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Abstract

Trust region algorithms are a class of recently developed algorithms
for solving optimization problems� The subproblems appeared in trust
region algorithms are usually minimizing a quadratic function subject
to one or two quadratic constraints� In this paper we review some of
the widely used trust region subproblems and some matrix computation
problems related to these trust region subproblems�
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�� Introduction

Trust region algorithms are a class of recently developed algorithms for
solving optimization problems� At each iteration of a trust region algorithm� a
trial step is computed by solving a trust region subproblem� which is normally
an approximation to the original optimization problem with a trust region
constraint which prevents the trial step being too large� Usually� the trust
region constraint has the form�

kdk � � �����

where � � � is the trust region bound�
For unconstrained optimization� the subproblems appeared in trust region

algorithms are usually to minimize a quadratic function which is a quadratic
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approximation to the objective function subject to the trust region constraint
������

For constrained optimization� There are mainly three di	erent types of
trust region subproblems� The 
rst type is a null space subproblem� where
a quadratic model function is minimized in the null space of the linearized
constraints subject to the trust region constraint ����� �for example� see ���
and ��
��� The null space subproblem is basically the same as the standard
trust region subproblem for unconstrained optimization� The second type of
subproblems of trust region algorithms for equality constrained optimization is
the so called CDT subproblem� which minimizes the quadratic model function
subject to the trust region bound condition ����� and an additional quadratic
constraint which has the form�

kATd� ck � � �����

where � � � is a parameter� c is the constraint values at the current iterate
point� and A is the gradient matrix of the constraints� The constraint condition
����� forces the sum of squares of the linearized constraint violations to reduce�
The third type of trust region subproblems are exact penalty function type
subproblems� Such a subproblem seeks a minimizer of the sum of a nonsmooth
piece�wise linear function and a quadratic function within the trust region �����
�for example� see ����� ���� and ��
���

Trust region subproblems are of great interests because they are important
parts of the trust region algorithms for nonlinear optimization� To construct
e�cient algorithms for solving these subproblems

In this paper we review some of the widely used trust region subproblems
and some matrix computation problems related to these trust region subprob�
lems�

�� TRS subproblem

In this section� we consider the solutions and approximate solutions of the
trust region subproblem�TRS� which has the following form�

min
d��n

gTd�
�

�
dTBd � ��d� �����

s� t� jjdjj� � �� �����

where � � �� g � �n� and B � �n�n is symmetric� Problem TRS �����������
is a subproblem of trust region algorithms for unconstrained optimization�

The following lemma is well known �for example� see ���� and ������
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Lemma ��� A vector d� � �n is a solution of ����������� if and only if there
exists �� � � such that

�B � ��I�d� � �g �����

and that B � ��I is positive semi�de�nite	 jjd�jj� � � and

����� jjd�jj�� � �� �����

It is easy to see from the above lemma that to solve the trust region sub�
problem TRS ����������� is equivalent to 
nd the correct parameter �� and
solve the linear system ������ Therefore we can easily see that TRS is closed
related to matrix computation problems� Indeed� we will see that an approx�
imate solution of subproblem ����������� can be computed by solving one of
more systems of linear equations having the form ������

Let d� be a solution of problem ����������� and �� be the multiplier satis�
fying conditions in the above lemma� If B � ��I is positive de
nite� then d� is
uniquely de
ned by

d� � ��B � ��I���g� �����

The case where B � ��I has zero eigenvalues is called �hard case�� In this
case� relation ����� implies that g is in the range space of B � ��I and d� can
be written in the form�

d� � ��B � ��I��g � v� ���
�

where v is a vector in the null space of B � ��I� On other hand� if g is in the
range space of B � ��I then any vector d� given by ���
� is also a solution of
����������� provided that jjd�jj� � � and that ����� jjd�jj�� � ��

Unless in the hard case� �� is also the unique solution of the following
equation

���� �
�

jj�B � �I���gjj�
�

�

�
� �� �����

Function ���� is well de
ned for � � ��	n�B������ where 	n�B� is the
least eigenvalue of B� ���� is concave and strictly monotonically increasing
in ��	n�B����� �For example� see ������ In fact� the 
rst order and second
order derivatives of ���� can be easily computed� thus Newton�s method can
be used to calculate ��� The Newton�s iteration is

�� � ��
����

�����

� ��
gT �B � �I���g

jj�B � �I�gjj��

�
�

jj�B � �I���gjj�
�

�

�

�
� �����
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Based on Newton�s iteration ������ numerical algorithms for problem �����������
have been given by ���� and �����

In the hard case� we have that

�� � �	n�B�� �����

where 	n�B� is the least eigenvalue of B� If �	n�B� � �� we can easily see
that �B�g is a solution of problem ������������ Hence the �real� hard case is
that ����� is satis
ed and 	n�B� 
 �� For any � � ��	n�B������ Newton�s
step will normally make the matrix B � ��I have negative eigenvalue� Hence
Newton�s step ����� can only be used to adjust the lower bound �L� Based
on these observations� we suggest to use the Newton�s step for an equivalent
equation

����� � ��
�

�
� � �� ������

The numerical methods based on Newton�s method for ����� needs to com�
pute the Cholesky factorization of �B � �I�� which is not desirable especially
when B is a large sparse matrix�

Now� we discuss the conjugate gradient method for problem ������������
The conjugate gradient method for minimize the convex function

��d� � gTd�
�

�
dTBd ������

is iterative and it generates the iterates by the following formulae�

xk�� � xk � �kdk ������

dk�� � �gk�� � 
kdk ������

where gk � r��xk�� and

�k �
�dTk gk
dTkBdk

������


k �
jjgk��jj

�

�dTk gk
� ������

with x� � � and d� � �g�
The conjugate gradient method has the nice 
nite termination property

which mean that xk � �B��g for some k � n� � if B is positive de
nite�
Steihaug���� was the 
rst to use the conjugate gradient method to solve

the general trust region subproblem ������������ Even without assuming the
positive de
nite of B� we can continue the conjugate gradient method provided
that dTkBdk is positive� If the iterate xk��kdk computed is in the trust region
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ball� it can be accepted� and the conjugate gradient iterates can be continued
to the next iteration� Whenever dTkBdk is not positive or xk � �kdk is outside
the trust region� we can take the longest step along dk within the trust region
and terminate the calculations�

Algorithm ��� �Truncated Conjugate Gradient Method For Trust Region Sub�
problem�

Step 
 Given g � �n	 B � �n�n symmetric�
x� � �	 g� � g	 d� � �g	 k � ��

Step � If jjgkjj � � then set x� � xk and stop�
Compute dTkBdk� if d

T
kBd

T
k � � then go to Step ��

Calculate �k by ����
��

Step � If jjxk � �kdkjj � � then go to Step ��
Set xk�� by ������ and gk�� � gk � �kBdk�
Compute 
k by ������ and set dk�� by �������
k �� k � �	 go to Step ��

Step � Compute ��k � � satisfying jjxk � ��kdkjj � ��
Set x� � xk � ��kdk	 and Stop�

The solution obtained by the above modi
ed conjugate gradient method
can satisfy the su�cient descent condition�

Lemma ��� Let x� computed by Algorithm ���	 we have that

����� ��x�� �
�

�
jjgjjminf�� jjgjj�jjBjjg� ����
�

Condition ����
� plays an important role in the convergence analysis of
trust region algorithms�see� for example� ������

We believe that if B is positive de
nite� the solution obtained by Algo�
rithm ��� will yield a reduction in the object quadratic function at least half
of the maximum reduction that can be obtained in the trust region� Namely�
we believe that the following conjecture is true�

Conjecture ��� Let x� be computed by Algorithm �����	 and let d� be the
solution of �����������	 if B is positive de�nite	 then

����� ��x�� �
�

�
������ ��d���� ������
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We have tested some randomly generated problems which show that our
conjecture is likely to be true� However we have not yet been able to prove or
disprove our conjecture theoretically�

If the corresponding Lagrange multiplier �� are known� the solution of ������
����� can be obtained by applying the conjugate gradient method directly to
the linear system �B � ���d � �g� However� in practice we do not know the
value of �� before the problem ����������� is solved� The following algorithm
is a slightly modi
cation of Algorithm ��� which tries to solve �B � �I�d �
�g by the conjugate gradient method which modi
es the parameter � � �
automatically� The main technique for updating the parameter � is simple�
When the conjugate gradient step is close to the boundary of the trust region�
the parameter � is increased�

Algorithm ��� �Modi�ed Conjugate Gradient Methods for TRS�

Step 
 Given g � �n	 B � �n�n symmetric�
x� � �	 g� � g	 d� � �g	 � � �	 � � � very small	 k � ��

Step � If kxkk � �� � then stop�
If jjgkjj � � go to Step ��
If B positive de�nite then stop�
Find dk such that dTkBdk 
 � and dTk xk � ��
Go to Step 
�

Step � Compute dTkBdk� if d
T
kBdk � � then go to Step 
�

Calculate �k by ����
��

Step � If jjxk � �kdkjj � ����kxkk��� then go to Step 
�
Set xk�� by ������ and gk�� � gk � �kBdk�
Compute 
k by ������ and set dk�� by �������
k �� k � �	 go to Step ��

Step 
 Compute ��k � � satisfying jjxk � ��kdkjj � ����kxkk����
Compute

� � ��dTk gk��
� � dTkBdk��kdkk

�� ������

Set B �� B � �I�
Set xk�� � xk � ��kdk	 and gk�� � gk � ��kBdk�
dk�� � �gk��	 k �� k � �� go to Step ��

The above algorithm trys to 
nd an approximate solution to the system
�B��I�d � �g by minimizing gTd����dT �B��I�d by the conjugate gradient
method with the parameter � updated automatically�






Assume that B is positive de
nite� If Newton�s step d � �B��g is in the
trust region� it is easy to see that Newton�s step is the solution of the problem
������������ Therefore we can see that Newton�s step is the solution of the
trust region subproblem when the trust region bound is su�cienly large� On
the other hand� if the trust region bound is very small� we can easily see that
the solution will be very close to the steepest descent direction� Therefore� it is
natural to consider to obtain an approximate solution of ����������� by solving

mind�S gTd�
�

�
dTBd ������

s� t� jjdjj � �� ������

where

S � Spanf�g��B��gg� ������

It is easy to shown that the solution of ������������� satis
es the su�cient
descent condition ����
� because Spang � S�

But� we have the following negative result about the ��dimensional optimal
step�

Lemma ��� Let d� be the solution of ����������� and s� be the solution of
�����������
�	 assume that B is positive de�nite� Let cond�B� be the condition
number of B which is the ration between the largest and smallest eigenvalue of
B	 if

lim cond�B� � ��� ������

then

lim
����� ��s��

����� ��d��
� �� ������

Proof Consider the following example� Let n � �� g � ��� � � � ���T �
and

B �

�
B� ��� � �

� � �
� � ��

�
CA � ������

where � � � is a very small positive number�
It is easy to see that the Newton�s step

�B��g �

�
B� ��

�
�

�
CA ������

�



is the solution if � � �� �� ��� If � 
 �� the minimizer of problem �����������
can be written as

d��� �

�
B�

��

�����
�

���
��

����

�
CA � ����
�

for some � � � such that jjd���jj � �� Speci
cally� if we let � � ���� the
condition jjd���jj � � gives that

� � � �O���� ������

Therefore the maximum reduction in the trust region is

����� ��d���� � �
�

�
d���Tg �

��

�
�O����� ������

Now we consider the minimizer in the ��dimensional subspace spanned by g
and B��g� The solution can be written as

�d���� � ��g B��g�
h
�g B��g�T �B � ��I��g B��g�

i��
�g B��g�Tg

� �

�
B� � ��

� �
�� �

�
CA�� ��� � �� � �� � � �� � ��

� � �� � �� �� � ���

�

���
�
� � �� � �� �� � ���

�� � ��� � � �� � ��

�	�� � � � �� � ��

�� � ���

�
� ������

The requirement jj �d����jj � � implies that

�� � ���O����� ������

Therefore it follows the maximum reduction in the ��dimensional subspace
within the trust region is

����� �� �d����� � �
�

�
�d����Tg � O����� ������

Now relations ������ and ������ indicate the lemma is true� �

The above lemma shows that even though the ��dimension minimizer satis�

es the su�cient descent condition and such a subspace minimizer and similar
approximate solutions such as dog�leg step or double dog�leg step are widely
used in practice� for example� see ���������� ���� and ������ it is possible that
such inexact solutions yield very small reduction in the objective function com�
paring to the maximum deduction in the objective function in the whole trust
region�

�



Recently� there are many research using semi�de
nite programming tech�
niques to study subproblem ������������ Such approaches normally require to

nd the least eigenvalues of the enlarged matrices having the form

�
t gT

g B

	
� ������

where t is a parameter� more details can be found in Rendl and Wolkowicz����
and Xin Chen ���� Lanczos method can be used to compute the smallest
eigenvalue of ������� which does not need to calculate matrix factorizations�

�� CDT subproblem

For equality constrained optimization� the linearized constraints are a sys�
tem of linear equations� The system may have no feasible point within the trust
region� One way to handle this di�culty is to replace the linear equations by
a single constraint which imposes an upper bound to the sum of squares of the
linearized constraints� This gives a trust region subproblem in the following
form�

min��d� � gTd�
�

�
dTBd �����

s�t� kATd� ck� � �� �����

kdk� � ��� �����

where g � �n� B � �n�n symmetric� A � �n�m� � � � and � � �� Sub�
problem ����������� was 
rst proposed by Celis� Dennis and Tapia���� hence it
is usually called the CDT problem� This subproblem is also used in a trust
region algorithm by Powell and Yuan���� If the parameter

� � �min � min
kdk��

kATd� ck� �����

it can be shown that the CDT problem is equivalent to a TRS subproblem
in the null space of AT � which can be solved by the methods discussed in the
previous section� Therefore� it is without loss of generality to assume that

� � �min� �����

The optimality condition for the CDT problem is given by Yuan�����
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Theorem ��� Let d� be a global solution of the problem ������������ Assume
that ����� holds	 there exist Lagrange multipliers �� � � and �� � � such that

�B � ��I � ��AAT �d� � ��g � ��Ac� ���
�

and the complementarity conditions

����� jjd�jj�� � � �����

���� � jjc� ATd�jj�� � � �����

are satis�ed� Furthermore	 if the multipliers ��	 �� are unique	 then the matrix

H���� ��� � B � ��I � ��AAT �����

has at most one negative eigenvalue�

From the above theorem� we can see that the CDT problem is closely
related to 
nd a solution of the linear system ���
�� An important issue is to

nd the correct Lagrange multipliers �� and ��� The above result is a necessary
condition� For su�cient condition� we have the following result�

Theorem ��� If d� is a feasible point of �����������	 if �� and �� are two
non�negative numbers such that ����������� hold	 and if the matrix H���� ���
is positive semi�de�nite	 then d� is a global solution of ������������

We can easily see that there is a gap between the necessary conditions and
the su�cient conditions� In the case of the TRS problem discussed in the
previous section� the necessary conditions and su�cient conditions coincide�
But� for the CDT problem� it is known that the matrix H���� ��� may have a
negative eigenvalue when one of the constraints is inactive� and it may have
more than one negative eigenvalue if d� and A�c � ATd�� are linearly depen�
dent� The possibility of the inde
niteness of H���� ��� may lead to numerical
di�culties when we trying to 
nd a solution of the CDT problem by solving
���
��

If B is positive semide
nite� the necessary conditions and su�cient condi�
tions are the same� If B is positive de
nite� the CDT problem ����������� can
be solved by solving its dual problem� The dual problem for ����������� is

max
����	���

�

���� ��� ������

where

���� �� � ��d��� ��� �
�

�
��jjd��� ��jj�� ����

�
�

�
��jjc� ATd��� ��jj�� � ��� ������

��



and d��� �� is de
ned by

d��� �� � �H��� �����g � �Ac�� ������

An algorithm based on Newton�s method for the dual problem ������ is
given by Yuan����� A step is truncated whenever it gives an infeasible ��� ���
Line searches are also used to ensure convergence� It is also shown that the
algorithm is quadratic convergent� More details can be found in Yuan �������

Zhang���� gives an variable elimination algorithm for solving ������� For
any � � �� ���� is de
ned to be the unique solution of

jjd��� ��jj� � �� ���� jjd��� ��jj�� � �� � � �� ������

It is easy to see that ������ is equivalent to the 
rst row of the following system� ����� ��
����� ��

�
� �� ��� ��T

� ����� ��
����� ��

�
� �� ������

where

����� �� �
�

jjd��� ��jj�
�

�

�
� ������

and

����� �� �
�

jjc� ATd��� ��jj�
�

�

�
� ����
�

By the de
nition of ����� ������ reduced to the following unvariable nonlinear
system�

�������� �� � �� � �������� �� � �� � � �� ������

In the easy case that �������� �� � �� it can be seen that ������ �� is a solution�
Otherwise� Zhang�s algorithm applies Newton�s method to solve

�������� �� � �� ������

When B is a general symmetric matrix� Su�cient conditions and necessary
conditions are not the same� detailed discussions can be found in Chen and
Yuan�
�� Recently Xiong�Da Chen��� studied the structure of the dual space of
the CDT problem� Some interesting results have been obtained on the location
regions of the Lagrange multipliers corresponding to the global solution� which
can be found in Chen and Yuan���� Chen��� also considered the parameterized
problem

min ��d� ������

s�t� ��kdk� ���� � ��� ���kATd� ck� � ��� � �� ������

��



where � � ��� ��� The above subproblem is a single ball problem� Relations
between the multiplier for ������������� and the multipliers for ����������� are
discussed in Chen and Yuan����

A direct way for solving ����������� is by applying a truncated conjugate
gradient method or by a projected conjugate gradient method similar to we
discussed in the previous section�

Algorithm ��� �Truncated Conjugate Gradient Methods for CDT�

Step 
 Given g � �n	 B � �n�n symmetric�
c � �m	 A � �n�m	 � � �	 � � � �
Given an interior point x� of ������������
d� � g� � ��x��� k � ��

Step � If jjgkjj � � then set x� � xk and stop�
Compute dTkBdk� if d

T
kBd

T
k � � then go to Step ��

Calculate �k by ����
��

Step � If xk � �kdk is in the interior of ����������� then go to Step ��
Set xk�� by ������ and gk�� � gk � �kBdk�
Compute 
k by ������ and set dk�� by �������
k �� k � �	 go to Step ��

Step � Compute ��k � � such that xk���kdk is on the boundary of ������
������
Set x� � xk � ��kdk	 and Stop�

The algorithm is basically a conjugate gradient method starting from an
interior point of the feasible region� It stops whenever the iterate reaches the
boundary or outside the feasible region in which case the step is truncated
and a boundary point is taken as the approximate solution� The algorithm
can be slightly modi
ed so that once the iterate point reaches the boundary�
it searches along the boundary by using projected search directions�

A generalization of the CDT problem is to minimizer a quadratic function
subject to two general quadratic constraints�

min q��x� ������

s�t� q��x� � � ������

q��x� � �� ������

where qi�x��i � �� �� �� are general functions in �n� This problem was studied
by Peng and Yuan ����� A special case of ������������� is the case when qi�x� �

��



xTCix� which gives the following problem

min xTC�x ������

s�t� xTC�x � �� ������

xTC�x � �� ����
�

where Ci�i � �� �� �� are symmetric matrices in �n�n� If � solves �����������
��
there exists ��
� 

� � �

�� ��
� 

� maximizes the least eigenvalue of C���C��

C�� such that C� � �
C� � 

C� has at most two negative eigenvalues� And
when �C� � 
C� is inde
nite for all ��� 
� � ������ 
� 	� �� and the least
eigenvalue of C���
C�� 

C� is negative� �
� 

 must be greater than �� For
more details� please see Peng and Yuan�����

If � solves �����������
�� it can be seen that we have

maxfxTC�x� x
TC�x� x

TC�xg � �� ������

for all x � �n� Yuan ���� gives a very interesting result about two quadratic
forms� It reads as follows�

Theorem ��� Let C�� C� � �
n�n be two symmetric matrices and A and B be

two closed sets in �n such that

A 
B � �n� ������

If we have

xTC�x � �� x � A� xTC�x � �� x � B� ������

then there exists a t � ��� �� such that the matrix

tC� � ��� t�C� ������

is positive semi�de�nite�

J�P�Crouzeix et�al� ��� pointed out that Yuan�s result is actually an alternate
theorem� They extended Theorem ��� to a locally convex topological linear
space and showed that it can not be extended to more than two matrices and
copositive matrices in a simple way�

Recently Chen and Yuan��� showed that if ������ holds� there exist a convex
linear combination of Ci�i � �� �� �� that has at most one negative eigenvalue�
This result and Theorem ��� indicates that the following conjecture might be
true�

Conjecture ��� Let Ci�i � �� ���� m� be m symmetrical matrices in �n�n� If

max��i�mfx
TCixg � �� for every x � �n� ������

Then there exists a C �
Pm

i�� tiCi� �
Pm

i�� t��� ti � �� i � �� ���� m�	 such that C
has at most m� � negative eigenvalue�

��
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