SIAM J NUMER. ANAL. © 1987 Society for Industrial and Applied Matkematics
Val 24 No.5 October 1987 015

GLOBAL CONVERGENCE OF A CLASS OF
QUASI-NEWTON METHODS
ON CONVEX PROBLEMS*

RICHARD H. BYRD'!, JORGE NOCEDAL! AND YA-XIANG YUANS

Abstract. We study the global convergence properties of the restricted Broyden class of quasi-
Newton methods, when applied to a convex objective function We assume that the line search
satisfles a standard sufficient decrease condition and that the initial Hessian approximation is any
positive definite matrix We show global and superlinear convergence for this class of methods, except
for DFP. This generalizes Powell’s well-known result for the BFGS method. The analysis gives us
insight into the properties of these algorithms; in particular it shows that DFP lacks a very desirable
self-correcting property possessed by BFGS.
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1. Introduction. The convergence of quasi-Newton methods for unconstrained
optimization has been the subject of much analysis. However there are some important
gaps in what is understood about the behavior of these methods as implemented in
practice. Powell (1976) has proved a global convergence result, for the BFGS method
using the line search commonly found in computer implementations. This result
however has not been extended to the DFP method, nor to any other algorithm in
Broyden’s class. In this paper we show how to extend Powell’s result to the restricted
Broyden class, excluding DFP, using the same line search strategy and the same
assumptions on the objective function. The analysis gives us considerable insight into
the properties of guasi-Newton methods.

We will be considering the behavior of quasi-Newton methods from Broyden's
class for the unconstrained optimization problem

(11) min f(z).
This class consists of iterations of the form

(1.2} Trt1 = Tk + Apdy,
where

(1.3) dx = —By gk

Here gy is the gradient of f at zz, the scalar Ay is a steplength parameter, and the
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Hessian approximation By is updated by the formula of Broyden (1967)

Bisgst By yryf
TB T
8 Dr Sk Y Sk

(1.4) Byy1 = B — + qb(sg Bisy vy

where ¢ is 3 scalai,

Ye = Ok+1 = Gk
8k = Tkyl — Tk,

and

0k={ Ve Bisi ]
Yise  Si Bese

This class contains the two most popular update formulas: for ¢ = 0 we obtain the
BFGS method and for ¢ = 1 the DFP method; see for example Dennis and Moré
(1977) Although Dixon (1972) shows that with exact line searches all members of
this class produce the same iterates, their performance varies markedly when inexact
lines searches are performed. We will assume that the steplength parameter ) is
chosen by an inexact line search satisfying the two conditions

(1.5) fzr+ Mede) < flzr) + 0Angi iy
(16) g(zk + Aidi ) di > Bot dy,

where0<a < fanda< <1

There are several impoitant results about this class of methods which do not
requite an exact line search. Let z, denote a minimizer of f and assume that the
Hessian matrix of f at z., G., is positive definite. Dennis and Moré (1977} proved
that if Ag is always taken equal to 1 in the DFP and BFGS methods, and if

oo
(17 3 lzets — 2| < oo,
=

then {zx} converges to z. Q-superlinearly. They also show that this sum will be
finite if ||z1 — .|| and || By — G.|} are sufficiently small, and that the stepsize X, = 1
will eventually satisfy the two line search conditions (1.5) and {1.6). These results
have been extended to the restricted Broyden class (¢ € {0, 1]) by Stachurski (1981),
Ritter (1979) and Griewank and Toint (1982) Removing the assumption about the
initial Hessian approximation has been difficult. Stoer (1975), analyzing the restricted
Broyden class with an inexact line search, proved that for any positive definite starting
matrix B; there exists ¢ > 0, dependent on the condition number of B;, such that
if [jz3 — 2.]| < ¢, then linear convergence occurs Using these arguments, superlinear
convergence can be shown if steplengths of 1 are used when possible. The weakness
of this result iz the dependence of ¢ on the initial Hessian approximation.

An analysis that corresponds closely to quasi-Newton methods as they are im-
plemented is that of Powell (1976). He showed that if the objective function f is
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convex, then for the sequence {z;} generated by the BFGS method, with line search
satisfying (1.5) and (1 6), we have lim inf {gx} = 0 If in addition the sequence {zy}
converges to a point z,, with G{z.) positive definite, then the convergence rate is
R-linear, which implies (1 7). If the line search procedure always tries Ay = 1 in
trying to satisfy {1.5) and (1 6), then the results of Dennis and Moré (1974) apply
and superlinear convergence is obtained. It is not known if the assumption that f
is convex can be weakened. Werner (1978) extended Powell’s result to several other
practical line search strategies under the assumption of uniform convexity of f. Ritter
(1981) proved a global convergence result, related to Powell’s, for the restricted Bioy-
den class However his result is true only under certain restiictive assumptions on the
behavior of the line search, and it is not known if these assumptions are satisfied by
any practieal line search.

In this paper we show that if the objective function is convex then the sequence
generated by algorithm (1.2)-(1.4) with ¢ € [0, 1) satisfies liminf{g,} = 0. Moreover,
if we assume that the objective function is uniformly convex the iterates converge
R-linearly to the solution. Then if we always try A = 1 the results of Dennis and
Moré (1974) and of Gilewank and Toeint (1982) imply superlinear convergence. Thus
we extend Powell’s result to the restricted Broyden class, except for DFP. Note that
this result implies the following local convergence theorem for a general function: if
an iterate falls sufficiently close to a strong minimizer, and if the iterates remain in
the neighborhood of this minimizer, then the sequence converges superlinearly Our
results also apply if ¢ takes on a different value on [0,1) at each step, as long as
it 1emains bounded away from 1. It has come to our attention that Xie Yuan-Fu
(1986) has independently proven & result similar to the one of §3, but with additional
restrictions on the choice of ¢. The convergence analysis given in this paper shows
that BFGS has a property that enables it to rapidly correct large eigenvalues, and
also shows that this property is diminished as ¢ is increased in [0,1)

The paper is organized as follows First we assume that the objective function is
uniformly convex, and in §3 and §4 prove global and superlinear convergence This
analysis gives us much insight into the properties of the Broyden class of algorithms,
and is one of the main contributions of this paper. In §5 we assume only that f is
convex and bounded below, and show that conveigence to the solution is obtained
Finally, in §6 we discuss the behavior of the DFP method, again under the assumption
of a uniformly convex objective function

2. Preliminaries. Throughout the paper we will assume that f(z) is twice con-
tinuously differentiable and denote its matrix of second derivatives by G(z}. We will
use || || to denote the Euclidean norm o1 its induced matrix norm The starting point
for the algorithm (1 2)-(1 3) is z1, and we define the level set D = {x € R™ : f(z) <
f(z1)} In this section, as well as in §3,4 and 6, we will assume that f is uniformly
convex on D, which implies that f has a unique minimizer z, in D

ASSUMPTION 2.1 The level set D is convexr and there exist positive constants
m and M such that

(21) mll2]|* < 27 G(z)z < M||2||?

forallze R™ and allz € D,
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An immediate consequence of Assumption 2 1 is that, if we define
. 1
(22) G= / Glay + ri)dr,
0

then we have

(23) ¥ = Gsg,

which implies

(24) mllself* < g3 s < M]|se]|?.

We will denote by 8 the angle between the steepest descent direction —gx and the
displacement. s;. Hence

(2.5) — a8 8% = |lgr |l 5% ]| cos O

-4 H #

As a consequence of the line search conditions (1.5) and (1.6), the angle 8 will
determine important properties about the length of the displacement and the decrease
in the function per step. Many of these conditions have been proved elsewhere; see
for example Wolfe (1969), (1971), Stoer (1975), Powell (1976) or Warth and Werner
(1977) For clarity and completeness we will derive and discuss these conditions here,
using arguments similar to those of Powell. We note that all the results of this section
apply to any quasi-Newton method with positive definite Hessian approximation,
regardless of how By is updated.
From (1.6} it follows that

(2.6) Yk 8k = g1k — gk sk 2 —(1 — B)gf sx,
and hence from (2.4) and {2.5) we obtain
(2.7) lIsxll 2 eallgell cos b,

where ¢; = (1 - 8)/M.

We can use this lower bound on the displacement to bound the amount of objective
function decrease per step. From the first line search condition (1.5) and (2.7) we have
that

a'ggsic
2.2
~acer |jgr||* cos® Oy

fe+1— fx

IA A

(2 8)

Thus, if cosf is not too small, we see from (2.7) and (2.8) that the displacement
is proportional to the gradient, and the objective function decrease to the squared

gradient.
Since [ is convex on D,
fe=fo < g (ze— )
(2.9) < llgslllee — 2.l
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Let G be defined by
_ 1
&= / G (2% + (20 — 7)) dr,
Jo
so that gx = G(zx — 2.). Then, since G satisfies (2.1), we have
mllze — 2. < (2 — 20)7 1
and thus
ok — all < g
k = gkl

Using (2.9} we have

(2 10) lgxli® > m(fi = f)
Substituting (2 10) into (2.8) gives

Frt1 ~ e S [1 = amey cos® O](fie — fu).-
It then follows that, if there is a subsequence of the iterates for which the cosfy are
bounded away from zero, then the sequence {z;} converges to z,. In the next section
we will establish the existence of such a subsequence.

The line search condition (1 .5) also gives a useful upper bound on the length of
the displacement By Taylor’s theorem

Tetr = fo = gl sk + ‘;‘3£G(Ek)3k
for some £ between zg4+1 and 7. Therefore by (15)
21 agfon > of ox + S sLGlEn)sx,
and using (2 1)
(1 cgi | Ise ]| cos B¢ > Sl

Thus

skl < callgeli cos B,
where ¢g = 2(1 — «)/m. We have thus proved the following result

LEMMA 2 1. Consider the iteration (1.2), where Ax satisfies (15) and (1.6). If
Assumption 2.1 halds, then

(2 12) exllgellcos bk < llsell < callgil cost
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and
(2 13) fra1 = fo <1 — comeq cos® Ox)(fx — fu),
where ¢1 = {1 — B}/M and co = 2(1 — a)/m
Similar arguments give us bounds on the steplength Ag. Since Aggr = —Bysy,

equations {2 3) and (2 86) imply

(1 - ,B)SgBkSk

—(1- ﬁ))\ksg [#3

< Aks,{@"sk.
Therefore
s% Bysg
214 A 2 (1 - "8

Likewise (2.11) im

1
25561(5:.:)31.: < —(1—05)9;‘:%

T
_ _ 3kBk3k:
| = (1 oz)——-—-—/\.rc .
Thus
si Bysy
215 e €201 — o) =8
219 e AT

Using (2.1) in (2 14) and (2.15), and recalling the definitions of ¢; and ¢g, we obtain
the following.
LEMMA 2.2  The steplength parameter Ay satisfies

S{Bksk
(BRI

S:{Bksk

£ < <
Ve =

(2 16)

Relations (2.14) and (2.15) show that the steplength parameter Mg is a measure
of the ratio between our estimate s Bysy of the second derivative of the objective
function along s; and its true value If By is a good approximation Ay = 1 should
satisfy (1.5) and (1.6). In the next section we will use the quantities cos#fy and A to
measure how bad the matrix By is, along the current step.

3. Global convergence for uniformly convex problems. One canshow that
if By is positive definite, ¢ € [0, 1] and y¥ s > 0 then the new mattix Byy1 generated
by Broyden’s formula (1 4) is also positive definite We will assume that these three
conditions hold at every step and thus cos@y > 0 for all k. Qur convergence analysis
borrows heavily from the techniques developed by Powell (1976}

Since the progress per step is dependent on cos# we are interested in bounding
cos# from below Note that

liskll  s% Bis

3]. COSG =
B1 ¢ TBesill o5l
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The factor s Bysg/)lsx])? will be bounded below in mean by using the determinant
of By. For the other term we note that ||Besg]/lsell < ||Brll <Tt (Bg), where
Tr (Bx) denotes the trace of Bg. We thus begin by estimating, from (1.4), the trace
of the Hessian approximation:

Brsg|? xll?
Browl” |l llk + ¢(sT Bsy)[|ux |2

|
Ty {B =Tt (By) —
(Be) =T (By) = a2t =+

Since
HkaB — “yk”2 _9 yi{Bksk ”Bkskllz
(lsx)® " (yFse)(sTBisk)  (skT Bpsy)?’
we have
2 2.7
D (Bes) =T (B + Lel® ol o B
Yk Sk Yi Sk Vi Sk
Bysi|® i Brsi
(3.2) — 1_¢ ” -9 k ‘
( ) S;{Bksk y;‘:sk

We will now bound all the terms in (3.2).
LEMMA 3.1. The following four inequalities hold.

(33) llel”

< M,
Yisk
ST Bksk )'k
(34) £ < ,
vise ~— 1-8
(3.5) IBesell® o A
sTBrsk T copcos?ly’

T <
Y Sk me; cos By

Proof. The proof of the first inequality is due to Goldfarb and is given in Powell

(1972} as follows Let us define z;, = E%sk, where —G'-% 6% = G. Then from (2.1) and
(23)

y;f Ve _ Sgﬁzsk

yise  sTGsy
_ ZE _G'_zk
T

M.

IA
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Inequality {3 4) follows from (2 6)

sk Besk 8% Bisk
vise —  (1—B)(~gfsk)
= 1-3
Using (2.12)

| Beseli® 23|l gwl®

Theon ~ Neloelllgelicosts
_Awllgedl
~||8k)| cos B
> 2k

£ cos? 8

Finally, from (2.4}, (2.3) and (2.7)

|vE Brsel o Melluellllgell
vgse  — msl?
MM |l gell
mey ||gxl cos By 0

Substituting these bounds in (3.2} we have,

oMM (1—¢)Ax | 20M A

Biy1) < '
(37 Tr (Bg41) ST (Bi) + M + 1—8  cqcos?8;  meicosty

These bounds, together with (3.2), give us some insight into the properties of the
Broyden class of updates. Note that the second and third terms on the right-hand
side of (3.2) produce an average shifi to the right in the eipenvalues of By 4, in the
sense that they increase the trace. The fourth term on the right-hand side of (3.2) is
crucial to the convergence analysis given below. It produces a shift to the left in the
eigenvalues which is proportional to Mg/ cos? §x The last term on the right-hand side
of (3.2) can produce a shift in either direction, which is proportional to A/ cosfy; in
(3 7) we have substituted an upper bound for this term.

We can now reason as follows If the algorithm produces steps for which cos?
is not very small, it will advance towards the solution, but some of the eigenvalues
of Br4i could become large. On the other hand, if steps with very small cos§ are
produced little progress may be achieved, but a self correcting mechanism takes place.
To see this note that from (2 16) and the fact that || Besk||/||sx|| < TY (Bk), (3 1) gives

Ak

‘ Z —
(3.8) cosfly > e Tr (By)

Thus cosf can be small only if Ay is small or Tr (By) is large Let us consider the
following two cases, assuming ¢ < 1. (1) Suppose that the steplengths A, are bounded
away from zero Then if cosf; becomes arbitrarily small, the fourth term in (3.7)
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will dominate all the others, thus reducing the trace. Therefore, we see from (3.8)
that the tendency of cosf; to go to zero is self limiting due to the shift to the left
in the trace equation, This argument is made rigorous in Theorem 3.1. (2) Suppose
that the steplengths Ay tend to zero. From Lemma 2.2 we see that this implies that
3T Bise/|lskli* becomes very small. This situation is due to very small eigenvalues
of By and thus cannot be monitored by the trace. However, if Ay is near zerc this
indicates that the determinant is very small Fortunately, it turns out that all the
updates in the restricted Broyden class have a strong self correcting property with
respect to the determinant. We now derive this property and use it to show that, in
fact, Ay is bounded away from zerc in mean.

Since ¢(sf Bxsg) > 0 the last term in (1.4) increases the eigenvalues, and hence

BisksiBr  ykyf )
sTBrsk  yisk

det (Bk+.1) Z det (Bk -

It is not difficult to show (see for example Pearson (1969)) that

ByspsT Bi | yiyF ( Ui Sk
det | By — = det(B -1,
( g 37 Bis +'y{3k ct{By) 31 Brsk

and thus

7
Y Sk
39 det (B > det (Bg)—7——.

Note that when sf Bysy is small relative to y7 s = s Gsi the determinant increases,
reflecting the fact that the small curvature of our model is corrected, thus increasing
some eigenvalues.

LEMMA 3.2 If ¢ €[0,1], there is a constant ¢q > O such that for all k > 1
(3 10) ITx =

Proof. Using (2 .16) and (3.1)

M oo 1Besill
cos f fl sl

We can use this to bound the fifth term on the right side of (3.7), and since cos 8, < 1,
also the third term. Thus deleting the always negative fourth term of (3.7) we have

Ty (Bk+1) < Tr (Bk) + M 4+ (.:.l_;l_E + micl) ¢M62 “ﬁ::ﬁ'“
1 2
= M+ [1 + ('1-“_“-6 + ;nuc_l) ¢M62} Tr (Bg).

This inequality implies that there is a constant ez such that
(3.11) Ty (Bi1) < .
From (3.9) and {3.4)
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T
Yi 8k
> Bp)——"—
det (Bx41) > det (Bg) T Bron
1-—
> det (Bg) d
Ak
kg 3
> t (B
(3 12) > det ( 1)H X
j=1 ;
Using the geometric/arithmetic mean inequality we have
Tr (B "
det (Brs1) < [ (nk+1)] ,

and thus from (3.11) and (3.12)

k l—ﬁ
el

A

A

7=1

Thus there exists a constant ¢4 such that

k
H Ay 2 Cﬁ
§=1

for all k > 1. O

Now that we have bounded the steplengths below in mean we can use the trace
equation to prove global convergence for the restricted Broyden methods, except for
DFP. The basic idea of the proof is as follows. The algorithm cannot produce too
many steps with cos@ = 0 for otherwise the shift to the left in equation (3.7) would
give negative eigenvalues for the matrices By, which is not possible. We therefore
show in Theorem 3.1 that there is a subsequence of the iterates {z;} for which cosfy
is bounded away from zero. The convergence result then follows from (2.13).

Note that the crucial term responsible for the shift to the left, namely the fourth
term on the right-hand side of {3.7), is not present in the DFP method (¢ = 1). This
is quite significant, as we will discuss in §6.

THEQOREM 3.1. Let 2y be a starting point for which [ satisfies Assumption
21 Then for any positive definite By, Broyden’s class of algorithms, (1.2)-(1 4), with
¢ € 0,1} and line search satisfying (1.5)-(1.8), generates iterates which converge to
T

Proof Let us write (37) as

(3‘13) Ty (Bk+1) <Tr (Bk) + M + nk}\k;
where
14 o M (=0) M

T 1-8 cpcoslf | mey cos 8y,

We seek a contradiction: assume {cosfg} — 0 Then it is clear fiom (3.14) that
{n;} — —oo; thus there is an index Ko such that ; < —~2M/cy for all 7 > Kp. Now
using (3.13) and the fact that By, is positive definite we have, for all £ > Kg,
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k
0< Tr (Beq1) € Tr(Bro)+ME+1-Ko)+ Y njh
1=Kg
(3.15) < T (BK0)+M(k+1-—Ko)—— Z A

i=Hg

Applying the geometric/arithmetic mean inequality to (3 10) we have

K
Z Aj 2 key,
7=1

and hence
Kp—1
Z A > key — Z A
§=Ko
Substituting this into {3 15) we have
Ko=—1
2M 2M
0< Tt (BK0)+M(k+1—K0)——kC4+— Z A
therefore
opm Fo!
0 <Tr (Bx,) + M(1— k) - MKo+ = don
4
f=1

For sufficiently large & the right-hand side is negative, which is a contradiction There-
fore there is a subsequence for which cos 8y is bounded away from zero. Using (2 13)
we conclude that the iterates converge to the solution. 0

4. Superlinear Convergence. To analyze the rate of convergence of these al-
gorithms we must use a more precise measure than the trace of By. As is well known,
the Broyden class of methods is invariant under a linear change of variables. There-
fore in this section we will assume without loss of generality that G(z.) = I, as this
results when we make the change of variables from z to z. + G(z.)% (x — z,) (This is
equivalent to using the original variables and studying Tr (G:%BkG:_%) ) We begin
by combining the third and fifth terms on the right-hand side of (3 2).

LEMMA 4.1, For any 0 < ¢ < 1 there i3 a neighborhood N(z.} of z. such that
if Tpy1 and zg € N(z.) then

lyl|® s% Brsk 2y§Bksk < 2

41 ‘
(41 yFse yisk ysk ~ meycosly

Proof. Since G(z,) = I we have

it

[/01 Glz + fsk)d’f} Sk

Y

[/01 (G(zg + 78%) — I) df] 8k -+ 8
(4 2) = Eksk + 3.
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Since G is continuous, for N(z.) sufficiently small we have
(4.3) | Exll < €
From (4.2) and (4.3)

'yfyk - 8;{ (I + Ex)?sy
YR sk st (I + Ey)sk
£ 1+4¢

Using this with (4.2}, (4.3), (2.1) and (2.12) we have

Yi Yk 5% Brsk znyksk (Q_g__y_lc_ _ 2) 3% Brsk zstkBksk

yior yiLsk YE 8k YL Sk yF 8k vE Sk
B B
< (c1qEBese o lsclliBros]
yTg:. milgell2
'c " A-n
2k |lgx |
m|| sl
2eA g
mey cosfy’
sincee <1 0

We can now prove R-linear convergence.

LEMMA 4 2. Assume that ¢ € {0,1) Then there is a constant 0 < cg < 1 such
that

(4.4) fre1 — fo Seglfi— i)

holds for all sufficiently large k.

Proof. We know from Theorem 3.1 that the iterates converge to the solution.
Therefore by Lemma 4.1, for any 0 < ¢ < 1, substituting (3.3), (3 5) and (4.1) into
(3.2), for k sufficiently large, gives

2hp e Ak
0<T (B.Hl) S T (Be)+ M+ mcey o8 Oy (1-¢) &g cos? Oy,
(4.5) < Ty (Be)+ M+ i [Etﬁecosﬂk _ (1-— 915)] Ae.
c0s? O mey C2

We may take ¢ small enough that the term inside the square brackets in (4.5) is less
than —ec5, where cs is some positive constant. Thus from (4 .5), there is a constant
¢g > 0 such that

k
Al
0<Tr (Bk-q.]) <Tr (B},) + MEk+cg—c5 E gsg?-.’
j=1 7
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and hence

k
Aj
< r
(46) ; g, <

for some constant ¢;. Applying the geometric/arithmetic mean inequality to (4.6)
gives

k
(4.7) I =5 <<k

From Lemma 3.2

and hence
k ea\*
(4.8) H cos? 0; > (c—:)

By (2.13) the objective function decrease is given by

k

fis1 = fo < T] (1 — amey cos® 0;) [f1 - fu].

j=1

Using the geometric/arithmetic mean inequality twice we have

_ k
k
fir1—fe < %g(l — amey cos? 0;) | [f1 = fu]
k n*
< |1 - ame H cos® §; [f1 = F4
7=1

Then by (4 8)

(49) frir = Fo < Bl — ful,

.

To prove supetlinear convergence we will use the well-known results of Dennis and
Moré together with a result of Griewank and Toint. However to apply them it is

where
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necessary that the algorithm tries steplengths of 1 in the line search. We also require
that the Hessian matrix G be Hélder continuous at z., i.e that there exist posttive
constants p, L such that

(4.10) I1G(z) = Gzl < Lilz — 2. |7

for all z in a neighborhood of ..

THEOREM 4.1 Assume that the algorithm (1.2)-(1.4), with ¢ € [0,1), 15 imple-
mented so that Ay satisfies (1.5)-(1.6) and Mg =1 whenever this satisfies (1 5)-(1.6)
Then if Assumption 2.1 and (4.10) hold, end if By is any positive definite matriz, the
sequence {Ty} converges to z. Q-superlinearly.

Proof From (21)

) 1
frr1 — fu 2 omilzess — 2.,

which combined with (4.9) gives

Therefore, for p given by (4.10),

00 9 §
Sl -l < (Si-71)
k=0 k=0

< o0

In analyzing the restricted Broyden class, Griewank and Toint (1982) prove in their
Proposition 4 that, given (4.10), this summability implies

i (B = Gles)) sell _
) e Tl

This fact alone implies Q-linear convergence since cos d = si Bysy /|| Brsx||| sk, and
by (4.11) By converges to G(z.) along 5. However from Theorem 6 4 of Dennis and
Moré (1977) we conclude that the steplength Ax = 1 is admissible for all sufficiently
large k, and that the rate of convergence is superlinear. O

5. Relaxing the Uniform Convexity Assumption. In this section we show
that the global convergence result of §3 can be established under milder assumptions
on the objective function. We no longer relate the shifts in the eigenvalues to the angle
8, as was done in §3 However the result is of much interest, because it establishes
global convergence for very general convex functions. We do not extend the rates of
convergence results of §4 because these require the nonsingularity of G(z.), and thus
the uniform convexity of f in a neighborhood of z,

Let us replace Assumption 2.1 by the following assumption.

ASSUMPTION 5.1. The function f is twice continuously differentiable, convex
and bounded below. Moreover the Hessian matriz 18 bounded
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(5.1) le@)l < M

for all x in the level set D,
Let us define f, to be the infimum of f. From (1 5) we have that sf gx tends to
#ero, since

Z—Sggk = —Z)'kd;‘{gk
k=1 k=1
< 23 Uf) - Sl
k=1
< ~lf@)- 1)
(5.2) < 0.

Our approach is to compare the third and fifth terms of (3.2) with the fourth term.
To this end, let us define the number ¥, by the equation

|2

(5 3) ||yk| S%Bk&'k _ 2y;{Bk3k _ “Bksk”2
T T T T YET R )
Yi Sk Wi Sk Vi 8k 81 DSk

so that the trace equation (3 2) becomes

| _m lyll® || Bxsxll?

64 T (Bert) = (Be) + =~ (L= 6~ dud) s
The proof of the following theorem is based on showing that, if the algorithm fails,
then ¥ — 0, so that (5.4) becomes essentially the same as the trace equation for
BFGS. The argument makes use only of (2.6), (3.2) and (3.3), which do not require
uniform convexity of f. We conclude the proof by quoting some of the arguments
given is §3

THEOREM 5.1. If the algorithm (1 2)-(14), with ¢ € [0,1), and with line search
satisfying (1 5)-(1 6) s applied to a function that satisfies Assumption 5 1, and if 7,
is any starting point and B, i3 any positive definite matriz, then

(5.5) lim inf {|g|| = 0
k—oo

Proof. Let us assume that ||gx|| is bounded away from zero, say
(5.6) gwll = v >0,

in order to deduce a contiadiction Note that (5.2) and (5.5) imply that
5% 9

(57) i L LN
llg|?

as k — 0o. We will first show that ¢, — 00 To treat the first term of (5.3), we deduce
the following bound, using {2 8} and (3.3)
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2
Nyl sF Bese . || Brsell® (s¥ Bgsk)

T T T < M=
Ye Sk Yy Sk 8 Brsg Vi Sk|| Brsrl|
M (sggi)?
yi skllgell?

M (~sj gk) .
(1= B)llgel?

Condition (5.7) implies that this expression tends to zero as k — oo We now consider
the second term of (5.3). From (5.1), (3.3) and (2.6)

<

vk Beskl . 1Besll®  _ lluxllsi Bese
YT sk 8IBrsr  ~  wi sxl|Brskl]

VMs! Bisi
\/ i 9 | Breskl|
VM (=sf gi)

v ok lloxl

< \/Ei;—(-—skg;_
= Vi—Bliel

Once more (5.7) implies that this expression tends to zero. Hence 9x — 0 as k& — 00

The trace equation (5.4) is therefore essentially the same as for BFGS, since for
large k the term (1 — ¢ — ¥ € (0,1}, From (5.4) and (3 3) we see that the trace
grows at most linearly, and therefore (3.11) is satisfied for some constant ¢3. Then,
using the same arguments as those appearing after (3.11) in the proof of Lemma 3.2,
we conclude that (3.10) holds for some constant ¢q,

k
H)\?‘ ZCE

A

i=1
Now
—(1—¢— i) "’3’:;"“ = Akt
8
where
. ||Qk”2

Therefore the trace increase (5.4) can be bounded as in (3.13), with #j; substituted
for n,. From (5.7) we see that {sr} — -—oo Therefore there is a Kg such that
{3.15) holds. We now follow the same steps as in Theorem 3.1 to arrive at a
contradiction 0

Although this theorem proves only that liminfi_o |lgx]] = 0 we can say more
with slightly stronger assumptions. If we assume in addition to Assumption 5.1 that
the sequence of iterates remains in a bounded set, then there is a subsequence {z, }
such that {zx,} — 2., with g(z,) = 0. Therefore z, is a global minimizer and, since
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{f(zx)} converges, it converges to the infimum of f. Moreover, img_.00 ||gx|| = 0, as
the following argument shows. Suppose that there is a subsequence {z;,} such that

[lg(z:)|| > 6 > 0.

Passing to a thinner subsequence if necessary we may assume that {z;,} — y.. There-
fore, since {f(zx)} converges, y. is a global minimizer and thus g(y.) = 0. This
contradiction shows that limg .o [|gx|| = 0.

In order to prove superlinear convergence of the sequence {x;} one must assume
that G(z.) is nonsingular. This implies that f is uniformly convex in some neighbor-
heod of z., and since the sequence eventually is contained in that neighborhood the
analysis of §4 implies that convergence is supeirlinear.

6. The DFP method. We now give some consideration to the behavior of the
DFP method, which is not covered by the convergence theorems of the previous
sections. Throughout this section we will assume that f is uniformly convex, ie
that Assumption 2.1 holds. The main difficulty with the DFP method seems to be
with the possibility of unrestricted growth in the large eigenvalues of By That small
elgenvalues do not cause problems can be seen from Lemma 3.2 which, for all ¢ in
[0,1], gives a lower bound for H?=1 A;/ ¥ and thus by Lemma 2.2 on the geometric
mean of sf Bgsp/[|skl|?. Since cos > Ag/lez Tr {Bk)] (see {3.8)), an upper bound
on the eigenvalues would ensure convergence. Qur essential tool for bounding the
eigenvalues from above is the trace equation (3.2} which for ¢ < 1 provides a shift to
the left when cos 0y, is small. However, with the DFP method it is not clear that this
shift will occur. Indeed, when ¢ = 1 (3.2) becomes

2 T T
(61) Tt (Bepr) = Tr (By) + Wl (1 + 2k f’“s") - ¥ Drok
Y5 Sk Yk 5k Yi 9%

The second term on the right shifts the eigenvalues to the right, but there
is no term guaranteed to shift them to the left The last term is bounded by
2XM[[mey cos 8] (see (3.6)) and so, in addition to being of uncertain sign, in
the case of small cosine it is smaller in magnitude than the guaranteed shift of
(1 — ¢}Ak/[cacos® 8] provided by other members of the restricted Broyden class.
Looking at this uncertain term close to the solution, and if we scale so that G(z.) = I,
we have

-2

yi Bxsk 3 s¥ Bysy, s{EkBksk]
yF s Y7 sk yr sk

where Fy is as in (4.2). Thus there is a texm providing a guaranteed shift to the
left proportional to Ag, but still a term of uncertain sign with magnitude at most
proportional to Ax/cosfy times the ertror in z Thus even close to the solution it is
not clear whether a shift to the left will occur, and even if it does occur we expect
progress to be slower than for methods with ¢ < 1.

In the case of a quadratic objective function the term containing Fj. does not occur
and we have a relatively small term guaranteed to give a shift to the left proportional
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to Ag. These observations seem to correspond to the recent study by Powell (1986) of
BFGS and DFP applied to a two dimensional quadratic, although he used steplengths
of one at all iterates. For this case he showed that the DFP will take much longes
than the BFGS both to improve an initial Hessian approximation with very large
eigenvalues, and to converge. He also showed that neither method has much difficulty
with eigenvalues of By that are too small, as is indicated by Lemma 3.2 in the general
case

We have made several numerical experiments on nonquadratic problems using
steplengths satisfying (1.5) and (1.6}, and the results confirm the predictions of the
analysis The following example is representative of what we have observed.

Consider the function

2
(6.2 fz) = %mjz +a (%zTAm) ,

5 1
A=(13)
This function satisfies Assumption 2 1 for any starting point z; We follow Powell

(1986) and choose x; = (cos 70°,sin 70°), and define the starting matrix so that it has
one very large eigenvalue:
1 0
By = ( 0 10t )

We used a Vax 11/780 and double precision arithmetic For the line search we used a
routine written by J Moré, which satisfies {1 5) and (1.6). The line search parameters
were chosen to be @ = 1074, 8= 0.9 The table below shows the number of iterations
needed to obtain ||zx| < 107%}z,| , for various values of ¢.

where n =2,0=01 and

BFGS DFP
¢ 0 2 4 6 B 9 .99 099 1
no. iter. 15 21 26 32 66 115 630 2233 4041

It is clear, in this example, that the performance of the algorithms deteriorates
dramatically as ¢ approaches 1. For the BFGS method the trace was reduced from
10? to 3 in 10 iterations; whereas after 3000 iterations of the DFP method the tiace
was still 1100 All methods used steplengths of one at all iterates, except for the
first few. We have made tests with other objective functions and found that it is not
uncommon to observe this type of result. We have also observed that when small
eigenvalues are given, neither method has difficulties.

7. Final remarks. It is important to consider whether the results of this paper
give us a useful local convergence result for nonconvex funections. Note that if z, is a
strong local minimizer, then there is a neighborhood N(z.), contained in a connected
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component of the level set of f, in which (2.1) holds. Let us now suppose that an
iterate xy falls in N{z.) and that the line search forces the rest of the sequence to
stay within this neighborhood. Then our results imply that the iterates converge to
z. superlinearly However there is no guarantee that the line search will prevent the
sequence from leaving this connected component of the level set, and thus our results
may not be applicable. Of course, if z, is a strict global minimizer, convergence would
be guaranteed

We have not been able to either prove global convergence for DFP or to exhibit
a counterexample. It is known that global convergence for convex functions can be
shown if the line searches are exact; see Powell (1971),(1972). We are interested,
however, in a practical line search, such as one based on (15) and (1.6)

Nevertheless, we have seen in this paper that the DFP method can be much less
efficient than the BFGS method, and that the reason for this is that it lacks the
self-correcting property given by the fourth term on the right-hand side of equation
(3.2) Finally we should note that the results of this paper also apply if ¢ takes on a

diffarent valia an [0.1) af ovary gton g lono as it ramaing haunded awavy fram 1
VLLECL AL PRI Wil [uyd ) U LYTLy Cully Go aULLE oo Lu LTI wuialiou YOy lilFldl i

Acknowledgements. We would like to thank Jorge Moré and Michael Powell for
their many valuable comments and suggestions.

REFERENCES

C G. BROYDEN (1967), Quasi Newton methods and their application to function minimization, Math.
Comp ., 21, pp 368-381

J.E DENNIS AND ] J MORE (1974}, A characterization of superlinear convergence and its apphcation fo
quas- Newton methods, Math, Comp., 28, pp. 549-360.

J.E DENNIS AND ] J MORE (1977), Quasi-Newton methods, motivation and theory, SIAM Rev , 19,
pp. 46-89

L C W DIXON {1972), Varieble metric algorithms: Necessary and suffictent conditions for identical behavior
on nongquedratic functions, J Optim. Theory Appl, 10, pp 34-40

A GRIEWANK ANDPH L. TOINT (1982), Local convergence analysis of partitioned quasi-Newton updates,
Numer. Math ., 39, pp 420-448

J. D. PEARSON (1969), Vartable metric methods of minimization, Comput. J. 12, pp 171-178.

M J D. POWELL (1971), On the convergence of the variable metric algorihm, J Inst. Math. Appl, 7,
pp 21-36.

(1972), Some praperties of the variable metric algorithm, in Numerical Methods for Nonlinear

Optimization, F.A. Lootsma, ed , Academic Press, New York. ’

{1976), Some global convergence properties of a variable meiric algorithm for minimization without

exact line segrches, in Nonlinear Programming, SIAM-AMS Proceedings, Vol IX, R.W. Cottle

and CE Lemke, eds , Society for Industriat and Applied Mathematics, Philadelphia.

{1986), How bad are the BFGS and DFP methods when the objective function is quadratic?, Math
Programming, 34, pp 34-47

K RIITER (1979), Local end superlinear convergence of a class of variable metric methods, Computing, 23,
PP 287-297.

(1981), Global and superlinear convergence of a class of variable metric methods, Math. Programming
Stud , vol 14, pp 178-205

A STACHURSKI (1981), Superlinear convergence of Broyden's class of variable metric methods, Math Pro-
gramming Stud ., 20, pp. 196-212.

] STOER {1975), On the convergence rate of tmperfect minimization algorithms in Broyden’s beta-class, Math
Programming Stud, 9, pp 313-335




1180 RICHARD H. BYRD, JORGE NOCEDAL AND YA-XIANG YUAN

W WARIH AND J. WERNER (1977), Effiziente Schrittweitenfunktionen bei unrestringierten Optimierungsauf
gaben, Computing, 19, 1, pp.59-72.

] WERNER {1978), Uber die globale konvergenz von Variable-Metric Verfahren mit nichtezakter Schrithweit
enbestimmung, Numer Math , 31, pp 321-334.

P WOLFE (1969), Convergence conditions for ascent methods, SIAM Rev., 11, pp. 226-235.

(1971), Convergence conditions for ascent methods. II: Some corrections, SIAM Rev 13, pp.
185-188

Y ¥ XIE (1988), The global convergence of a set of variable metric formulas without ezact line searches,
manuscript, Department of Operations Research, Institute of Applied Mathematics, Academia
Sinica, Beijing, China.




