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Abstract: A trust region algorithm for unconstrained large scale optimization
is constructed by using a subspace technique. The new method can be viewed as
an improvement on the limited memory quasi-Newton method with trust regions.
Due to the special structures of the subspace trust region subproblems, the method
can be applied to very large scale problems. Convergence properties of the method
are analyzed. Numerical results for some typical large scale examples are reported
and it shows that the new algorithm is efficient.
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1 Introduction

Consider the following unconstrained optimization problem:

i S@) .
where n is large and analytic expressions for the object f and its gradient g are
available.

Large scale nonlinear optimization problems are very important in scientific
and engineering computation, and such problems are normally difficult to solve
because of the large number of variables, the limited memory storage, and a large
amount of computation at each iteration. Various approaches have been proposed,
such as combined CG-QN algorithm in [1], partitioned quasi-Newton method in [2]
and the limited memory BFGS(L-BFGS) in [3; 4], etc. . [4; 5] showed that limited
memory quasi-Newton methods are effective for solving large scale unconstrained
optimization problems.

The purpose of this paper is to present a new trust region method using subspace
technique for large scale unconstrained nonlinear optimization problems. It has
been shown that the trust region method has good convergence properties in [6]
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and [7]. However, when the number of variables is large, the solution of the
quadratic subproblem would be very cost. By analysis of the L-BFGS method, we
find out that the quadratic subproblem with a trust region could be constructed
in a subspace whose dimension is very small. Then the solution of the subproblem
would need only a little effort even if the problem is very large.

L-BFGS method is a variation of standard BFGS method. Let z; be the point
at the k-th iteration, g = Vf(zx) and V2 f(x}) be the gradient and Hessian of f
at the point x; respectively. Denote

Sk = Tk+1 — ks Yk = Gk+1 — Gk-

L-BFGS method choose a “basic matrix” vI and update it m times using the
BFGS formula to get the current inverse Hessian approximation Hy, by storing the
most recent m pairs (s;,v;), i = k —m,--- ,k — 1. Denote

S = [Sk—m; 73k—1]7 Y = [yk—m;" . ;yk—1]-

By Theorem 2.2 in [8], the search direction d at the k-th iteration in L-BFGS can
be represented as(where the subscript k is omitted for convenience)

d=—Hg
RT(D +~YTY)R' —R-T ST
=—{71'+[S “YY][ ( T ) 0 H YT]}Q
v (1.2)
Zs v
=-v9+I[S vY][z ]Z[—g S Y| oz |,
Yy 'Yzy
where

Zs R T D++Y'Y)R™' —-R°T STg

[ ]__[ i 0 HVYTQ]'

By formula (1.2), we could see that the search direction obtained by the L-BFGS
method belongs to the subspace expanded by [—g,S5,Y]. When some step in
the direction dj, is not satisfactory, the line-search algorithms choose a shorter
step length, and the information about the Hessian of f in the subspace is not
used. We can not say that the descent direction dj in (1.2) is the best one, and
we could expect to get better solution by searching in the subspace spanned by
[—g,S5,Y] with the trust region techniques. Our method is different from the
method proposed by [9], which searches in the whole space.

2 The Algorithm
In order to avoid numerical problems, define Ay as

| 8 Sk-m Sk—1 Yk-—m Yk-1

Ay = L S
llgkll” [Istc—emll” " llstc—all” [Yicmmll” 7 Iy1e-all

(2.1)

So Ak is a n X (2m + 1) matrix. Denote the subspace spanned by the columns of
Ak by L(Ak), and
Fy(z) = f(xx + Axz). (2.2)
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By Taylor’s series theorem,
1
FHQzf@g+mTMkk+§fA£v%@gAﬂ. (2.3)

Now the main problem is how to get an approximation to Al V2f(xx)Ay in the
subspace L(Ay) by the most recently computed m pairs (s;,y;),i = k—m,--- ,k—
1. We have two ways to do this by L-BFGS updating formula. The first way is to
get the approximation By, to the Hessian V2 f(zj) by formula (2.17) in [8]

SISy Ly 1 '[ wsSE
By = I — [vxSk Y] [ %LIIZT k —ll;k ] [ 7§1ka ) (2.4)
where
g — [S0y- - Sk—1] if k<m _ [Yo,-- - Yk—1] ifk<m
k [Sk—m,---,8k_1] otherwise ’ F [Yk—ms--->Yk—1] Otherwise
(2.5)
~T ~ . . . .
) 81— ifi> . 1,2,k ifE<m
(Lk)ig _{ 0 otherwise ° 7 _{ 1,...,m otherwise ’ (2.6)
- | s ifk<m - _ oy if k<m
8 _{ Sk—m+i Otherwise ’ Yi _{ Yk—m+i Otherwise (27
and
= Yy s, . { diag[sd yo, - .-, Sr_ yk—1] ifk<m 2.8)
lIskll?’ diag[sl_, Yk—m,--.,51_,Yk—1] otherwise )

Then we compute AfBrAyx and Algy as follows to form the subproblem in
formula (2.3).

In order to compute the inverse matrix in (2.4), we can compute the Cholesky
decomposition of v SF Sy, + Ly D} ' L¥ to obtain JiJf, where J; is a lower trian-
gular matrix, then we could get

STS, Ly 1" I 0
’YkLI'Z‘ * _Dkk :| = Mir |: " _D—l :| Mla (29)
where ) ) )
_| S Ik LDy
=[5 R,

Now compute A ByAy. First compute

Vi Sy

M2 = M1 |: YkT :| Ak. (210)
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Then by (2.4) we could obtain

Bk = AEBkAk = 'YAEAk — Mg [ Im —l())_l ] Mz, (211)

gr = Alg. (2.12)

The trust region subproblem is

1 _
min z) =glz + —z Byz
Pr(2) = 8x 2 k (2.13)
st ||z|| € Ag.

At each iteration, we need to compute only one row and one column to update
SESk, SEY), and V,'Y}, which are needed in (2.9), (2.10) and (2.11).

The second way is to compute the m pairs (3;,9;),i = k —m,--- ,k — 1 in the
subspace L(Ay) directly, which is expanded by the columns of the matrix Ay,
and Ay is defined in (2.1). Then we could compute the approximation By to the
Hessian in the subspace directly by the limited memory BFGS updating formula
(2.4). In the subspace L(Ay), the m pairs (5;,%;) are equal to z;, 1 — z; and
VF(zi11) — VF(z;) respectively, where

Ty + Axzi =x3,i=k—m,--- k-1, (2.14)
according to formula (2.2). Suppose k > m, by (2.14) we could get

Zk:[O,...,O]T,

m+1—i m
Ziei = [0,...,0, —|Isk—ill, -, —|lsx_1,0,...,0]F,
— T
Zx-m = [07 _”Sk*m“a CE) _”Sk*1”70; .. aO] ’

and the gradient §; of F(z)(defined in (2.2)) at point z; is Alg;, where i =
k,---,k—m. So we obtain

5; = Zit1 — Zi = ||sil|€itmt2-x,

- ~ T T T (2.15)
Ui = Gi+1 — Gi = Axgir1 — Apgi = Ayyi,
where k —m,--- ,i = k — 1, and ej is the j-th unit vector in R*™*1. By formula
(2.4), we obtain Bj which is an approximation to the Hessian V2F(0) in the

subspace L(Ay) as
— — — 71 —
5 o w1l WSESk Ly St
By, =yl =[Sy Yi] Zif _D, yka ; (2.16)
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where Sy, Ly and Dy, are obtained by substituting s;, y; with 5;, 7; respectively in
formula (2.5)—(2.8), & is the same as in (2.8), and we have

0 0 0

llsk—mll 0 0
0 llsk—mall 0

Sy = E : : . (2.17)
0 0 llsk—1ll
| O 0 0 |
It is easy to see that
SiYe=S,Y: Yi=A{Ywx SiSk=Diag([lsi—ml® -, lIsi-al®)

We can compute the inverse matrix by formula in (2.16) by (2.9), and get the
trust region subproblem (2.13), where By is a (2m + 1) x (2m + 1) matrix, z €
RZ™tl m < n.

Next problem is how to evaluate the approximation to the object f by the
subspace and the subspace trust region subproblem. We can do this in the same
way as in other trust region methods (see ([10; 11; 12]), and perhaps we have to
solve the subspace trust region subproblem several times to get a proper trust
region radius. We can also solve the problem min Fy(z) = f(xx + Akzk) in the
subspace by iterating the trust region method and solve the subproblem (2.13)
several times(about 2-5) to get a better local solution .

Algorithm 2.1. Subspace Trust Region Algorithm for Unconstrained
Optimization

Step 0 : Given xg € R",Ag >0, € >0, By = I,y >0, So =Yy =0,
0<nn<m<m<m<lec >c >c >cy >1. Compute
f(x0), go, Ao = [—”g—g”], Let k=0.

Step 1 : If||gkll2 < € then stop.

Step 2 : Solve the subproblem (2.13) to get zx and ¢(zx). Compute

§k = Akzk
_ f(ar) = fzk + 81) (2.18)
(—¢(zx))

Step 3 : Ifpr <71, let Ay + Ap/c1 (we could also use the interpolation and
backtracking techniques proposed by [10; 12] here) and go to step 2;
Otherwise, do next step.

Step 4 :  If pp > 74, let A, + c4Ap and solve the subproblem (2.13) again

to get Zy and pr. If pr > T2, set zZx = Zx and pr = pr; Otherwise



272 Part II

do not change zy and py. Let
S = §k = Akzk

Tk+1 = Tk + Sk

Agfes, if pr < T2 (2.19)
App1 =14 cly,  if pp > 73 and [|zk]| = Ak
Ay, otherwise

Step 5 : Compute ggr1 = Vf(Trs1), Y = gk+1 — gk Let k + k+ 1 and
update Ay in (2.1), update Sy, Y in (2.5) or Sk, Y in (2.17)
to obtain By, according to (2.11) or (2.16), gr according to (2.12),
then go to step 2.

In the above algorithm, the parameter could be chosen as 7 = 0.001, » =
0.2, 3 = 0.7, 74 = 0.9, and ¢; = 4,¢2 = ¢3 = ¢4 = 2. The parameter m should
be chosen between 3 and 8. We could also loop between step 2 and step 4 several
times(2-5) in order to solve the problem min F(z) = f(xx + Axz) by trust region
method in the subspace L(Ay) to get a better local solution. Similar ideas can be
found in [13; 14]. The details would be a little tedious, but they do not influence
the following convergence analysis.

3 Convergence
The convergence analysis is in the same way as in [15; 6; 7]. By the definition
of Ak in (2.1), we get ||Ax|lr = v/, where 71 = 2m + 1. So
Vi = [|Aklle > |Ak]l > [|Ax]le /v =1 (3-1)
where || || denotes the Euclidean norm.

Theorem 3.1. Let f : R* — R be convez, bounded below and twice continuous

differentiable. There exists a positive constant M > 0 such that the Hessian satisfy

IV2f(z)|| < M for all x in the level set {x : f(z) < f(z1)}. Then klim gr =0
—00

and the loops between step 2 and step 3 must be finite if € > 0.
Proof. By Theorem 4 in [15], let zx be the solution of (2.13), then

1, . . llgxl
—4(m) > || min (Ak, Bl (3.2)
2 [IBxl|
First let us prove the boundedness of ||By||. If By, is defined by (2.11), by (3.1)
1Bkl = [|AxBiAx|| < | Byl. (33)

Because By, is symmetric and positive definite, by ||V f(z)|| < M we have

1
Yk = Vf(@ry1) = Vf(zp) = /0 V2 f(zr + Osk)sy, d8 = Gysi,

T
Y Sk
(e

llys||? _ SiTGiSi

Te. T
Y; Si s; Gsi

< M for all 4 > 1,
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where Gy, = fol V2f(zr + 0s1) df is positive definite or positive semi-definite by
the convexity of f. So in the same way as [16] it follows that

+ Z ||yz

8
i=k—m Yi

— B>
|Bll < tr(Bg) = tr(yl) — Z TB(’)s
’L

i=k—m Si

[

(n+m)M, (3.5)

where B,(:) is the i-th updated matrix by BFGS formula from the basic matrix
YiI, v is defined in (2.8). By (3.3) and (3.5), we know that || By|| is bounded. If
we obtain By by (2.15)-(2.17), we have

A =s;, §Ji=Alyjfori=k—m,--- k-1,

(3.6)
I8ill = llsill, 57 9: = 9 5 = " si = 5] y-
Then by (3.1), (3.4) and (3.6)
_ T 5k . Yp Sk
Ye = T=2 T .2 = M,
15l llsll
50 _ yFAcALy: _  ll? &0
Wil - ¥ TN o WL < .
Y Si yi Si Y, Si
So in the same way, we know that || By|| is bounded by (3.5). Suppose
| Bell € My for all k> 1. (3.8)
By (2.1), we have
lgell = [ Axell > llgxll- (3.9)

If ||gk || is bounded away from 0, there exists a constant £; > 0, such that ||gx|| > €1
for all k£ > 1. By (3.2), (3.8) and (3.9), we get

|¢(zac)| = —(2zac) > %El min (Ak, 16[—1) (3.10)

Because f is bounded below, {f(zx)} decrease monotonically, there must exist a
f* such that f(xzp) — f*. By step 2-step 4 of the algorithm,

)~ Saxi) 2 ot 2 "5 min (B, 1)

So we get Ap — 0, and there exists a k; > 1, such that

[6(zm)] = —g(z) > S Aw for all k> 1, (3.11)
and
ok — 1] = flan) = flzr + Axzi) + Bx Zk + 323 Biczi
— (k)
_ | - fol(l - t)ZEAEV2f(Xk + tAka)Aka dt + %ZEBkZH (312)
|¢(2u)|
~ 2 ~
< l . (mM + My)||zx|| < mM+M2Ak 0.

£1 Ay €1
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Table 4.1 Numerical Results

Prob. | Dimension TRSub L-BFGS
1 500 19/57/36 37/47/47
1 5000 24/60/46 33/48/48
1 10000 27/67/53 33/48/48
2 1000 51/144/67 53/58/58
3 100 28/124/48 | 106/111/111
3 1000 30/109/48 —
3 5000 35/142/64 52/61/61
3 10000 39/137/70 52/61/61

So there exist ko > ki, such that p > 7 for all k& > ko. By step 4 of the
algorithm, there exists a A > 0 such that Ay, > A for all k > ky. This contradicts
with Ay = 0. So ||gk|| can not be bounded away from 0. Now in the same way as
[6] or [7], we could get kli)rgo gr = 0. (3.11) and (3.12) also tell us that the loops

between step 2 and step 3 must be finite if ||gg|| > & > 0. O

By the proof of Theorem 3.1, we know that there are many ways for choosing the
basis(i.e. the columns of Ay) of subspace which will not influence the convergence
result.

4 Numerical Results

We have test the new algorithm on some typical large scale problem on a micro-
computer which has an Intel-based 32bit CPU and the main frequency is 1.2GHz.
The method for constructing the subproblem is formula (2.11) and (2.12), and
the trust region radius is set to Apnax = 5 at each iteration and m is set to 6. In
our implementation, the algorithm loops between step 2 and step 4 twice in order
to get a better local solution, and it was counted as one iteration. We do not
use interpolation or backtracking techniques in this version of the new code. The
first problem is the “extended separable Rosenbrock function” with n=>500, 5000,
10000, where n is the number of variables. The second problem is the “trigono-
metric” function with n=1000. The 3rd problem is the “extended Powell singular
function with n=100, 1000, 5000, 10000. All these problems are listed in [17]. The
results are reported in the form:

number of iterations/number of function evaluations/number of gradient evaluations

and the results are compared with the L-BFGS method. In the Table 4.1,

TRSub is the new code. The result for L-BFGS in the first line is obtained by
executing the L-BFGS code which is downloaded from netlib on the microcomputer
with m=6. Other results for L-BFGS are extracted from [4] with m=>5. Comparing
with L-BFGS, we could see that the number of gradient evaluations is almost
the same, but the number of function evaluations is more. We think that the
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number of function evaluations can be decreased if trust region radius Ay is not
set to Amax at each iteration and interpolation or backtracking techniques are
used. When we implement L-BFGS code on the microcomputer for the “extended
separable Rosenbrock function” with n=5000, m=5, the line search method failed
with “INFO=4”, which means the step is at the lower bound STPMIN, which is
1.D-20 by default. These preliminary numerical results shows the new method
is promising, and we could expect better numerical stability compared with line
search limited memory methods. We will do some improvements on the code and
will report further numerical results in CUTE later.

5 Conclusions

A new subspace trust region algorithm for unconstrained optimization is con-
structed, which is based on the analysis of the searching direction in limited mem-
ory BFGS method. Just as proceeding from quasi-Newton methods with line
searching to trust region method, we proceed from limited memory quasi-Newton
methods with line searching to subspace trust region method. The size of the
subspace trust region subproblems is very small(about 6-16). We can solve these
subproblems very quickly and exactly, and the method can be applied to very large
scale problems. Convergence properties of the method are analyzed. Preliminary
numerical results show that the new algorithm is encouraging, and because of the
strong convergence properties of trust region method and the special structure of
the subspace trust region subproblem, we could expect to get better numerical
stability compared with other line searching limited memory methods . The main
problem in the new method is how to construct the subspace. There are many
other ways for choosing the basis of the subspace. This paper only present one. If
the basis of the subspace is not chosen properly, the method may converge very
slowly, although we can still prove its convergence in theory. There are also other
matrix updating formula can be chosen, such as the SR1 formula. Further studies
will show how to evaluate the effective of the subspace and better ways to update
the subspace.
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