite inX for every(α, β) ∈ <2,αC2+βC3 must be either positive semi-definite
or negative semi-definite inX for (α, β) ∈ <2, thenαC2 + βC3 must be equal to 0 in
X for every(α, β) ∈ <2 by (2) of Lemma 7. ThereforeC2 andC3 are equal to 0 inX .
It then follows that (52) holds for everyx0 ∈ <n, which gives a contradiction.

Thus the proof is completed.
ut
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Now we have obtained our main theorem, which is stronger than the results in [7].

Theorem 4. Let C1,C2,C3 be three symmetric matrices in<n×n. If

max
{

xTC1x, xTC2x, xTC3x
}
≥ 0 , for everyx ∈ <n , (53)

then there exists a matrixC = ∑3
i=1 ti Ci (

∑3
i=1 ti = 1, ti ≥ 0, i = 1,2,3), such that

C has at most one negative eigenvalue.

Proof. It follows obviously from Lemma 2 and Theorem 3. ut
Theorem 5. Let Ci (i = 1,2,3) be three symmetric matrices in<n×n. Then

max
1≤r≤3

{
vT(Ci ⊕Ci )v

}
≥ 0,∀v ∈ <2n , (54)

if and only if there existsC ∈ co3
i=1(Ci ) such thatC ≥ 0 in <n, whereX ⊕ Y denotes

the direct sum: (
X 0
0 Y

)
.

Proof. We only need to verify the “only if ” part. It follows from Theorem 4 that there
exists aD ∈ co3

i=1(Ci ⊕ Ci ) such thatD has at most one negative eigenvalue. Due to
the special structure ofD, the multiplicity of every eigenvalue must be even. Therefore
D must be positive semi-definite. It follows the conclusion stated in theorem.

ut
In fact, [1] pointed out that̃W(C1,C2,C3) = {y = (y1, y2, y3) ∈ <3|yi = vT(Ci ⊕

Ci )v, i = 1,2,3, for v ∈ <2n} is a convex cone in<3, so one can also use separating
theorem for convex sets to prove the above theorem.

A natural conjecture for multi-quadratic forms is as follows: if

max
1≤i≤r

{
xTCi x

}
≥ 0, ∀x ∈ <n×n , (55)

then there exists a matrixC ∈ cor
i=1(Ci ) such thatC has at mostr−2 negative

eigenvalues. Theorem 1 and Theorem 4 are the cases whenr = 2 and r = 3,
respectively. Whether the conjecture is true forr > 3 is still unknown.
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