
Problems on convergence of unconstrained

optimization algorithms

by

Ya-xiang Yuan

Report No. ICM-98-028 April 1998



Problems on convergence of unconstrained

optimization algorithms∗

Ya-xiang Yuan
State Key Laboratory of Scientific and Engineering Computing

Institute of Computational Mathematics and Scientific/Engineering Computing

Chinese Academy of Sciences, POB 2719, Beijing 100080, China

April 1998

Abstract

In this paper we give an review on convergence problems of unconstrained opti-

mization algorithms, including line search algorithms and trust region algorithms.

Recent results on convergence of conjugate gradient methods are discussed. Some

well-known convergence problems of variable metric methods and recent efforts

made on these problems are also presented.
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1 Introduction

Unconstrained optimization is to minimize a nonlinear function f(x), which can be written
as

min
x∈ℜn

f(x). (1.1)

Generally, it is assumed that f(x) is continuous. Numerical methods for problem (1.1)
are iterative. An initial point x1 should be given, and at the k−th iteration a new iterate
point xk+1 is to be computed by using the information at the current iterate point xk and
those at the previous points. It is hoped that the sequence {xk} generated will converge
to the solution of (1.1).

Most numerical methods for unconstrained optimization can be classified into two
groups, namely line search algorithms and trust region algorithms.

∗Research partially supported by Chinese NSF grants 19525101, 19731010 and State key project 96-
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The object of convergence analysis on unconstrained optimization algorithms is to
study the properties of the sequence {xk} generated by the algorithms, for example to
prove that {xk} converges to a solution or a stationary point point of (1.1), to study the
convergence rate of sequence if it is convergent, and to compare the differences between
the convergence performances of different algorithms.

The sequence {xk} generated by an algorithm is said to converge to a point x∗ if

lim
k→∞

‖xk − x∗‖ = 0. (1.2)

In practical computations, the solution x∗ is not available, hence it is not possible to use
(1.2) to test convergence. One possible replacement of (1.2) is

lim
k→∞

‖xk − xk−1‖ = 0. (1.3)

But, unfortunately, the above limit can not guarantee the convergence of {xk}. Therefore,
global convergence studies on unconstrained optimization algorithms try to prove the
following limit

lim
k→∞

‖gk‖ = 0, (1.4)

which ensures that xk is close to the set of the stationary points where ∇f(x) = 0, or

lim inf
k→∞

‖gk‖ = 0, (1.5)

which ensures that a least a subsequence of {xk} is close to the set of the stationary
points. Throughout the paper, we use the notation gk = g(xk) = ∇f(xk).

Local convergence analyses study the speeds of convergence of the sequence generated
by optimization algorithms. When studying local convergences, we normally assume that
the sequence {xk} converges to a local minimum x∗ at which the second order sufficient
condition is satisfied, namely the matrix ∇2f(x∗) is positive definite. Because without the
second order sufficient condition, even Newton’s method can converge very slowly. Under
the second order sufficient condition and the assumption that xk → x∗, we have that

∇2f(x∗)(xk − x∗) = gk. (1.6)

Thus, it is easy to see that the sequence converges Q-superlinearly, namely

‖xk+1 − x∗‖ = o(‖xk − x∗‖) (1.7)

if and only if

‖∇2f(x∗)(xk+1 − xk) − gk‖ = o(‖gk‖). (1.8)

The above relation is equivalent to

‖(xk+1 − xk) − (∇2f(xk))
−1gk‖ = o(‖xk+1 − xk‖). (1.9)

Therefore, the main technique for proving Q-superlinear convergence of an optimization
algorithm is to prove the step is asymptotically very close to the Newton’s step.

In this paper, we focus our attentions to global convergence results without discussing
those on local convergence.
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2 Line Search Algorithms

A line search algorithm chooses or computes a search direction dk at the k−th iteration,
and it sets the next iterate point by

xk+1 = xk + αkdk, (2.1)

where αk is computed by carrying certain line search techniques. Normally the search
direction dk is so chosen that it is a descent direction unless ∇f(xk) = 0. Namely,

dT
k ∇f(xk) < 0 (2.2)

if ∇f(xk) 6= 0. There are two categories of line searches: the exact line search and inexact
line searches. In the exact line search, αk is computed to satisfy

f(xk + αkdk) = min
α≥0

f(xk + αdk). (2.3)

One commonly used inexact line search is the Wolfe line search which finds a αk > 0
satisfying

f(xk + αkdk) ≤ f(xk) + c1αkd
T
k ∇f(xk) (2.4)

and

dT
k ∇f(xk + αkdk) ≥ c2d

T
k ∇f(xk), (2.5)

where c1 ≤ c2 are two constants in (0, 1). Usually c1 ≤ 0.5. The strong Wolfe line search
requires αk satisfying (2.4) and

|dT
k∇f(xk + αkdk)| ≤ −c2d

T
k ∇f(xk). (2.6)

Another famous inexact line search is the Armijo line search [1] which sets αk = δtᾱ where
ᾱ > 0 is a positive constant and t is the smallest non-negative integer for which

f(xk + δtᾱdk) ≤ f(xk) + c1δ
tᾱdT

k ∇f(xk). (2.7)

Assume that the gradient g(x) = ∇f(x) is Lipschitz continuous, that is

‖g(x) − g(y)‖ ≤ L‖x − y‖, ∀x, y ∈ Rn, (2.8)

all the inexact line searches imply that

αk ≥ c3
−dT

k gk

‖dk‖2
(2.9)

where c3 is some positive constant. Thus it follows from (2.9), (2.7) and (2.4) that

f(xk) − f(xk+1) ≥ c1c3
(−dT

k gk)
2

‖dk‖2
. (2.10)
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For the exact line search, if (2.8) holds, there also exists positive constant c4 such that

f(xk) − f(xk+1) ≥ c4
(−dT

k gk)
2

‖dk‖2
. (2.11)

Thus, if {f(xk)} is bounded below (which is always true when we assume that (1.1) is
bounded below), (2.10) and (2.11) show that

∞
∑

k=1

(−dT
k gk)

2

‖dk‖2
< ∞. (2.12)

Let θk be the angle between the steepest descent direction and the search direction dk.
By definition, we have that

cos2 θk = cos2〈−gk, dk〉 =
(−dT

k gk)
2

‖dk‖2‖gk‖2
. (2.13)

This relation and inequality (2.12) show that

∞
∑

k=1

‖gk‖
2 cos2 θk < ∞ (2.14)

if f(xk) is bounded below.
From the above inequality it is easy to establish the following convergence results.

Theorem 2.1 ([12, 13, 15]) Let {xk} be the sequence generated by a line search algorithm
under the exact line search, or any inexact line search such that (2.10) holds. If

∞
∑

k=1

cos2 θk = ∞, (2.15)

then the sequence is convergent in the sense that

lim inf
k→∞

‖gk‖ = 0. (2.16)

Furthermore, if there exists a positive constant η such that

cos2 θk ≥ η (2.17)

for all k, then the sequence is strongly convergent in the sense that

lim ‖gk‖ = 0. (2.18)

The above theorem is the most fundamental and also important result in the conver-
gence analysis of line search algorithms that use gradients. For line search algorithms
that use

dk = −B−1
k gk, (2.19)
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where Bk is some positive definite matrix. It is easy to see that

cos2 θk =
(gT

k B−1
k gk)

2

‖gk‖2‖B−1
k gk‖2

≥
1

Tr(Bk)Tr(B−1
k )

. (2.20)

Line search directions of Quasi-Newton methods have the form of (2.19). Hence, almost
all convergence analyses on quasi-Newton methods are based on the estimations of Tr(Bk)
and Tr(B−1

k ), and the bounds on Det(Bk). An elegant example can be seen in [9] where
the BFGS method is proved to be convergent for general convex functions with Wolfe line
searches. Powell’s result is extented to all methods in Broyden’s convex family except the
DFP method by Byrd, Nocedal and Yuan [2]. Some progress has been made by Yuan [14]
on the global convergence of the DFP method. The DFP method is proved to converge
to the solution in some situations when additional conditions are satisfied. For example,
the following theorem is one of the results obtained.

Theorem 2.2 ([14]) If the DFP method applied to a uniformly convex function satisfies

‖gk+1‖2 ≤ ‖gk‖2 (2.21)

for all k, then xk generated by the method converges to the unique minimum of the objective
function.

From the proofs in [14], one can easily see that condition (2.21) can be replaced by

gT
k yk ≤ 0. (2.22)

By estimating the trace of B2
k , [14] proves that the DFP method converges if (2.22) is

replaced by

gT
k Bkyk ≤ 0. (2.23)

A conjecture is that the DFP method converges if the following inequality

gT
k (Bk)

myk ≤ 0, (2.24)

holds for all k, where m is any given positive integer. But the proof for such a result may
be very difficult for a general positive integer m, since it would require to study the traces
of the matrices Bm+1

k .
However, it is still an open question whether the DFP method with Wolfe line search

is convergent for all convex functions, without assuming any additional conditions. The
answer for this question is still unknown, even if we assume that the objective function is
a uniformly convex function.

If we do not assume the convexity of the objective function, the convergence problem
of variable metric methods is very difficult. It is still not known what kind of line search
conditions can ensure a quasi-Newton method to be convergent. For example, Powell [10]
gives a very interesting 2-dimensional example that shows that variable metric methods
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fail to converge even if the line search condition is that αk be a local mimum of the
function f(xk + αdk) that satisfies f(xk + αkdk) < f(xk).

For conjugate gradient methods, search directions are generated by

dk+1 = −gk+1 + βkdk. (2.25)

Normally it is assumed that the parameter βk is so chosen that the following sufficient
descent condition

−dT
k gk ≥ c5‖gk‖

2 (2.26)

is satisfied for some positive constant c5 (for example, see [7]). The proofs on the conver-
gence of conjugate gradient methods are mainly on the estimation of

∞
∑

k=1

cos2θk =
∞
∑

k=1

1

‖dk‖2

(

(dT
k gk)

2

‖gk‖2

)

. (2.27)

If
(dT

k
gk)2

‖gk‖2 is bounded away from zero, namely there exists a positive constant c6 such that

(dT
k gk)

2

‖gk‖2
≥ c6, ∀k, (2.28)

it follows from Theorem 2.1 and (2.27) that the condition

∞
∑

k=1

1

‖dk‖2
= ∞ (2.29)

implies the convergence of a conjugate gradient method. Therefore, in the convergence
analysis of a conjugate gradient method, a widely used technique is to derive a contradic-
tion by establishing (2.29) if there exists a positive constant c7 such that

‖gk‖ ≥ c7, ∀k. (2.30)

It is easy to see that, under the assumption (2.30) and the boundedness of ‖gk‖, (2.28) is
equivalent to (2.26). However, it is can be seen that (2.26) is not always necessary. Indeed,
we only require (2.26) to be satisfied in the mean value sense. Recent convergence results
obtained by Dai and Yuan [4] use the technique that the mean value of −dT

k gk over every
two consecutive iterations is bounded aways from zero . That is to say, we can replace
(2.26) by

(dT
k gk)

2

‖gk‖4
+

(dT
k+1gk+1)

2

‖gk+1‖4
≥ c5, ∀k. (2.31)

We have the following theorem.

Theorem 2.3 Let {xk} be the sequence generated by conjugate gradient method (2.25)
with the exact line search, or any inexact line search such that (2.10) and (2.6) hold. If
{f(xk)} is bounded below, if {βk} is bounded, and if (2.29) holds, the the method converges
in the sense that (2.16) holds.
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Proof Suppose that (2.16) is not true, there exists a positive constant c7 such that
(2.30) holds. It follows from (2.6) that

dT
k+1gk+1

‖gk+1‖2
= −1 + βk+1

dT
k gk+1

‖gk+1‖2
, (2.32)

which gives that

1 ≤ −
dT

k+1gk+1

‖gk+1‖2
+ |βk+1|

|dT
k gk+1|

‖gk+1‖2

≤ −
dT

k+1gk+1

‖gk+1‖2
+ c2|βk+1|

‖gk‖
2

‖gk+1‖2

|dT
k gk|

‖gk‖2

≤
√

1 + c2
2|βk+1|2‖gk‖2‖gk+1‖−2 ×

√

√

√

√

(dT
k+1gk+1)2

‖gk+1‖4
+

(dT
k gk)2

‖gk‖4
. (2.33)

Now the above inequality and our assumptions imply that there exists a positive constant
c5 such that (2.31) holds. It follows from Theorem 2.1 and (2.31) that

∞
∑

k=1

min

[

1

‖d2k−1‖2
,

1

‖d2k‖2

]

< ∞, (2.34)

which shows that

max[‖d2k−1‖, ‖d2k‖] → ∞. (2.35)

This, (2.25) and the boundedness of ‖gk‖ show that

‖d2k‖ ≤
1

2
max[‖d2k−1‖, ‖d2k‖] + |β2k−1|‖d2k−1‖, (2.36)

which implies that

‖d2k‖ ≤ (2|β2k−1| + 1/2)‖d2k−1‖. (2.37)

It follows from the above inequality, (2.34) and the boundedness of βk that

∞
∑

k=1

1

‖d2k‖2
< ∞. (2.38)

Repeating the above analysis with the indices 2k − 1 and 2k replaced by 2k and 2k + 1,
we can prove that

∞
∑

k=1

1

‖d2k+1‖2
< ∞. (2.39)

Therefore it follows that
∞
∑

k=1

1

‖dk‖2
< ∞, (2.40)
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which contradicts our assumption. Thus the theorem is true. 2

From the above theorem, one can easily see that an essential technique for proving
convergence of conjugate gradient methods is to obtain some bounds on the increasing
rate of ‖dk‖ so that (2.29) holds. One normal way to estimate the bounds on ‖dk‖ is to
use the relation (2.25) recursively. Therefore it is quite often that convergence results are
established under certain inequality about βk. For example, as proved in [3], a conjugate
gradient method is convergent if there exists a positive constant c8 such that

‖gk‖
2

k−1
∑

j=1

k−1
∏

i=j

(

βi
‖gi‖

2

‖gi+1‖2

)2

≤ c8k, (2.41)

holds.

3 Trust Region Algorithms

Trust region algorithms do not carry out line searches. A trust region algorithm generates
a new point which lies in the trust region, and decides whether it accepts the new point or
rejects it. At each iteration, the trial step sk is normally calculated by solving the “trust
region subproblem”:

min
d∈ℜn

gT
k d +

1

2
dT Bkd = φk(d) (3.1)

s. t. ||d||2 ≤ ∆k (3.2)

where Bk is an n × n symmetric matrix which approximates the Hessian of f(x) and
∆k > 0 is a trust region radius. A trust region algorithm uses

rk =
Aredk

Predk
=

f(xk) − f(xk + sk)

φk(0) − φk(sk)
. (3.3)

to decide whether the trial step sk is acceptable and how the nex trust region radius is
chosen. (3.3) is the ratio between the actual reduction and the predicted reduction in the
objective function. A general trust region algorithm for unconstrained optimization can
be given as follows.

Algorithm 3.1 .

Step 1 Given x1 ∈ ℜn, ∆1 > 0, ǫ ≥ 0, B1 ∈ ℜn×nsymmetric;
0 < τ3 < τ4 < 1 < τ1, 0 ≤ τ0 ≤ τ2 < 1, τ2 > 0, k := 1.

Step 2 If ||gk||2 ≤ ǫ then stop;
Find an approximate solution of (3.1)-(3.2), sk.
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Step 3 Compute rk;

xk+1 =

{

xk if rk ≤ τ0 ,
xk + sk otherwise ;

(3.4)

Choose ∆k+1 that satisfies

∆k+1 ∈

{

[τ3||sk||2, τ4∆k] if rk < τ2,
[∆k, τ1∆k] otherwise;

(3.5)

Step 4 Update Bk+1;
k := k + 1; go to Step 2.

The constants τi (i=0,..,4) can be chosen by users. Typical values are τ0 = 0, τ1 =
2, τ2 = τ3 = 0.25, τ4 = 0.5. For other choices of those constants, please see [6], [5], [8], [11],
etc.. The values of constants τi (i=1,..,4) make no difference in the convergence proofs
of trust region algorithms. However, whether τ0 > 0 or τ0 = 0 will lead to very different
convergence results and, more important, requires different techniques in the proofs.

Theorem 3.2 Assume that f(x) is differentiable and ∇f(x) is uniformly Lipschitz con-
tinuous. Let xk be generated by Algorithm 3.1 with sk satisfies

φk(o) − φk(sk) ≥ τ‖gk‖min{∆k, ||gk||2/||Bk||2} , (3.6)

where τ is some positive constant. If Mk defined by

Mk = 1 + max
1≤i≤k

||Bk||2 (3.7)

satisfy that

∞
∑

k=1

1

Mk
= ∞, (3.8)

if ǫ = 0 is chosen in Algorithm 3.1, and if {f(xk)} is bounded below, then it follows that

lim inf
k→∞

||gk||2 = 0. (3.9)

Moreover, if τ0 > 0 and if {‖Bk‖} is bounded, then

lim
k→∞

||gk||2 = 0. (3.10)

Proof For the proof of the theorem when τ0 = 0 and under the condition (3.8), please
see Powell [11]. We only prove the easier part of the theorem, namely we only consider
the case when τ0 > 0 and {‖Bk‖} is bounded. Under these assumptions, we can easily
see that there exists a positive constant τ5 such that

Aredk ≥ τ5‖gk‖min[∆k, ‖gk‖]. (3.11)
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Because f(xk) is bounded below, the above inequality implies that

∞
∑

k=1

‖gk‖min[∆k, ‖gk‖] < ∞. (3.12)

The uniformly Lipschitz continuity of ∇f(x) and the above relation give that

∞
∑

k=1

‖gk‖min[|‖gk+1‖ − ‖gk‖|, ‖gk‖] < ∞. (3.13)

The above inequality shows that either (3.10) is true or

lim
k→∞

‖gk‖ > 0. (3.14)

If (3.10) is not true, it follows from (3.12) and (3.14) that

∞
∑

k=1

∆k < ∞, (3.15)

which yields that ∆k → 0. This would imply that

Aredk/Predk → 1, (3.16)

which shows that ∆k+1 ≥ ∆k for all sufficiently large k. This contradicts (3.15). The
contradiction shows that (3.10) holds. 2

It follows from the above theorem that a trust region algorithm converges if there
exists a positive constant τ̄ such that

‖Bk‖ ≤ τ̄ k (3.17)

holds for all k. The estimation of the predicted reduction (3.6) is crucial in the convergence
analyses. If we assume that there is a positive constant τ̂ such that the computed trial
step sk satisfies

φk(o) − φk(sk) ≥ τ̂ [φk(0) − min
α∈[0,∆/‖gk‖]

φk(−αgk)] (3.18)

for all k. Then, we can see that condition (3.17) can be replaced by the following weaker
inequality

gT
k Bkgk ≤ τ̄ k‖gk‖

2, (3.19)

because (3.19) and (3.18) implies that

φk(o) − φk(sk) ≥
τ̂

2
‖gk‖min{∆k, ‖gk‖/(τ̄k)}. (3.20)
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