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Abstract

Lagrangian duality underlies many efficient algorithms for convex minimization problems.
A key ingredient is strong duality. Lagrangian relaxation also provides lower bounds for
non-convex problems, where the quality of the lower bound depends on the duality gap. Quad-
ratically constrained quadratic programs (QQPs) provide important examples of non-convex
programs. For the simple case of one quadratic constraint (the trust-region subproblem) strong
duality holds. In addition, necessary and sufficient (strengthened) second-order optimality
conditions exist. However, these duality results already fail for the two trust-region sub-
problem. Surprisingly, there are classes of more complex, non-convex QQPs where strong
duality holds. One example is the special case of orthogonality constraints, which arise nat-
urally in relaxations for the quadratic assignment problem (QAP). In this paper we show
that strong duality also holds for a relaxation of QAP where the orthogonality constraint is
replaced by a semidefinite inequality constraint. Using this strong duality result, and semidef-
inite duality, we develop new trust-region type necessary and sufficient optimality conditions
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for these problems. Our proof of strong duality introduces and uses a generalization of the
Hoffman–Wielandt inequality. © 1999 Published by Elsevier Science Inc. All rights reserved.
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1. Introduction

Quadratic programs with quadratic constraints (QQPs) are an important model-
ling tool for many optimization problems; almost as important as the linear program-
ming model. Applications for QQP include hard combinatorial problems, e.g., [28],
and SQP algorithms for non-linear programming, e.g., [17]. These QQPs are often
not convex and so are very hard to solve numerically. One approach is to use the
Lagrangian relaxation of a QQP to obtain an approximate solution. The strength of
such a relaxation depends on the duality gap, where a zero duality gap means that the
relaxation is exact. In this paper we present a new technique for closing the duality
gap for a class of non-convex problems. This technique is to add certain redundant
constraints before taking the Lagrangian relaxation.

The simplest of the non-convex QQPs is the trust-region subproblem (TRS),
which consists of a quadratic objective with a single quadratic constraint. The con-
straint is usually the simple norm constraint (we normalize the right-hand side to 1)

xTx = 1 (or 6 1). (1)

Surprisingly (see [32]), the Lagrangian relaxation for this possibly non-convex prob-
lem is exact. Moreover, there are (strengthened) second-order necessary and suffi-
cient optimality conditions for TRS [19].

A visually similar problem to the equality-constrained TRS is the matrix quadratic
problem with orthogonality constraints

XXT = I. (2)

Some such problems can be solved efficiently using eigenvalue techniques, such
as the Hoffman–Wielandt inequality. However strong duality fails for the obvious
Lagrangian dual based on relaxing the constraint (2).

In [3] it was shown that for a certain homogeneous QQP with the orthogonality
constraints (2), strong dualitydoeshold if the seemingly redundant constraint

XTX = I
is added before the Lagrangian dual is formed. In this paper, we extend this strong
duality result to a problem where the orthogonality constraint (2) is replaced by the
trust-region type semidefinite inequality

XXT � I, (3)
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where for two symmetric matrices,S � T denotes thatT − S is positive semidefin-
ite. For this problem we also develop new strengthened second-order necessary and
sufficient optimality conditions that are similar to the conditions known to hold for
TRS.

1.1. Background

1.1.1. General QQPs
Consider the quadratically constrained quadratic program

QQP min q0(x),

s.t. qk(x) 6 0 (or = 0), k = 1, . . . ,m,

whereqi(x) := (1/2)xTQix + gT
i x is a quadratic function. The Lagrangian function

is

L(x, λ) := q0(x)+
m∑
k=1

λkqk(x),

where the multiplierλk is constrained to be non-negative if thekth constraint is an
inequality. The Lagrangian dual or relaxation is then

max
λ

min
x
L(x, λ). (4)

There has been a great deal of recent work on QQPs. The tractable case is the con-
vex case, i.e., the objective and constraint functions are all convex (linear for equality
constraints). In this case, the solution value is attained and there is a zero duality gap
between QQP and its Lagrangian dual [18,25–27,33]. The bridge between the con-
vex and the non-convex case is the TRS problem discussed above. This problem is
tractable [34], and very efficient algorithms exist both for moderate dense problems
[19], and large sparse problems [30,31].

One view of the Lagrangian relaxation of QQPs is in terms of semi-infinite pro-
gramming and valid inequalities. LetF denote the feasible set of the QQP, where
all the constraints are inequalities. Then we trivially have

λ > 0 ⇒ F ⊂Vλ :=
{
x : qλ(x) :=

m∑
k=1

λkqk(x) 6 0

}
.

Thusqλ provides avalid inequalityfor the feasible set. However, we now see that
not all these valid inequalities are useful.

The outer maximization problem in the dual problem (4) has the hidden constraint
that the Hessian

Q0+
m∑
k=1

λkQk � 0,
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since otherwise the inner minimization is unbounded below. Thus, for each vector
of Lagrange multipliersλ > 0 such that the Hessian of the Lagrangian is positive
semidefinite, we conclude that the useful valid inequalities for the feasible set of
QQP are given by

λ > 0, ∇2
xxL(x, λ) � 0 ⇒ F ⊂Vλ.

(See [10,16] for details for a linear objective function; the non-linear case is being
studied in [1].) Therefore, a zero duality gap means that we have enough of these
useful valid inequalities. Otherwise, an obvious question is:can we find additional
quadratic constraints to close the duality gap?

One of the highlights of the new results on QQPs is the result of Goemans–
Williamson, [11], on the strength of the semidefinite programming, SDP, relaxation
for the max-cut problem. This result essentially shows how well one can approximate
the optimum of the QQP

max xTQx s.t. x2
i = 1, i = 1, . . . , n,

where Q arises from the Laplacian matrix of the underlying (non-negatively
weighted) graph. This result has been extended in several ways: to allow for general
Q [22]; to replace the constraints with interval constraints [35]; to allow for general
homogeneous constraints [9,20]; and other extensions [4,21]. The above mentioned
papers all characterize the quality of a tractable approximation to a non-convex
QQP, rather than finding special quadratic constraints to add in order to improve
the approximation. The interpretation of the semidefinite relaxation in terms of valid
quadratic inequalities is discussed in [10,16].

1.1.2. Quadratic assignment problem and relaxations
TheQuadratic assignment problem, QAP, in the trace formulation is

µ∗ := min
X∈P tr

(
AXBXT + CXT) ,

whereP denotes the set of permutation matrices, andA,B,C aren× n matrices.
We assume throughout thatA andB are real and symmetric. Applications of QAP in-
clude plant location problems, where the three matrices represent distances between
sites, flows between plants, and location costs, respectively, and the permutation
matrix X denotes which plant is located at which site. See for example [6,24] for
an extensive discussion of applications and algorithms for QAP.

The QAP is an NP-hard problem. In fact, this is one of the most difficult problems
to solve in practice as there exist problems with dimensionn = 30 still unsolved,
[6,13,24]. For QAPs dimensionn = 20 is considered “large scale”. The problem
consists of a, possibly non-convex, quadratic objective function over the (discrete)
set of permutation matrices. Since the set of permutation matrices is the intersection
of the orthogonal matrices and the non-negative matrices, relaxations for the QAP
often include the quadratic constraintsXXT = I . As the objective in QAP is itself
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quadratic, these relaxations of QAP lead naturally to interesting classes of QQPs.
The use of the trust-region type relaxation (3) for QAP was studied in [15].

General non-linear optimization over orthogonality constraints is considered in
[7] while the partial order constraintXXT � I is discussed in [23]. The relationship
Y = XXT is used to model graph partitioning problems in [2,14,15].

1.2. Outline

In this paper, we consider the trust-region type relaxation for homogeneous (C =
0) QAP. We first find the explicit solution for the relaxation, and in doing so intro-
duce an extension of the well-known Hoffman–Wielandt inequality. We then show
that by adding the seemingly redundant constraintXTX � I before forming the
Lagrangian dual we can close the duality gap. Using this strong duality result, and
semidefinite duality, we obtain new necessary and sufficient characterizations for op-
timality which are similar to the ordinary trust-region subproblem result in non-linear
programming.

1.3. Notation

We now describe the notation used in the paper. We work with real matrices
throughout. LetSn denote the space ofn× n symmetric matrices equipped with the
trace inner product,〈A,B〉 = tr AB. LetA � 0 (respectively,A � 0) denote positive
semidefiniteness (respectively, positive definiteness);A � B denotesA− B � 0,
i.e.,Sn is equipped with the Löwner partial order. LetMm,n denote the space of
generalm× nmatrices also equipped with the trace inner product,〈A,B〉 = tr ATB.
LetO denote the set of orthonormal (orthogonal) matrices;E denote the set of doubly
stochastic matrices;N denote the set of non-negative matrices; andP denote the set
of permutation matrices.

We let Diag(v) be the diagonal matrix formed from the vectorv; its adjoint oper-
ator is diag(M) which is the vector formed from the diagonal of the matrixM. For
M ∈Mm,n, the vectorm = vec(M) ∈ <mn is formed (columnwise) fromM. The
Kronecker product of two matrices is denotedA⊗ B.

We usee to denote the vector of all ones, andE = eeT to denote the matrix of all
ones. We useJ to denote the matrixJ = (en, en−1, . . . , e1), whereei is theith unit
vector.

2. Orthogonal relaxation

One successful relaxation for the homogeneous (C = 0) QAP is theeigenvalue
relaxation[8], i.e., one replacesP with the set of orthogonal matrices

O := {X : XXT = I }.
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We now consider strong duality results for this problem. The relaxed problem can be
written

µO := min
X∈O tr AXBXT. (5)

The boundµO is often referred to as theeigenvalue boundfor QAP. This bound
is based on the following inequality, which can be viewed as a variant of the classical
Hoffman–Wielandt inequality, see e.g., [5,8,29].

Theorem 1. Let V TAV = R, UTBU = K, where U,V ∈ O,R = Diag(σ ), K=
Diag(λ), σ1 > σ2 > · · · > σn, λ1 > λ2 > · · · > λn. Then for anyX ∈ O, we have

n∑
i=1

λiσn−i+1 6 trAXBXT 6
n∑
i=1

λiσi .

The upper bound is attained forX = VUT, and the lower bound is attained for
X = V JUT, whereJ = (en, en−1, . . . , e1) andei is the ith element unit vector.

It is clear that the eigenvalue bound is a tractable bound, i.e., it can be efficiently
computed in polynomial time by computing the eigenvalues and ordering them ap-
propriately. However, there can be a duality gap for the Lagrangian relaxation of (5)
(and so also for the SDP relaxation, which is equivalent); see [36], for example. Inter-
estingly, we can close this duality gap by adding the seemingly redundant constraint
XTX = I before forming the Lagrangian dual; see [3]. Define the primal problem

QAPO µO =min tr AXBXT,

s.t. XXT = I, XTX = I.
Using symmetric matricesSandT to relax the constraintsXXT = I andXTX = I ,
respectively, we arrive at a dual problem

DQAPO µO > µDO :=max trS + tr T ,

s.t. (I ⊗ S)+ (T ⊗ I) � (B ⊗ A),
S = ST, T = T T.

Theorem 2 [3]. Strong duality holds for QAPO and DQAPO, i.e., µDO = µO and
both primal and dual values are attained.

3. Trust-region relaxation

A further relaxation of the above orthogonal relaxation is the trust-region relaxa-
tion studied in [15],
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µT := min trAXBXT,

s.t. XXT � I. (6)

Of course using the constraintsXXT � I in place ofXXT = I weakens the bound
on QAP; i.e.,µT 6 µO . However the constraintsXXT � I are convex, and so it is
hoped that solving this problem would be useful in obtaining bounds for QAP. For
example a better understanding of the solution of (6) withC = 0 might make it pos-
sible to consider the same relaxation withC /= 0, which has so far been impossible
to do with the orthogonal relaxation (5).

To begin, we will characterize the valueµT by proving a generalization of The-
orem 1. We require the following technical result.

Lemma 3. Let B and X ben× n matrices, with B symmetric. Letλ1 > λ2 > . . . >
λn be the eigenvalues of B, and λ′1 > λ′2 > · · · > λ′n the eigenvalues ofXBXT.
Let X = P TCQ be the singular value decomposition of X, whereP,Q ∈ O, C =
Diag(γ ), γ1 > γ2 > · · · > γn > 0. Then

γ 2
n λi 6 λ′i 6 γ 2

1λi for λi > 0,

γ 2
1 λi 6 λ′i 6 γ 2

n λi for λi < 0.

Proof. Let X denote a subspace of<n, and|X| denote the dimension ofX. First
we assume thatX is non-singular. Because the eigenvalues ofXBXT are also those
of CQBQTC, by the Courant–Fisher theorem [12, Theorem 4.2.11] we have

λ′i = min|X|=n−i+1
max

0/=x∈X
xTCQBQTCx

‖x‖2 .

Then

λ′i = min|X|=n−i+1
max

0/=C−1Qy∈X
yTBy

‖C−1Qy‖2 .

Let Y = QTCX. Due to the non-singularity ofC, |Y| = |X|, and in addition we
clearly have

‖y‖2
γ 2

1

6 ‖C−1Qy2‖ 6 ‖y‖
2

γ 2
n

.

Moreover it is well known that the inertia ofB is preserved under the transform-
ationXBXT [12, Theorem 4.5.8], and therefore the signs ofλi andλ′i coincide, for
eachi. It follows that forλ′i > 0 we have

λ′i6γ 2
1 min|Y|=n−i+1

max
0/=y∈Y

yTBy

‖y‖2 = γ
2
1λi,

λ′i>γ 2
n min|Y|=n−i+1

max
0/=y∈Y

yTBy

‖y‖2 = γ
2
n λi .
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While for λ′i < 0 we have
λ′i>γ 2

1 min|Y|=n−i+1
max

0/=y∈Y
yTBy

‖y‖2 = γ
2
1λi,

λ′i6γ 2
n min|Y|=n−i+1

max
0/=y∈Y

yTBy

‖y‖2 = γ
2
n λi .

This completes the proof under the assumption thatX is non-singular. IfX is sin-
gular, we can perturb the zeroγi values and use the fact that the eigenvaluesλ′i are
continuous functions ofγ , to obtain the given bounds.�

Theorem 4. Let V TAV = R, UTBU = K, whereU,V ∈ O, R = Diag(σ ),K =
Diag(λ), σ1 > σ2 > · · · > σn, λ1 > λ2 > · · · > λn. Then for any X withXXT � I
we have

n∑
i=1

min{0, λiσn−i+1} 6 tr AXBXT 6
n∑
i=1

max{0, λiσi}.

The upper bound is attained forX = V Diag(ε)UT, whereεi = 1 if σiλi > 0,
andεi = 0 otherwise. The lower bound is attained forX = V Diag(ε)JUT, where
εi = 1 if σiλn+1−i 6 0, andεi = 0 otherwise, J = (en, en−1, . . . , e1) andei is the
ith element unit vector.

Proof. From Theorem 1 we have
n∑
i=1

σiλ
′
n−i+1 6 tr AXBXT 6

n∑
i=1

σiλ
′
i , (7)

whereλ′1 > λ′2 > · · · > λ′n are the eigenvalues ofXBXT. In addition, the result of
Lemma 3 (usingγ1 6 1, γn > 0) implies that for anyi andj,

σiλ
′
j 6

{
σiλj if σiλj > 0,
0 otherwise,

σiλ
′
j >

{
σiλj if σiλj < 0,
0 otherwise.

(8)

The bounds of the theorem follow by combining (7) and (8). Attainment of
the bounds may be verified by direct substitution of the indicated solutions into
trAXBXT. �

For a scalarξ , let ξ− := min{0, ξ}. From attainment of the lower bound in The-
orem 4, we haveµT =∑n

i=1[λiσn+1−i ]−. To establish a strong duality result for
the trust-region type relaxation, we will next prove that this same value is attained
by the solution of a Lagrangian dual program. Note that sinceXXT andXTX have
the same eigenvalues, the conditionXXT � I is equivalent toXTX � I . Explicitly
using both sets of constraints, as in [3], we obtain the trust-region type relaxation

QAPT µT =min tr AXBXT,

s.t. XXT � I, XTX � I.
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Next we apply Lagrangian relaxation to QAPT, using matricesS � 0 andT � 0
to relax the constraintsXXT � I andXTX � I , respectively. This results in the dual
problem

DQAPT µT > µDT :=max −tr S − tr T

s.t. (B ⊗ A)+ (I ⊗ S)+ (T ⊗ I) � 0,

S � 0, T � 0.

To prove thatµT = µDT we will use the following simple result.

Lemma 5. Letλ ∈ <n, λ1 6 λ2 6 · · · 6 λn. For σ ∈ <n consider the problem

minzπ :=
n∑
i=1

[
λiσπ(i)

]−
,

whereπ(·) is a permutation of{1, . . . , n}. Then the permutation that minimizeszπ
satisfiesσπ(1) > σπ(2) > · · ·σπ(n).

Proof. Assume thatσi < σi+1 for somei. We will show that interchangingσi and
σi+1 cannot increase the value of

∑n
i=1[λiσi]−. The lemma then follows, since if

π̄(·) is a minimizing permutation we can go from̄π(·) to π(·) with σπ(1) > σπ(2) >
· · · > σπ(n) by a sequence of pairwise interchanges.

Assume without loss of generality thatσ1 < σ2. Our goal is to show thatv′ 6 v,
where

v := [λ1σ1]− + [λ2σ2]−, v′ := [λ1σ2]− + [λ2σ1]−.
We will demonstrate this via a case analysis, depending on the signs ofλ1, λ2, σ1,

andσ2. For convenience we number the cases as indicated in the following table.
06 σ1 6 σ2 σ1 6 σ2 < 0 σ1 < 06 σ2

06 λ1 6 λ2 Case 1 Case 2′ Case 3′
λ1 6 λ2 < 0 Case 2 Case 1′ Case 4′
λ1 < 06 λ2 Case 3 Case 4 Case 1′′

Case1/1′/1′′: In each of these casesv = 0, sov′ 6 0⇒ v′ 6 v.
Case2/2′: In these cases we need to show thatλ1σ2+ λ2σ1 6 λ1σ1 + λ2σ2,

which is equivalent to(λ2 − λ1)(σ2 − σ1) > 0, and this holds by assumption.
Case3/3′: In Case 3 we need to show thatλ1σ2 6 λ1σ1, which is equivalent to

λ1(σ2− σ1) 6 0, and this holds by assumption. Case 3′ is similar.
Case4/4′: In Case 4 we need to show thatλ2σ1 6 λ2σ2, which is equivalent to

λ2(σ2− σ1) > 0, and this holds by assumption. Case 4′ is similar. �

Theorem 6. Strong duality holds for QAPT and DQAPT, i.e., µT = µDT and both
primal and dual values are attained.
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Proof. LetA = VRV T, B = UKUT, whereV,U ∈ O, K = Diag(λ),R = Diag(σ ).
Then for anySandT,

(B ⊗A)+ (I ⊗ S)+ (T ⊗ I)=(U ⊗ V ) [(K⊗ R)+ (I ⊗ S̄)
+(T̄ ⊗ I)] (UT ⊗ V T),

whereS̄ = V TSV, T̄ = UTT U . SinceU ⊗ V is non-singular, trS = tr S̄ and trT =
tr T̄ , the dual problem DQAPT is equivalent to

µDT = max −tr S − tr T ,

s.t. (K⊗ R)+ (I ⊗ S)+ (T ⊗ I) � 0, (9)

S � 0, T � 0.

However, sinceK andR are diagonal matrices, (9) is equivalent to the ordinary
linear program:

LD max −eTs − eTt,

s.t. λiσj + sj + ti > 0, i, j = 1, . . . , n,

s > 0, t > 0.

But LD is the dual of the linear “semi-assignment" problem:

LP min
∑
i,j

λiσjxij ,

s.t.
n∑
j=1

xij 6 1, i = 1, . . . , n,

n∑
i=1

xij 6 1, j = 1, . . . , n,

xij > 0, i, j = 1, . . . , n.

Then LP can be interpreted as the problem of finding a permutationπ(·) of {1, . . . , n}
so that

∑n
i=1[λiσπ(i)]− is minimized. Assume without loss of generality thatλ1 6

λ2 6 . . . 6 λn, andσ1 > σ2 > . . . > σn. From Lemma 5 the optimal permutation is
thenπ(i) = i, i = 1, . . . , n, and from Theorem 4 the solution valueµDT is exactly
µT. �

3.1. Necessary and sufficient optimality conditions

In [15] the following sufficient conditions are conjectured to also be necessary for
optimality in QAPT
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XXT � I,
S � 0, tr S(XXT − I) = 0,
AXB + SX = 0,
tr(AhBhT + ShhT) > 0 if XhT + hXT is nsd onN(XXT − I).

(10)

These conditions are similar to the standard second-order optimality conditions,
and are in the spirit of results for the ordinary trust-region problem, i.e., they contain
strengthened second-order conditions where the Hessian of the Lagrangian is pos-
itive semidefinite on a larger set than the standard tangent cone. (For the standard
trust-region problem, the Hessian of the Lagrangian is positive semidefinite on the
whole space.)

Using the characterization of optimality in Theorem 4, we can show that for some
special cases the conditions (10) are in fact necessary for optimality in QAPT.

Theorem 7. Assume thatB = I . Then the conditions(10)are necessary for X to be
an optimal solution of QAPT.

Proof. Let X be an optimal solution of QAPT. Then [15, Theorem 3.1] there exists
S satisfying the first three conditions in (10). From the second condition it follows
thatSXXT = S, and therefore, from the third,AXXT + S = 0. Assume that

A = V
R1 0 0

0 0 0
0 0 R3

V T, XXT = V
X11 XT

21 XT
31

X21 X22 XT
32

X31 X32 X33

V T,

whereV ∈ O,R1 ≺ 0 andR3 � 0 are diagonal matrices, and the blocksX11 andX33
have the same dimensions asR1 andR3, respectively. Then trAXBXT = tr(R1X11+
R3X33) > tr R1, sinceX33 � 0 andX11 � I . Moreover from Theorem 4 the optimal
solution value isµT = tr R1. It follows that we must haveX33= 0, andX11= I .
The facts thatXXT � 0 andX33 = 0 together then imply thatX13= 0 andX23= 0,
whileXXT � I andX11 = I together imply thatX21 = 0. Therefore

S = −AXXT = V
−R1 0 0

0 0 0
0 0 0

V T,

andA+ S � 0. Then tr(AhhT + ShhT) > 0 for anymatrixh, so the conditions (10)
hold. �

In addition, if A andB are positive semidefinite then the conjectured conditions
(10) are necessary; this follows from [15, Theorem 3.1], trAhBhT + ShhT = vec(h)T

[(B ⊗ A)+ (I ⊗ S)]vec(h) for any h, and(B ⊗ A)+ (I ⊗ S) � 0 if A � 0, B �
0, S � 0. However, as we next demonstrate, in the general case the conditions (10)
may fail to hold.
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Example 8. Let

A =
(

2 0
0 1

)
, B =

(−3 0
0 −1

)
.

Using Theorem 4 one can show thatX = I is the global optimum of QAPT, and
thereforeN(XXT − I) = <2. The stationarity conditionAXB + SX = 0 implies
that

S =
(

6 0
0 1

)
, and h =

(−1 0
−1 −1

)
satisfiesXhT + hXT � 0. However, trAhBhT + ShhT = −2.

Thus conditions (10) may fail to hold at an optimal solutionX of QAPT. We
will now use the strong duality result of Theorem 6, and the fact that DQAPT is a
semidefinite program, to derive valid necessary and sufficient conditions for optim-
ality in QAPT. These optimality conditions are exactly like the standard trust-region
optimality conditions, i.e., they contain strengthened second-order conditions where
the Hessian of the Lagrangian is positive semidefinite on the whole space.

For ann2× n2 matrixY, we useY[ij ] to denote then× nmatrix which is thei, j

block ofY, i, j = 1, . . . , n. Define linear operators bdiag(·) and odiag(·),<n2×n2 →
<n×n, by

bdiag(Y ) :=
n∑
i=1

Y[ii],

odiag(Y )ij := tr Y[ij ], i, j = 1, . . . , n.

It is then easy to show that bdiag(·) and odiag(·) are the adjoints of the operators
S → I ⊗ S, andT → T ⊗ I , respectively. (These adjoint operators arise in the de-
rivation of an SDP relaxation for QAP in [36].) It follows that the semidefinite dual
of the program DQAPT is the following semidefinite relaxation of QAPT:

QAPTSDP min tr(B ⊗ A)Y,
s.t. bdiag(Y ) � I,

odiag(Y ) � I,
Y � 0.

Note that the objective of QAPT is trAXBXT = vec(X)T(B ⊗A)vec(X) = tr
(B ⊗ A)vec(X)vec(X)T. The problem QAPTSDP can be derived directly from
QAPT by relaxing vec(X)vec(X)T to ann2× n2 matrix Y � 0. For Y = vec(X)
vec(X)T, note thatY[ij ] = XiXjT, whereXi is the ith column ofX. It follows that
for such aY,

bdiag(Y ) = XXT, odiag(Y ) = XTX, (11)
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so the constraints of QAPTSDP are natural extensions of the conditionsXTX � I
andXXT � I to an arbitraryY � 0.

Note that DQAPT and QAPTSDP both have interior solutions; for QAPTSDP we
may takeY = αI , for sufficiently smallα > 0, while for DQAPT we may takeS =
T = αI , for sufficiently largeα. It follows that strong duality must hold between
these programs [2]. Therefore any optimal solutionsYandS, T satisfy the following
optimality conditions:

Y � 0, bdiag(Y ) � I, odiag(Y ) � I,
S � 0, tr S(I − bdiag(Y )) = 0,

T � 0, tr T (I − odiag(Y )) = 0, (12)

(B ⊗ A)+ (I ⊗ S)+ (T ⊗ I) � 0,

tr Y ((B ⊗ A)+ (I ⊗ S)+ (T ⊗ I)) = 0.

Theorem 9. The matrix X is optimal for QAPT if and only if there exist symmetric
matricesS � 0, T � 0 such that

XXT � I, primal feasibility,

tr S(I −XXT) = 0, complementary slackness,

tr T (I −XTX) = 0, complementary slackness,

AXB + SX + XT = 0, stationarity,

(B ⊗A)+ (I ⊗ S)+ (T ⊗ I) � 0, strengthened second order.

Proof. From Theorem 6 there is anX with XXT � I so thatY = vec(X)vec(X)T

is optimal in QAPTSDP. For such aY, note that

Y ((B ⊗ A)+ (I ⊗ S)+ (T ⊗ I))
= vec(X)vec(X)T ((B ⊗A)+ (I ⊗ S)+ (T ⊗ I))
= vec(X) (((B ⊗ A)+ (I ⊗ S)+ (T ⊗ I)) vec(X)) T

= vec(X)vec(AXB + SX + XT )T. (13)

But Y � 0, (B ⊗ A)+ (I ⊗ S)+ (T ⊗ I) � 0, and trY ((B ⊗A)+ (I ⊗ S)+
(T ⊗ I)) = 0 together imply thatY ((B ⊗ A)+ (I ⊗ S)+ (T ⊗ I)) = 0, so (13)
implies thatAXB + SX +XT = 0. The remaining conditions follow from (12) and
(11). �

Notice that the conditions of Theorem 9 are equivalent to the usual second-order
necessary conditions for optimality, except for the fact that the Hessian of the Lag-
rangian is positive semidefinite everywhere rather than on just the tangent space at
the optimum.
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It is interesting to examine the optimality conditions of Theorem 9 in the case
of Example 8, which provided a counterexample to the conjectured conditions (10).
Since in this caseA andB are diagonal it is easy to see thatS andT may also be
taken to be diagonal matricesS = Diag(s), T = Diag(t). The conditionsAXB +
SX +XT = 0 then become

−6+ s1+ t1 = 0, t1 = 6− s1 > 0,
−1+ s2+ t2 = 0, t2 = 1− s2 > 0,

(14)

implying 06 s1 6 6,06 s2 6 1. SinceXTX = XXT = I , to satisfy the conditions
of Theorem 9 it remains only to satisfy the strengthened second-order condition,
which can be written

−6+ s1+ t1 > 0,
−3+ s2+ t1 > 0,
−2+ s1+ t2 > 0,
−1+ s2+ t2 > 0.

(15)

The first and fourth inequalities of (15) are satisfied with equality, from (15). Using
(14) to eliminatet1 andt2, the second and third inequalities of (15) can be written

−3+ s2 + (6− s1) = 3+ s2 − s1 > 0,

−2+ s1 + (1− s2) = −1+ s1− s2 > 0.

Thus we require(s1, s2) having

06 s1 6 6, 06 s2 6 1, 16 s1− s2 6 3,

which is a feasible system of constraints; for examples1 = 4, s2 = 1, t1 = 2, t2 = 0
provideSandT such that the conditions of Theorem 9 are satisfied.
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