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Abstract

Trust region algorithms are a class of recently developed algorithms
for solving optimization problems. The subproblems appeared in trust
region algorithms are usually minimizing a quadratic function subject
to one or two quadratic constraints. In this paper we review some of
the widely used trust region subproblems and some matrix computation
problems related to these trust region subproblems.

Key words: optimization, trust region subproblem, matrix computation.

1. Introduction

Trust region algorithms are a class of recently developed algorithms for
solving optimization problems. At each iteration of a trust region algorithm, a
trial step is computed by solving a trust region subproblem, which is normally
an approximation to the original optimization problem with a trust region
constraint which prevents the trial step being too large. Usually, the trust
region constraint has the form:

ldll <A (1.1)

where A > 0 is the trust region bound.
For unconstrained optimization, the subproblems appeared in trust region
algorithms are usually to minimize a quadratic function which is a quadratic

*Research partially supported by Chinese NSF grants 19525101, 19731010 and State Key
project 96-221-04-02-02.



approximation to the objective function subject to the trust region constraint
(1.1).

For constrained optimization. There are mainly three different types of
trust region subproblems. The first type is a null space subproblem, where
a quadratic model function is minimized in the null space of the linearized
constraints subject to the trust region constraint (1.1) (for example, see [1]
and [16]). The null space subproblem is basically the same as the standard
trust region subproblem for unconstrained optimization. The second type of
subproblems of trust region algorithms for equality constrained optimization is
the so called CDT subproblem, which minimizes the quadratic model function
subject to the trust region bound condition (1.1) and an additional quadratic
constraint which has the form:

|ATd +cf| < ¢ (1.2)

where £ > 0 is a parameter, ¢ is the constraint values at the current iterate
point, and A is the gradient matrix of the constraints. The constraint condition
(1.2) forces the sum of squares of the linearized constraint violations to reduce.
The third type of trust region subproblems are exact penalty function type
subproblems. Such a subproblem seeks a minimizer of the sum of a nonsmooth
piece-wise linear function and a quadratic function within the trust region (1.1)
(for example, see [12], [13] and [26]).

Trust region subproblems are of great interests because they are important
parts of the trust region algorithms for nonlinear optimization. To construct
efficient algorithms for solving these subproblems

In this paper we review some of the widely used trust region subproblems
and some matrix computation problems related to these trust region subprob-
lems.

2. TRS subproblem

In this section, we consider the solutions and approximate solutions of the
trust region subproblem(TRS) which has the following form:

1
1 T —_— T pu—
min g d+ 2d Bd = ¢(d) (2.1)
st ]d]]2 < A, (2.2)

where A > 0, g € R, and B € R"*" is symmetric. Problem TRS (2.1)-(2.2)
is a subproblem of trust region algorithms for unconstrained optimization.
The following lemma is well known (for example, see [14] and [15]):



Lemma 2.1 A vector d* € R" is a solution of (2.1)-(2.2) if and only if there
exists \* > 0 such that

(B+XI)d"=—g (2.3)
and that B + \*I s positive semi-definite, ||d*||s < A and
A(A = ||d*]]2) = 0. (2.4)

It is easy to see from the above lemma that to solve the trust region sub-
problem TRS (2.1)-(2.2) is equivalent to find the correct parameter A* and
solve the linear system (2.3). Therefore we can easily see that TRS is closed
related to matrix computation problems. Indeed, we will see that an approx-
imate solution of subproblem (2.1)-(2.2) can be computed by solving one of
more systems of linear equations having the form (2.3).

Let d* be a solution of problem (2.1)-(2.2) and A* be the multiplier satis-
fying conditions in the above lemma. If B + A\*[ is positive definite, then d* is
uniquely defined by

d*=—(B+\I)g. (2.5)

The case where B 4+ \*I has zero eigenvalues is called “hard case”. In this
case, relation (2.3) implies that ¢ is in the range space of B + A*I and d* can
be written in the form:

d*=—(B+XID)"g+w, (2.6)

where v is a vector in the null space of B + A*I. On other hand, if g is in the
range space of B + A*I then any vector d* given by (2.6) is also a solution of
(2.1)-(2.2) provided that ||d*||s < A and that A*(A — ||d*||2) = 0.
Unless in the hard case, A* is also the unique solution of the following
equation
B 1 1
1B+ A Ygllz A

Function t(\) is well defined for A € (—o,(B),+0c0), where o,(B) is the
least eigenvalue of B. () is concave and strictly monotonically increasing
in (—o0,(B),+00) (For example, see [11]). In fact, the first order and second
order derivatives of ¢)(\) can be easily computed, thus Newton’s method can
be used to calculate A*. The Newton’s iteration is

(A

W)

g (B+AM)y 1 1
I(B+ADgll5 [I[(B+AD)gll A

(A = 0. (2.7)

)\+ — )\—

(2.8)
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Based on Newton’s iteration (2.8), numerical algorithms for problem (2.1)-(2.2)
have been given by [14] and [15].
In the hard case, we have that

N = —0,(B), (2.9)

where 0, (B) is the least eigenvalue of B. If —¢,,(B) = 0, we can easily see
that —B*yg is a solution of problem (2.1)-(2.2). Hence the “real” hard case is
that (2.9) is satisfied and o,(B) < 0. For any A € (—0,(B),+o0), Newton’s
step will normally make the matrix B + A1 have negative eigenvalue. Hence
Newton’s step (2.8) can only be used to adjust the lower bound \;. Based
on these observations, we suggest to use the Newton’s step for an equivalent
equation

() = w(? =0. (2.10)

The numerical methods based on Newton’s method for (2.7) needs to com-
pute the Cholesky factorization of (B + AI), which is not desirable especially
when B is a large sparse matrix.

Now, we discuss the conjugate gradient method for problem (2.1)-(2.2).
The conjugate gradient method for minimize the convex function

1
o(d) = g"d + §dTBd (2.11)
is iterative and it generates the iterates by the following formulae:

Tyl — xk—l—akdk (2.12)
i1 = —Grs1 + Brdy (2.13)

where g, = V(xy), and

—dfgk
2.14
“ = dI'Bd, (2.14)
| |9k+1 | |2
B = , 2.15
¢ —d;fgk ( )

with z; =0 and d; = —g.
The conjugate gradient method has the nice finite termination property
which mean that 2, = —B~1g for some k < n + 1 if B is positive definite.
Steihaug[23] was the first to use the conjugate gradient method to solve
the general trust region subproblem (2.1)-(2.2). Even without assuming the
positive definite of B, we can continue the conjugate gradient method provided
that d{Bdk is positive. If the iterate xy + aid; computed is in the trust region
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ball, it can be accepted, and the conjugate gradient iterates can be continued
to the next iteration. Whenever dkTBdk is not positive or xy + aydj is outside
the trust region, we can take the longest step along d; within the trust region
and terminate the calculations.

Algorithm 2.2 (Truncated Conjugate Gradient Method For Trust Region Sub-
problem)

Step 0 Given g € R", B € R"*" symmetric;
r1=0,g.=g9,d =—g, k=1.

Step 1 If ||gk|| = O then set 2* = x), and stop;
Compute dt Bdy,; if dE BdE < 0 then go to Step 3;
Calculate oy, by (2.14).

Step 2 If ||z + agdy|] > A then go to Step 3;
Set w1 by (2.12) and gry1 = gr + ap Bdy;
Compute [y by (2.15) and set diy1 by (2.13);
k:=k+1, go to Step 1.

Step 3 Compute o > 0 satisfying ||zx, + aidy|| = A;
Set * =z, + agdy, and Stop.

The solution obtained by the above modified conjugate gradient method
can satisfy the sufficient descent condition.

Lemma 2.3 Let z* computed by Algorithm 2.2, we have that
9(0) = &(2%) = S llgllmin{A.[lg][/[| BI[}. (2.16)

Condition (2.16) plays an important role in the convergence analysis of
trust region algorithms(see, for example, [18]).

We believe that if B is positive definite, the solution obtained by Algo-
rithm 2.2 will yield a reduction in the object quadratic function at least half
of the maximum reduction that can be obtained in the trust region. Namely,
we believe that the following conjecture is true.

Conjecture 2.4 Let z* be computed by Algorithm (2.2), and let d* be the
solution of (2.1)-(2.2), if B is positive definite, then

1

$(0) — ¢(a7) = 516(0) — ¢(d")]. (2.17)



We have tested some randomly generated problems which show that our
conjecture is likely to be true. However we have not yet been able to prove or
disprove our conjecture theoretically.

If the corresponding Lagrange multiplier A* are known, the solution of (2.1)-
(2.2) can be obtained by applying the conjugate gradient method directly to
the linear system (B + A\*)d = —g. However, in practice we do not know the
value of \* before the problem (2.1)-(2.2) is solved. The following algorithm
is a slightly modification of Algorithm 2.2 which tries to solve (B + Al)d =
—g by the conjugate gradient method which modifies the parameter A > 0
automatically. The main technique for updating the parameter A is simple.
When the conjugate gradient step is close to the boundary of the trust region,
the parameter A is increased.

Algorithm 2.5 (Modified Conjugate Gradient Methods for TRS)

Step 0 Given g € R", B € R™*" symmetric;
r1=0,9.=9,d=—g, A\=0, € >0 very small, k = 1.

Step 1 If ||zk|| > A — € then stop;
If |lgk]| > 0 go to Step 2;
If B positive definite then stop;
Find d;. such that d;{Bdk < 0 and d;jka > 0;
Go to Step 4;

Step 2 Compute d} Bdy; if dl Bdy < 0 then go to Step 4;
Calculate oy, by (2.14).

Step 3 If ||zg + ardy|| > 0.5(||zk|| + A) then go to Step 4;
Set w1 by (2.12) and g1 = gr + ap Bdyg;
Compute By by (2.15) and set dig,q by (2.13);
k:=k+1, go to Step 1.

Step 4 Compute o, > 0 satisfying ||z, + ajdi|| = 0.5(]|zk]] + A);
Compute

A= (=dfgp/a* — df Bdy)/||dy||*. (2.18)

Set B := B+ \;
Set vy = xp + agdy, and g1 = gy + apBdy;
dri1 = —gri1, k:=k+1; go to Step 1.

The above algorithm trys to find an approximate solution to the system
(B+AI)d = —g by minimizing g” d+0.5d” (B+ AI)d by the conjugate gradient
method with the parameter A updated automatically.
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Assume that B is positive definite. If Newton’s step d = —B g is in the
trust region, it is easy to see that Newton’s step is the solution of the problem
(2.1)-(2.2). Therefore we can see that Newton’s step is the solution of the
trust region subproblem when the trust region bound is sufficienly large. On
the other hand, if the trust region bound is very small, we can easily see that
the solution will be very close to the steepest descent direction. Therefore, it is
natural to consider to obtain an approximate solution of (2.1)-(2.2) by solving

minges g7 d+ %dTBd (2.19)
s. 6 [|d]] <A, (2.20)

where
S = Span{—g,—B 'g}. (2.21)

It is easy to shown that the solution of (2.19)-(2.20) satisfies the sufficient
descent condition (2.16) because Spang C S.

But, we have the following negative result about the 2-dimensional optimal
step.

Lemma 2.6 Let d* be the solution of (2.1)-(2.2) and s* be the solution of
(2.19)-(2.20), assume that B is positive definite. Let cond(B) be the condition

number of B which s the ration between the largest and smallest eigenvalue of
B, if

lim cond(B) = o0, (2.22)
then

. ¢(0) — ¢(s”)

lim o(0) = o(d) 0 (2.23)

Proof Consider the following example. Let n =3, g= (-1 —¢ —¢)7T,
and

€3 0 0
B=]10 1 1], (2.24)
0o 0 ¢
where € > 0 is a very small positive number.
It is easy to see that the Newton’s step
3
~Blg=| ¢ (2.25)
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is the solution if A > 1+e+¢€*. If A < 1, the minimizer of problem (2.1)-(2.2)

can be written as
63
1+Ee3/\
dA) =1 x1 | (2.26)
)\ie?’

for some A > 0 such that [|d(\)|| = A. Specifically, if we let A = ¢/2, the
condition ||d()\)|| = A gives that

A =14 0(e), (2.27)

Therefore the maximum reduction in the trust region is

2

5(0) — $(d(N) = —3dN) g = § + O(E). (2.28)

Now we consider the minimizer in the 2-dimensional subspace spanned by g
and B~ 'g. The solution can be written as

- - -1
d)) = (g Blg)fl¢g B'9)"(B+A(g B'g)| (9 B'9)yg
3
_ 1 66 [(6_3+62+69 1—|—62+€6>
N R 1+e+6b e + 26
s(l+e 4+ & +23 1446
+)\< €2 + 2¢3 1+€2—|—66>} ( € + 26 ) (2.29)

The requirement ||d(\)|| = A implies that
A= 2¢+ O(e?). (2.30)

Therefore it follows the maximum reduction in the 2-dimensional subspace
within the trust region is

8(0) — 9d(R)) = ~3d()g = O(). (2.31)

Now relations (2.28) and (2.31) indicate the lemma is true. O

The above lemma shows that even though the 2-dimension minimizer satis-
fies the sufficient descent condition and such a subspace minimizer and similar
approximate solutions such as dog-leg step or double dog-leg step are widely
used in practice( for example, see [21],[10], [18] and [22]), it is possible that
such inexact solutions yield very small reduction in the objective function com-
paring to the maximum deduction in the objective function in the whole trust
region.



Recently, there are many research using semi-definite programming tech-
niques to study subproblem (2.1)-(2.2). Such approaches normally require to
find the least eigenvalues of the enlarged matrices having the form

o %
g B

: (2.32)

where ¢ is a parameter, more details can be found in Rendl and Wolkowicz[20]
and Xin Chen [3]. Lanczos method can be used to compute the smallest
eigenvalue of (2.32), which does not need to calculate matrix factorizations.

3. CDT subproblem

For equality constrained optimization, the linearized constraints are a sys-
tem of linear equations. The system may have no feasible point within the trust
region. One way to handle this difficulty is to replace the linear equations by
a single constraint which imposes an upper bound to the sum of squares of the
linearized constraints. This gives a trust region subproblem in the following
form.

1
mm¢uy=fd+§fpd (3.1)
sit. [|JATd +c|]? < €2 (3.2)

ld[I* < A%, (3.3)

where ¢ € R", B € R™*" symmetric, A € ™, & > 0 and A > 0. Sub-

problem (3.1)-(3.2) was first proposed by Celis, Dennis and Tapia[2], hence it

is usually called the CDT problem. This subproblem is also used in a trust
region algorithm by Powell and Yuan[19] If the parameter

= &pin = min [|ATd + ¢l 3.4

€ = G = min [ Ad +c] (3.4)

it can be shown that the CDT problem is equivalent to a TRS subproblem

in the null space of AT, which can be solved by the methods discussed in the
previous section. Therefore, it is without loss of generality to assume that

The optimality condition for the CDT problem is given by Yuan[24].



Theorem 3.1 Let d* be a global solution of the problem (3.1)-(3.83). Assume
that (3.5) holds, there exist Lagrange multipliers A\* > 0 and p* > 0 such that

(B + XTI+ p*AAT)d* = — (g + p*Ac) (3.6)

and the complementarity conditions
NA=[d[[s] = 0 (3.7)
wlE—lle+ATd )] = 0 (3.8)

are satisfied. Furthermore, if the multipliers \*, p* are unique, then the matrix
H(\, pu*) = B+ N1 + prAAT (3.9)
has at most one negative eigenvalue.

From the above theorem, we can see that the CDT problem is closely
related to find a solution of the linear system (3.6). An important issue is to
find the correct Lagrange multipliers A* and p*. The above result is a necessary
condition. For sufficient condition, we have the following result.

Theorem 3.2 If d* is a feasible point of (3.2)-(3.8), if \* and p* are two
non-negative numbers such that (3.6)-(3.8) hold, and if the matriz H(\*, u*)
is positive semi-definite, then d* is a global solution of (3.1)-(3.3).

We can easily see that there is a gap between the necessary conditions and
the sufficient conditions. In the case of the TRS problem discussed in the
previous section, the necessary conditions and sufficient conditions coincide.
But, for the CDT problem, it is known that the matrix H(\*, 4*) may have a
negative eigenvalue when one of the constraints is inactive, and it may have
more than one negative eigenvalue if d* and A(c + A”d*) are linearly depen-
dent. The possibility of the indefiniteness of H(\*, u*) may lead to numerical
difficulties when we trying to find a solution of the CDT problem by solving
(3.6).

If B is positive semidefinite, the necessary conditions and sufficient condi-
tions are the same. If B is positive definite, the CDT problem (3.1)-(3.3) can
be solved by solving its dual problem. The dual problem for (3.1)-(3.3) is

A, (A, ), (3.10)
where
1
A, 1) = ¢(d(A, ) + FA(lld(A, w3 — A%
1
+§M(IIC+ATd(A,u)|I§ - &) (3.11)
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and d(\, p) is defined by
d(\, p) = —H(A, 1) (g + pAc). (3.12)

An algorithm based on Newton’s method for the dual problem (3.10) is
given by Yuan[25]. A step is truncated whenever it gives an infeasible (A, p).
Line searches are also used to ensure convergence. It is also shown that the
algorithm is quadratic convergent. More details can be found in Yuan (1991).

Zhang[27] gives an variable elimination algorithm for solving (3.14). For
any p > 0, A(p) is defined to be the unique solution of

(A @)l < A MA = [[d(A; p)]l2) = 0, A= 0. (3.13)

It is easy to see that (3.13) is equivalent to the first row of the following system

<@/3(A,u)> S0, ()T <1/3(Avﬂ)> 0, (3.14)

(A, 1) YA, 1)
where
_ 1 1
M) = 3.15
YA Tl T s a1
and
e ! ! (3.16)

e+ ATd W)l €

By the definition of A(x), (3.14) reduced to the following unvariable nonlinear
system:

P ), p) >0, pb(A(p), p) =0, p>0. (3.17)

In the easy case that ¢)(A(0),0) > 0, it can be seen that (A(0),0) is a solution.
Otherwise, Zhang’s algorithm applies Newton’s method to solve

(A1), p) = 0. (3.18)

When B is a general symmetric matrix, Sufficient conditions and necessary
conditions are not the same, detailed discussions can be found in Chen and
Yuan[6]. Recently Xiong-Da Chen[5] studied the structure of the dual space of
the CDT problem. Some interesting results have been obtained on the location
regions of the Lagrange multipliers corresponding to the global solution, which
can be found in Chen and Yuan[7]. Chen[5] also considered the parameterized
problem

min  ¢(d) (3.19)
sit. w(|d|]* = A?) + (1 —w)(||ATd + ¢c||* — £€%) <0, (3.20)
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where w € [0,1]. The above subproblem is a single ball problem. Relations
between the multiplier for (3.19)-(3.20) and the multipliers for (3.1)-(3.3) are
discussed in Chen and Yuan[8].

A direct way for solving (3.1)-(3.3) is by applying a truncated conjugate
gradient method or by a projected conjugate gradient method similar to we
discussed in the previous section.

Algorithm 3.3 (Truncated Conjugate Gradient Methods for CDT)

Step 0 Given g € R", B € R™*" symmetric;
ceR™ AeR™™m A>0,£>0;
Given an interior point x1 of (3.2)-(5.3);
di =g = ¢(x1); k= 1.

Step 1 If ||gk|| = O then set * = x), and stop;
Compute dl. Bdy,; if dl Bd} < 0 then go to Step 3;
Calculate oy, by (2.14).

Step 2 If xy, + cudy, is in the interior of (3.2)-(3.3) then go to Step 3;
Set x1 by (2.12) and gry1 = gr + ap Bdy;
Compute B by (2.15) and set digyq by (2.13);
k:=k+1, goto Step 1.

Step 3 Compute o, > 0 such that x+ajdy is on the boundary of (3.2)-

(3.3);

Set ¥ =z, + agdy, and Stop.

The algorithm is basically a conjugate gradient method starting from an
interior point of the feasible region. It stops whenever the iterate reaches the
boundary or outside the feasible region in which case the step is truncated
and a boundary point is taken as the approximate solution. The algorithm
can be slightly modified so that once the iterate point reaches the boundary,
it searches along the boundary by using projected search directions.

A generalization of the CDT problem is to minimizer a quadratic function
subject to two general quadratic constraints:

min ¢ (z) (3.21)
st qaz) < (3.22)
g3(z) <0, (3.23)

where ¢;(z)(i = 1,2, 3) are general functions in ™. This problem was studied
by Peng and Yuan [17]. A special case of (3.21)-(3.23) is the case when ¢;(z) =
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27Oy, which gives the following problem

min 1" Cyx (3.24)
sit. 27 Cox <0, (3.25)
27 Cy2 <0, (3.26)

where C;(i = 1,2, 3) are symmetric matrices in R"*™. If 0 solves (3.24)-(3.26),
there exists (ap, ) € R?, (o, fy) maximizes the least eigenvalue of C +aCy+
BCs, such that C7 + agCs + [(yC3 has at most two negative eigenvalues. And
when aCy + (Cj3 is indefinite for all (a, 3) € R?((a, 8) # 0) and the least
eigenvalue of C + azCy + [FyC3 is negative, ag, By must be greater than 0. For
more details, please see Peng and Yuan[17].

If 0 solves (3.24)-(3.26), it can be seen that we have

max{z? C1z, 27 Cyzx, 27 Csz} >0, (3.27)

for all z € R". Yuan [24] gives a very interesting result about two quadratic
forms. It reads as follows:

Theorem 3.4 Let Cy,Cy € R"™" be two symmetric matrices and A and B be
two closed sets in R™ such that

AUB=R" (3.28)
If we have
2'Cix >0,z € A,z Cor >0,z € B, (3.29)

then there ezists a t € [0,1] such that the matriz
tCy + (1 —t)Cs (3.30)
15 positive semi-definite.

J.P.Crouzeix et.al. [9] pointed out that Yuan’s result is actually an alternate
theorem. They extended Theorem 3.4 to a locally convex topological linear
space and showed that it can not be extended to more than two matrices and
copositive matrices in a simple way.

Recently Chen and Yuan[4] showed that if (3.27) holds, there exist a convex
linear combination of C;(i = 1,2, 3) that has at most one negative eigenvalue.
This result and Theorem 3.4 indicates that the following conjecture might be
true.

Conjecture 3.5 Let C;(i = 1,...,m) be m symmetrical matrices in R™*™. If
maz<icm{r’ Ciz} > 0, for every x € R". (3.31)
Then there exists a C =Y ,C;, (X t=1,t; > 0,0 =1,...,m), such that C

has at most m — 2 negative eigenvalue.
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