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Abstract
Iterative methods for optimization can be classified into two categories:

line search methods and trust region methods. In this paper we give a re-
view on trust region algorithms for nonlinear optimization. Trust region
methods are robust, and can be applied to ill-conditioned problems. A
model trust region algorithm is presented to demonstrate the trust region
approaches. Various trust region subproblems and their properties are
presented. Convergence properties of trust region algorithms are given.
Techniques such as backtracking, non-monotone and second order correc-
tion are also briefly discussed.

1 Introduction
Nonlinear optimization problems have the form

minx∈<n f(x) (1.1)
s. t. ci(x) = 0, i = 1, 2, . . . , me; (1.2)

ci(x) ≥ 0, i = me + 1, . . . , m, (1.3)

where f(x) and ci(x) (i = 1, . . . , m) are real functions defined in <n, at least one
of these functions is nonlinear, and m ≥ me are two non-negative integers. If
m = me = 0, problem (1.1) is an unconstrained optimization problem, otherwise
it is a constrained problem.

Numerical methods for nonlinear optimization problems are iterative. At the
k−th iteration, a current approximate solution xk is available. A new point xk+1

is computed by certain techniques, and this process is repeated until a point can
be accepted as a solution.

The classical methods for optimization are line search algorithms. Such an
algorithm obtains a search direction in each iteration, and searches along this
direction to obtain a better point. The search direction is a descent direction,
normally computed by solving a subproblem that approximates the original op-
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timization problem near the current iterate. Therefore, unless a stationary point
is reached, there always exist better points along the search direction.

Trust region algorithms are a class of relatively new algorithms. The trust re-
gion approach is strongly associated with approximation. Assume that we have a
current guess of the solution of the optimization problem, an approximate model
can be constructed near the current point. A solution of the approximate model
can be taken as the next iterate point. In fact, most line search algorithms also
solve approximate models to obtain search directions. However, in a trust region
algorithm, the approximate model is only “trusted” in a region near the current
iterate. This seems reasonable, because for general nonlinear functions local ap-
proximate models (such as linear approximation and quadratic approximation)
can only fit the original function locally. The region that the approximate model
is trusted is called the trust region. A trust region is normally a neighbourhood
centered at the current iterate. The trust region is adjusted from iteration to it-
eration. Roughly speaking, if the computations indicate the approximate model
fit the original problem well, the trust region can be enlarged. Otherwise when
the approximate model works not good enough (for example, a solution of the
approximate model turns out to be a “bad” point), the trust region should be
reduced.

The key contents of a trust region algorithm are how to compute the trust
region trial step and how to decide whether a trial step should be accepted. An
iteration of a trust region algorithm has the following form. A trust region is
available at the beginning. Then an approximate model is constructed, and it is
solved within the trust region, giving a solution sk which is called the trial step.
A merit function is chosen, which is used for updating the next trust region and
for choosing the new iterate point.

Because of the boundedness of the trust region, trust region algorithms can
use non-convex approximate models. This is one of the advantages of trust region
algorithms comparing with line search algorithms. Trust region algorithms are
reliable and robust, they can be applied to ill-conditioned problems, and they
have very strong convergence properties.

Trust region methods can be traced back to the classical Levenberg-Marquardt
method for nonlinear equations F (x) = 0, which chooses the step as follows

dk = −(J(xk)J(xk)T + λkI)−1J(xk)F (xk) (1.4)

where J(x) is the Jacobi matrix of F (x) and λk ≥ 0 is a parameter which is
updated from iteration to iteration(see, [16]). The original idea of Levenberg-
Marquardt method is to overcome the ill condition of J(xk) by introducing the
parameter λk, or in other words, to prevent ||dk||2 being too large. It is easy to
see that dk given by (1.4) is also a solution of the following problem

min
d∈<n

||F (xk) + J(xk)T d||22 (1.5)

s. t. ||d||2 ≤ ∆k . (1.6)
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Because of the constraint (1.6), we can view the classical Levenberg-Marquardt
method as a trust region algorithm. Indeed, a trust region algorithm for non-
linear least squares is similar to the Levenberg-Marquardt method, except that
the bound ∆k is updated from iteration to iteration instead of the parameter
λk. Modern versions of Levenberg-Marquardt method are in fact trust region
algorithms.

Pioneer works on trust region methods were done by Powell[21] and [22].
Most researches on trust region algorithms are done in the last twenty years. Now
trust region algorithms have attracted attention from more and more researchers.
An early review paper was given by More[17]. Recently, Conn, Gould and Toint
have finished an enormous monograph on trust region methods[5].

2 A Model Trust Region Algorithm
In order to demonstrate how a trust region algorithm can be constructed, in the
following we given a model algorithm for unconstrained optimization problem
(1.1). At the k−th iteration, the trial step is computed by solving

min
d∈<n

gT
k d +

1
2
dT Bkd = φk(d) (2.1)

s. t. ||d||2 ≤ ∆k, (2.2)

where gk = ∇f(xk) is the gradient at the current iterate xk, Bk is an n × n
symmetric matrix which approximates the Hessian of f(x) and ∆k > 0 is a trust
region radius. Let sk be a solution of (2.1)-(2.2). The predicted reduction Predk

is defined by the reduction in the approximate model, φk(0)−φk(sk). Unless xk

is a stationary point and Bk is positive semi-definite, Predk is always positive.
The actual reduction Aredk = f(xk)−f(xk+sk) is the reduction in the objective
function. The ratio between the actual reduction and the predicted reduction
rk = Aredk/Predk plays an very important role in the algorithm. This ratio is
used to decide whether the trial step is acceptable and to adjust the new trust
region radius.

Now we can give a model trust region algorithm for unconstrained optimiza-
tion as follows.
Algorithm 2.1 (Trust Region Algorithm for Unconstrained Optimization)

Step 1 Given x1 ∈ <n, ∆1 > 0, ε ≥ 0, B1 ∈ <n×nsymmetric;
0 < τ3 < τ4 < 1 < τ1, 0 ≤ τ0 ≤ τ2 < 1, τ2 > 0, k := 1.

Step 2 If ||gk||2 ≤ ε then stop; Solve (2.1)-(2.2) giving sk.
Step 3 Compute rk = Aredk/Predk;

xk+1 =
{

xk if rk ≤ τ0 ,
xk + sk otherwise ; (2.3)

Choose ∆k+1 that satisfies

∆k+1 ∈
{

[τ3||sk||2, τ4∆k] if rk < τ2,
[∆k, τ1∆k] otherwise; (2.4)
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Step 4 Update Bk+1; k := k + 1; go to Step 2.

The constants τi (i=0,..,4) can be chosen by users. Typical values are τ0 =
0, τ1 = 2, τ2 = τ3 = 0.25, τ4 = 0.5. For other choices of those constants, please
see [13],[24], [17], etc.. The parameter τ0 is usually zero (e.g. [13], [23]) or a small
positive constant (e.g. [10] and [28]). Intuitively it seems reasonable to choose
τ0 = 0 so that any computed “good” point would not be thrown away([37]).
But, the global convergence result for the case τ0 = 0 is only

lim inf
k→∞

||gk||2 = 0. (2.5)

A stronger result limk→∞ ||gk||2 = 0 can be achieved if τ0 > 0. Recently an
example is given by [39] to show that Algorithm 2.1 with τ0 = 0 may cycle near
three points where two of these three points are non-stationary points. However,
the weak convergence result (2.5) is sufficient in practical applications. In other
words, given a positive tolerance ε, (2.5) is also sufficient to guarantee a finite
termination of Algorithm 2.1. This ensures that the algorithm will stop at a
point xk satisfying the optimal criterion ||gk||2 ≤ ε.

3 Trust Region Subproblems
Trust region subproblems are one of the essential parts of trust region algorithms.
Since each iteration of a trust region algorithm requires to solve (exactly or
inexactly) a trust region subproblem, finding efficient solver for trust region
subproblems is very important.

First, we consider subproblem (2.1)-(2.2) which has been studied by many
authors. The following lemma is well known (for example, see [14] and [18]):

Lemma 3.1 A vector d∗ ∈ <n is a solution of the problem

min
d∈<n

gT d +
1
2
dT Bd = φ(d) (3.1)

s. t. ||d||2 ≤ ∆ (3.2)

where g ∈ <n, B ∈ <n×n is a symmetric matrix, and ∆ > 0, if and and only if
there exists λ∗ ≥ 0 such that

(B + λ∗I)d∗ = −g (3.3)

and that B + λ∗I is positive semi-definite, ||d∗||2 ≤ ∆ and λ∗(∆− ||d∗||2) = 0.

To solve (3.1)-(3.2) is equivalent to find the unique λ∗ which satisfies the
conditions in the above theorem. Unless in the hard case([18]), λ∗ is the root of

ψ(λ) = ||(B + λI)−1g||−1
2 −∆−1 = 0, (3.4)

which can be computed by applying Newton’s method. In the hard case, we
have that λ∗ = −σn(B), where σn(B) is the least eigenvalue of B. If σn(B) = 0,
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we can easily see that −B+g is a solution of problem (3.1)-(3.2). Hence the
“real” hard case is that λ∗ = −σn(B) > 0. For any λ > −σn(B), the Newton
step for (3.4) will normally make the matrix B + λ+I have negative eigenvalues.
Therefore, we need to have some safeguard techniques for updating the lower
bound for −σn(B). Another way is to apply Newton’s method to the equation
ψ̃(µ) = ψ( 1

µ ) = 0.
If B is positive definite, trust region subproblem (3.1)-(3.2) can be written

as a problem that minimizes linear least squares subject to the ball constraint.
Thus, it can also be solved by a method by Golub and von Matt[15]. Their
method reformulates the problem into a quadrature problem and applies the
Gauss quadrature technique.

Recently, semi-definite program is used for subproblem (3.1)-(3.2). Let t∗ =
−λ∗ − gT s∗. Then, we have that

(
t∗ gT

g B

)(
1
s∗

)
= λ∗

(
1
s∗

)
. (3.5)

This shows that λ∗ is an eigenvalue of the matrix

D(t∗) =
(

t∗ gT

g B

)
. (3.6)

Thus, (3.1)-(3.2) can be transformed into an parametric eigenvalue problem.
Indeed, it can be shown that (3.1)-(3.2) is equivalent to

max
t

(∆2 + 1)σn+1(D(t))− t (3.7)

s. t. σn+1(D(t)) ≤ 0, (3.8)

where σn+1(D(t)) is the least eigenvalue of D(t). Problem (3.7)-(3.8) can be
solved by semi-definite program techniques. For details please see Rendl and
Wolkowicz[26].

Instead of identifying the exact Lagrange multiplier λ∗, there are algorithms
directly computing an approximation to the solution d∗ of (3.1)-(3.2). There are
mainly three different approaches: the dog-leg method, the 2-dimensional search
method and the truncated conjugate gradient method.

The dog-leg method is due to Powell([21], [22]). This method uses the New-
ton step if it is in the trust region. Otherwise, it finds the Cauchy point which
minimizes the objective function along the steepest descent direction. If the
Cauchy point is outside the trust region, the truncated Cauchy step is taken as
an approximate solution. When the Cauchy point is inside the trust region, the
approximate solution is chosen as the intersection of the trust region boundary
and the straight line joining the Cauchy point and the Newton step. The piece-
wise linear curve passing through the origin, the Cauchy point and the Newton
step looks like a dog-leg. Therefore the method is called the dog-leg method.
This technique is generalized to a double dog-leg method by Dennis and Mei[8].
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The 2-dimensional search method is to minimize the objective function in
the subspace spanned by the steepest direction and the Newton step within the
trust region. The 2-dimensional search method was first suggested by Shultz,
Schnabel and Byrd[27] and it can be regarded as an indefinite dog-leg method.
On the other hand, the dog-leg step is the truncated conjugate gradient solution
of the reduced equation Bd = −g in the 2-dimensional subspace.

The truncated conjugate gradient method is simply to apply the standard
conjugate gradient to the minimization of φ(d). This method is identical as the
standard conjugate method as long as the iterates are inside the trust region. If
the conjugate gradient method terminates at an point within the trust region,
this point is a global minimizer of the objective function. Otherwise, at some
iteration, either the new iterate is outside the trust region or a negative curvature
direction is computed. In either case, we can get a truncated step which is on the
trust region boundary. This method was proposed by Toint[30] and Steihaug[29].
One good property of this method is that the solution computed has a sufficient
reduction property which was proved by Yuan[40].

Theorem 3.2 Assume that φ is strictly convex. Let s∗ be the exact solution of
trust region subproblem, and s∗CG be the truncated CG solution, then

φ(0)− φ(s∗CG)
φ(0)− φ(s∗)

≥ 1
2
. (3.9)

It is not possible to prove a similar result for the two-dimensional sub-
space search method. Examples are given by Byrd, Schnable and Shultz[2] and
Yuan[40] showing that the ratio [φ(0)− φ(s∗2D)]/[φ(0)− φ(s∗)] can be arbitrary
small, where s∗2D is the 2-dimensional subspace solution.

Now, we consider trust region subproblems for constrained optimization. For
simplicity we only consider equality constrained problems. Most trust region
subproblems can be viewed as some kinds of modification of the SQP subproblem:

min
d∈<n

gT
k d +

1
2
dT Bkd = φk(d) (3.10)

s. t. ck + AT
k d = 0, (3.11)

where gk = ∇f(xk), ck = c(xk) = (c1(xk), ..., cm(xk))T , Ak = ∇c(xk)T and Bk

is an approximate Hessian of the Lagrange function.
Trust region subproblems for constrained optimization can be classified into

three groups. The first is the null space method, which decomposes the trial step
into a null space step and a range space step, namely sk = vk + hk. The range
space step vk and the null space step hk are also called as the vertical step and
the horizontal step respectively. For some constant η ∈ (0, 1), the vertical step
vk minimizes ‖ck + AT

k d‖22 subject to ‖d‖2 ≤ η∆k. The null space step hk can
be computed by solving

min gT
k d +

1
2
dT Bkd = φk(d) (3.12)
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s. t. AT
k d = 0, ‖d‖2 ≤

√
1− η2∆k. (3.13)

The above two subproblems are to minimize quadratic functions subject to ball
constraints. This approach is closely related to the SQP-type subproblem:

min
d∈<n

gT
k d +

1
2
dT Bkd = φk(d) (3.14)

s. t. θkc(xk) + dT∇c(xk) = 0, ‖d‖2 ≤ ∆k, (3.15)

where θk ∈ (0, 1] is a parameter (see Byrd, Schnabel and Shultz [1], Vardi [32],
and Omojokun[20]).

Another trust region subproblem can be derived by exact penalty functions.
The first such subproblem is the SL1QP problem given by Fletcher[11]:

min
d∈<n

gT
k d +

1
2
dT Bkd + σk||ck + AT

k d||1 = Φk(d) (3.16)

s. t. ||d||∞ ≤ ∆k. (3.17)

This subproblem can be written as a linear program. A similar subproblem based
on the L∞ exact penalty function is given by Yuan[38]. Trust region subproblems
based on exact penalty functions are closely related to subproblems of trust
region algorithms for nonlinear equations[10]. Algorithms that use (3.16)-(3.17)
are also similar to trust region algorithms for nonsmooth optimization[13].

The third kind of trust region subproblems for constrained optimization is
the CDT problem given by Celis, Dennis and Tapia[4]. This subproblem replaces
the linearized constraints (3.11) by a single quadratic constraint.

min
d∈<n

gT
k d +

1
2
dT Bkd = φk(d) (3.18)

s. t. ||ck + AT
k d||2 ≤ ξk, ||d||2 ≤ ∆k, (3.19)

where ξk ≥ 0 is a parameter. Trust region algorithms that use (3.18)-(3.19) are
given by Celis, Dennis and Tapia [4] and Powell and Yuan [25]. The optimal
conditions for subproblem (3.18)-(3.19) are given by Yuan[35].

Theorem 3.3 Assume that ξk > min||d||2≤∆k
||ck +AT

k d||2. Let d∗k is a solution
of (3.18)-(3.19), then there exist Lagrange multipliers λ∗k ≥ 0 and µ∗k ≥ 0 such
that

(Bk + λ∗kI + µ∗kAkAT
k )d∗ = −(gk + µ∗kAkck) (3.20)

and the complementarity conditions λ∗k[∆k − ||d∗k||2] = 0 and µ∗k[ξk − ||AT
k d∗k +

ck||2] = 0 are satisfied. Furthermore, if the multipliers λ∗k, µ∗k are unique, the
matrix H(λ∗k, µ∗k) = Bk + λ∗kI + µ∗kAkAT

k has at most one negative eigenvalue.

If Bk is positive definite, subproblem (3.18)-(3.19) can be solved by dual meth-
ods(see [36] and [41]). For general B, the CDT problem is complex and it can
also be solved by identifying the two multipliers λ∗ and µ∗([3]).
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4 Convergence Analysis
To demonstrate how to prove the convergence of a trust region algorithm, we
give the outlines of a proof for the convergence of Algorithm 2.1.

The lower bound for the predicted reduction plays an important role in the
convergence analysis. The following lemma was proved by Powell[21]:

Lemma 4.1 Let S be any subspace in <n, and let dS be any solution of the
subproblem mind∈S,||d||2≤∆ φ(d). If g ∈ S, then we have that

φ(0)− φ(dS) ≥ 1
2
||g||2 min[∆, ||g||2/||B||2]. (4.1)

Inequality (4.1) shows that the predicted reduction can not be very small
unless either ||g||2∆ or ||g||22/||B||2 is very small. This property is crucial for
proving convergence of trust region algorithms. Indeed, global convergence can
be showed as long as the trial step sk satisfies

φk(o)− φk(sk) ≥ τ min{∆k, ||gk||2/||Bk||2} , (4.2)

where τ is some positive constant. A trial step sk satisfying inequality (4.2) is
called a “sufficient reduction” step. Trial steps obtained by the dog-leg method,
the 2-dimensional search method, and the truncated CG method all satisfy (4.2).
The first convergence result for Algorithm 2.1 was given by [21] under the as-
sumption that the matrices Bk are bounded. Later it was showed that the
boundedness can be relaxed to ||Bk||2 ≤ β1(1 +

∑k
i=1 ||sk||2) and

||Bk||2 ≤ β1k, ∀ k, (4.3)

where β1 is any positive constant([23], [24]). To prove the global convergence of
Algorithm 2.1 under condition (4.3), the following lemmas are needed.

Lemma 4.2 Assume that f(x) is differentiable and ∇f(x) is uniformly Lips-
chitz continuous. Let xk be generated by Algorithm 2.1 with sk satisfying (4.2)
for all k. If there exists a positive constant δ such that ||gk||2 ≥ δ > 0, for all k,
then there exists a constant η > 0 such that ∆k ≥ η/Mk holds for all k, where
Mk is defined by Mk = 1 + max1≤i≤k ||Bk||2.
Lemma 4.3 Let {∆k} and {Mk} be two sequences such that ∆k ≥ ν/Mk ≥
0 for all k, where ν is a positive constant. Let J be a subset of {1, 2, 3, ...}.
Assume that ∆k+1 ≤ τ1∆k(∀k ∈ J), ∆k+1 ≤ τ4∆k(∀k 6∈ J), Mk+1 ≥ Mk(∀k)
and

∑
k∈J 1/Mk < ∞, where τ1 > 1, τ4 < 1 are positive constants. Then∑∞

k=1 1/Mk < ∞.

The following result can be proved by using the above two lemmas.

Theorem 4.4 Assume that f(x) is differentiable and ∇f(x) is uniformly Lip-
schitz continuous. Let xk be generated by Algorithm 2.1 with sk satisfies (4.2).
If Mk defined by Mk = 1+max1≤i≤k ||Bk||2 satisfy that

∑∞
k=1

1
Mk

= ∞, if ε = 0
is chosen in Algorithm 2.1, and if {f(xk)} is bounded below, then it follows that
lim infk→∞ ||gk||2 = 0.
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The condition
∑

1/Mk = ∞ allows the matrices Bk to be updated by some
known quasi-Newton formulae such as Powell’s symmetric Broyden (BSP) for-
mula (see, [21], [23]) or by the BFGS method. The above theorem is strengthened
by [27] with some additional conditions:

Theorem 4.5 Under the conditions of Theorem 4.4, if τ0 > 0 and {||Bk||2} is
bounded, then limk→∞ ||gk||2 = 0.

Similar to unconstrained optimization, convergence of trust region algorithms
for constrained optimization depends on some lower bound condition of the pre-
dicted reduction, which normally has the form:

predk ≥ δεk min[∆k, εk/||Bk||] (4.4)

where δ is some positive constant, and εk is the violation of the KT conditions.
Local convergence of trust region algorithms can be studied by comparing

the trust region trial step to the Newton step or the SQP step. In order to
have locally superlinear convergence, the trust region subproblem should be a
good approximation of the SQP subproblem. Normally techniques of Dennis and
Moré[9] are used to show that the trial step is a superlinear step. It also needs
to show the trust region constraint is inactive and the trial step is acceptable for
all large k.

5 Combining with other techniques
Trust region can be combined with other techniques in constructing algorithms.
Nocedal and Yuan[19] observed that the trial step of trust region algorithms for
unconstrained optimization is also a descent direction. So when the trial step
is unacceptable, it is still possible to carry out a line search along the direction
of the trial step. Nocedal and Yuan[19] presents an algorithm which combines
backtracking and trust region.

Non-monotone techniques can also be used within a trust region algorithm.
In such an algorithm, it is possible for f(xk+1) ≥ f(xk) at some iterations. The
first nonmonotone trust region algorithm was given by Deng, Xiao and Zhou[7],
where the condition for accepting a trial step is either rk > τ0 or

f(xk + sk) < max
0≤j≤m(k)

{f(xk−j} − γ∆k‖gk‖. (5.1)

γ > 0 is a constant and m(k) = min{k − 1,M}, M being a constant integer.
The main idea is to require a sufficient reduction after M iterations instead of
in every iteration. Another nonmonotone algorithm was given by Toint[31].

Second order correction step is a technique to overcome the so called the
Marotos effect, which also exists in line search algorithms. In trust region al-
gorithms for constrained optimization or nonsmooth optimization, it is possible
for the trust region constraint to be active at every iteration. Consequently the
rate of convergence is only linear even though good second models are used[33].
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One way to maintain superlinear convergence is the second order correction tech-
nique given by Fletcher[12]. The second order correction step can be computed
by solving another subproblem that is a slight modification of the standard trust
region subproblem. For example, if the trial step sk is computed by the SL1QP
subproblem, the second order step ŝk can be taken as the solution of the following
problem

min gT
k (sk + d) +

1
2
(sk + d)T Bk(sk + d) + σk||c(xk + sk) + AT

k d||1 (5.2)

subject to ‖sk +d‖∞ ≤ ∆k. When xk is close to a stationary point where second
order sufficient conditions are satisfied, it can be shown that ||ŝk|| = O(||sk||2).
One nice property of the second order correction step is that it reduces the merit
function and maintains the superlinear convergence property[34].

Trust region algorithms can also be combined with interior point techniques.
One approach is to use barrier penalty functions to prevent the iterates moving
out of the feasible region. Another is use a scaled trust region constraint ‖Dkd‖ ≤
∆k such that the trust region is a subset of the feasible region. For an example
of interior trust region algorithms, please see Coleman and Li[6]
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16. J.J. Moré, “The Levenberg-Marquardt algorithm: implementation and
theory”, in: G.A. Watson, ed., Lecture Notes in Mathematics 630: Nu-
merical Analysis (Springer-Verlag, Berlin, 1978) pp. 105-116.
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