
Gradient Methods for Large Scale Convex Quadratic Functions∗

Ya-xiang Yuan
State Key Laboratory of Scientific/Engineering Computing,

Institute of Computational Mathematics and Scientific/Engineering Computing,
Academy of Mathematics and Systems Science, Chinese Academy of Sciences,

Zhong Guan Cun Donglu 55, Beijing, 100190, P.R. China,
E-mail: yyx@lsec.cc.ac.cn

1 Introduction

In this chapter we consider the gradient methods for minimizing large scale convex quadratic
functions. Most inverse problems can be formulated as

Lx = z, (1.1)

where z is the given data or observations, and L is an mapping. x is the unknown that
needs to computed. After discretization and linearization, we will need to solve a set of linear
equations

Ax = b x ∈ <n, (1.2)

where b ∈ <n and A ∈ <n×n is a symmetric positive definite matrix. Many inverse prob-
lems can be formulated into (1.4) with a very large n and A is ill-conditioned (for example,
see[16, 17, 18, 19]). It is easy to see that linear system (1.2) is equivalent to the following
unconstrained optimization problem:

min
x∈Rn

f(x), (1.3)

with
f(x) =

1
2
xT Ax− bT x. (1.4)

The gradient method is one of the most simple methods for solving (1.3) where f(x) is
a continuously differentiable function in <n. Assume that g(x) = ∇f(x) can be obtained at
every x. Given an iterate point xk, the gradient method chooses the next iterate point xk+1

in the following form:
xk+1 = xk − αkgk, (1.5)

where gk = g(xk) is the gradient at xk and αk > 0 is a step-length. The gradient method has
the advantages of easy to program and suitable for large scale problems. Different step-lengths
αk give different gradient algorithms. If αk = α∗k where α∗k satisfies

f(xk − α∗kgk) = min
α>0

f(xk − αgk), (1.6)

∗this work is partially supported by Chinese NSF grant 10831006 and by CAS grant kjcx-yw-s7

1

the gradient method is the steepest descent method, which is also called the Cauchy’s method.
However, the steepest descent method, though it use the “best” direction and the “best” step-
length, turns out to be a very bad method as it normally converges very slowly, particularly
for ill-conditioned problems.

In this chapter, we discuss the gradient method for the special case when f(x) is a strictly
convex quadratic function (1.4) because this special problem appears in inverse problems very
often.

We denote the eigenvalues of A by λi(i = 1, 2, ..., n) and assume that

0 < λ1 ≤ λ2 ≤ · · · ≤ λn. (1.7)

The steepest descent method, which uses the exact line search step

α∗k =
gT
k gk

gT
k Agk

=
‖Axk − b‖2

2

(Axk − b)T A(Axk − b)
, (1.8)

turns out to converge very slowly when A is ill-conditioned in the sense that the ratio of
λ1/λn is very small.

In 1988, Barzilai and Borwein[1] gave two interesting choices for the step-length αk:

αBB1
k =

‖sk−1‖2
2

sT
k−1yk−1

, (1.9)

αBB2
k =

sT
k−1yk−1

‖yk−1‖2
2

, (1.10)

where
sk−1 = xk − xk−1 yk−1 = ∇f(xk)−∇f(xk−1). (1.11)

Barzilai and Borwein[1] establishes superlinearly convergence results for two dimensional
convex quadratic problems. Moreover, numerical results indicate that for convex quadratic
funtions f(x) the BB method performs much better than the steepest descent method. Barzi-
lai and Borwein’s work triggered many researches on the gradient method in the past two
decades. For example, see Dai[2], Dai and Fletcher[3], Dai and Liao[4], Dai et al.[5], Dai
and Yuan[6, 7], Dai and Zhang[8], Fletcher[9], Friedlander et al.[10], Nocedal et al.[11],
Raydan[12, 13], Raydan and Svaiter[14], Vrahatis et al.[15], Yuan[20, 21] and Zhou et. al.[22].

In this chapter we consider how the the BB method can be further improved. First we
generalize the global convergence result on the gradient method with retards, which enable
us to use a wider range of step-lengths for the gradient method. Then, we propose to use
short BB step-lengths. Numerical results on random generated problems indicate that short
BB step-lengths will give improvement over the standard BB step-length, particularly for
large-scale and ill-conditioned problems.

2 A Generalized Convergence Result

Barzilai and Borwein[1] proved the superlinearly convergence of their method for the case
having only two variables. Raydan[12] established the global convergence of the gradient
method with BB step-lengths for general strictly convex quadratic functions. The following
general global convergence result was established by Friedlander et. al.[10]:

2

Theorem 2.1. Let f(x) be given by (1.4) and A is positive definite. Let m be an positive
integer and qj ≥ 1(j = 1, 2, ..., m) be m positive numbers. Let {xk} be generated by the
gradient method (1.5) with the step-length αk given by

αk =
(xv(k) − x∗)A(ρ(k)−1)(xv(k) − x∗)

(xv(k) − x∗)Aρ(k)(xv(k) − x∗)
, (2.1)

where x∗ = −A−1g, ρ(k) ∈ {q1, q2, ..., qm} and v(k) ∈ {k, k − 1, ...,max{0, k − m}} for
k = 0, 1, 2, Then either xk = x∗ for some finite k or the sequence {xk} converges to x∗.

For a proof of the above theorem, please see [10]. We can easily generalize the above
theorem to the following more general form:

Theorem 2.2. Let f(x) be given by (1.4) and A is positive definite. Let m be a positive
integer and γ be a positive number. Let {xk} be generated by the gradient method (1.5) with
the step-length αk satisfying

αk ∈

 min

|ρ|≤γ,
max[0,k−m]≤j≤k

gjA
(ρ−1)gj

gjAρgj
, max

|ρ|≤γ,
max[0,k−m]≤j≤k

gjA
(ρ−1)gj

gjAρgj


 . (2.2)

Then either xk = x∗ for some finite k or the sequence {xk} converges to x∗.

Proof. Our proof is similar to that of Theorem 2.1 which is given in Friedlander et. al.[10].
First it is easy to see that (2.2) implies that

0 <
1
λn

≤ αk ≤ 1
λ1

(2.3)

holds for all k.
Let the orthogonal decomposition of A be as follows:

A = QΛQT , (2.4)

where Q = [q1, q2, ..., qn] is an orthogonal matrix and Λ = Diag[λ1, λ2, ..., λn].
For any given initial point x0, the gradient g0 = Ax0 + g can be expressed by

g0 =
n∑

i=1

β
(0)
i qi, (2.5)

where β
(0)
i ∈ <(i = 1, 2, ..., n). Let gk =

∑n
i=1 β

(k)
i qi for all k ≥ 0. It follows from (1.5), (1.4),

(2.4) and (2.5) that

β
(k+1)
i = (1− αkλi)β

(k)
i =

k∏

j=0

(1− αjλi)β
(0)
i . (2.6)

From (2.6), we have that

|β(k)
1 | = |(1− αk−1λ1)β

(k−1)
1 | ≤

∣∣∣∣
(

1− λ1

λn

)
β

(k−1)
1

∣∣∣∣ ≤ (1− λ1/λn)k|β(0)
1 | . (2.7)

3

The above inequality shows that
lim

k→∞
β

(k)
1 = 0 . (2.8)

We see that the theorem is true if we can prove that

lim
k→∞

β
(k)
i = 0 , (2.9)

for all i = 1, 2, ..., n. If this were not true, there exist a positive number δ̂ and an integer
l ∈ [1, n− 1] such that (2.9) holds for all i = 1, ..., l and

lim sup
k→∞

|β(k)
l+1| > δ̂ > 0 . (2.10)

For any given positive number δ, we have that

lim
|β(k)

l+1|≥δ,k→∞
max
|ρ|≤γ,

k−m≤j≤k

gT
j Aρ−1gj

gT
j Aρgj

= lim
|β(k)

l+1|≥δ,k→∞
max
|ρ|≤γ,

k−m≤j≤k

∑n
i=1(β

(j)
i)2λρ−1

i∑n
i=1(β

(j)
i)2λρ

i

≤ lim
|β(k)

l+1|≥δ,k→∞
max
|ρ|≤γ,

k−m≤j≤k

∑l+1
i=1(β

(j)
i)2λρ−1

i∑l+1
i=1(β

(j)
i)2λρ

i

=
1

λl+1
, (2.11)

due to the fact that (2.9) holds for i = 1, ..., l and that inequality |β(k)
l+1| ≥ δ and relation

(2.6) imply |β(j)
l+1| ≥

(
λ1

λl+1

)m
δ holds for all j ∈ [max[0, k −m], k]. Therefore, there exists a

sufficiently large integer k̂ such that

αk ≤ 11
10

1
λl+1

(2.12)

for all k satisfying k ≥ k̂ and

|β(k)
l+1| ≥

λ1

λl+1

δ̂

2
. (2.13)

Thus, for any k ≥ k̂, if (2.13) holds, we have that

|β(k+1)
l+1 | = |(1− αkλl+1)||β(k)

l+1|

≤ max
[
1− λl+1

λn
,

∣∣∣∣λl+1
11
10

1
λl+1

− 1
∣∣∣∣
]
|β(k)

l+1|

≤ max[1− λl+1/λn, 0.1]|β(k)
l+1|. (2.14)

On the other hand, if (2.13) fails, from (2.6) we can show that

|β(k+1)
l+1 | ≤ max[1− λl+1

λn
, λl+1/λ1 − 1]|β(k)

l+1| ≤ λl+1/λ1|β(k)
l+1| ≤

δ̂

2
. (2.15)

It follows from (2.14) and (2.15) that

lim sup
k→∞

|β(k)
l+1| ≤

δ̂

2
(2.16)

4

which contradicts to (2.10). This completes our proof. 2

It should be pointed that the above result can also deduced from a more general conver-
gence result of Dai[2] by showing that Property (A) of Dai[2] holds. From Dai’s results it can
be shown that the gradient method with (2.2) converges R-linearly. The reason for giving
our direct and simple proof is to avoid unnecessary lengthly analysis.

Though the generalization from (2.1) to (2.2) is very simple and straightforward, it does
contain more choices for the step-lengths. For example, we can let αk be the mean values of
any two Raleigh ratios:

αk =
1
2

[
gT
j1

Aρ1−1gj1

gT
j1

Aρ1gj1

+
gT
j2

Aρ2−1gj2

gT
j2

Aρ2gj2

]
, (2.17)

or

αk =

√√√√gT
j1

Aρ1−1gj1

gT
j1

Aρ1gj1

gT
j2

Aρ2−1gj2

gT
j2

Aρ2gj2

. (2.18)

Moreover, all the known choices of αk (see (4.27)-(4.29) of Dai[2]) having Property (A) satisfy
our simple condition (2.2).

3 Short BB Steps

When we apply the gradient method to large scale problems, the most important issue is
which step-length will give a fast convergence rate. Therefore it is vital important to find
what choices of αk in the interval (2.2) require less number of iterations to reduce the gradient
norm to a given tolerance. Much work has been done on this issue. And it seems that up to
now the best choice is the adaptive BB step given by Zhou et. al.[22] in which

αk = αABB
k =

{
αBB2

k , if αBB2
k /αBB1

k < κ;
αBB1

k , otherwise,
(3.1)

and κ ∈ (0, 1) is a parameter.
The motivation of the ABB step and its derivation can be found in Zhou et. al.[22].

Basically, The ABB step is a hybrid combination of BB1 and BB2 steps, which mainly use
the BB1 step unless αBB2

k is much smaller than BB1.
It is trivial that αBB1

k ≥ αBB2
k , namely the BB1 step is normally longer than the BB2 step.

Numerical results favor the BB1 (the longer BB step). However, to the author’s knowledge,
there are no sound theoretical results which ensure that BB1 is better than BB2, though
most papers choose to study the BB1 step when the BB method is studied. It seems all
the theoretical results hold for the BB1 method are also true for the BB2 method. Thus
it is very interesting to know why BB1 is better than BB2. It would be nice to establish
sound theoretical results to shed light on this question. Unfortunately, we have not yet been
able to do so. In the following paragraph, we give an intuitive analysis on the impact of the
step-lengths for the gradient method.

In order to obtain a fast convergence, we need to make all the terms

β
(k+1)
i = (1− αkλi)β

(k)
i =

k∏

j=0

(1− αjλi)β
(0)
i (i = 1, 2, ..., n), (3.2)

5

converge to zero as fast as possible. Due to the relation (2.6), remembering that we have
1/λn ≤ αk ≤ 1/λ1, we can see that a smaller αk will reduce β

(k+1)
n more quickly, while

a larger αk will reduce the other β
(k+1)
i (particularly with smaller i) more quickly. This

observation tells us that either the longer BB step (BB1) or the shorter BB step (BB2) has
its own advantage. Theoretically speaking, from the proof of Theorem 2.2, it is more easy
to have β

(k)
i converging to zero for small i (for example, |β(k+1)

1 | ≤ (1− λ1/λn)|β(k)
1 | for all

k). Thus, we should put more weight for reducing βi(k) for large i, which means that we
would prefer to use a shorter step-length. This seems to contradict the fact that the larger
step (BB1) is better than the smaller step (BB2) based on many numerical tests.

For most test examples, we choose the starting point randomly, which would implies that
|qT

i (x0 − x∗)|(i = 1, 2, ..., n) are more or less of the same magnitude. Thus, because

β
(0)
i = λiq

T
i (x0 − x∗), i = 1, 2, ..., n, (3.3)

we would have that |β(0)
n | is much larger than the other |β(0)

i | if we assume

λn >> λn−1. (3.4)

In this case, we will see that the first iteration (with the exact line search) would give a very
small step-length α0 ≈ 1/λn. Consequently, β

(1)
n ≈ 0 while β

(1)
i ≈ β

(0)
i (i = 1, 2, ..., n − 1).

Hence, from the second iteration on, it is more important to reduce the other βi(i = 1, 2, ..., n−
1) instead of βn. This may, in some sense, explain that a larger αk (such as BB1) is better
than a smaller αk(such as BB2).

However, we would have a different picture when an iterate point xk has the property
that |β(k−1)

i |(i = 1, 2, ...n) are in the same order. For simplicity, we suppose that

|β(k−1)
i |2 ≈ ‖gk−1‖2

2/n, (3.5)

for all i = 1, 2, ..., n. Thus, we would have

αBB1
k ≈ n∑n

j=1 λi
, (3.6)

and

αBB2
k ≈

∑n
j=1 λi∑n
j=1 λ2

i

. (3.7)

These give that

αBB1
k ≈ n

λn
>>

1
λn

≈ αBB2
k . (3.8)

In this case, it can be easily seen that normally the shorter BB step αk = αBB2
k would give

a smaller ‖gk+1‖. Therefore, it is reasonable for us to believe the shorter BB step (BB2)
would be efficient if we want to obtain a very accurate solution of a very large scale and
ill-conditioned problem.

Hence, we would like to investigate the behavior of the BB2 step and shorter BB2 steps.
What made us to explore the shorter steps is the curiosity on why BB2 in general performs
worse than BB1. Another motivation is our belief that for very large scale and ill-conditioned

6

problems a shorter step may be more efficient than a larger step. We consider the short BB2
step:

αk = α
SBB(m)
k = min

max[0,k−m]≤j≤k
αBB2

j , (3.9)

where m is a given non-negative integer. If m = 0, the step-length (3.9) is nothing but the
BB2 step. For m > 0, αk given by (3.9) is not larger and may be smaller than αBB2

k . Thus
we call the method (1.5) with (3.9) the short BB method (SBB). The step-length defined by
(3.9) satisfies (2.2), which means that the SBB method always converges for convex quadratic
functions.

4 Numerical Results

In this section, we test our SBB method, namely the gradient method (1.5) with (3.9). We
call our SBB method with parameter m by SBB(m). Different parameters m = 1, 2, 3, 4, 9
and 19 are used. We compared our algorithms with BB1, BB2 and the adaptive BB (ABB)
of Zhou et. al.[22]. For the ABB method, κ = 0.25 is used.

The problem we used to compare the algorithms is the one suggested by Yuan[20]. The
function to be minimized has the following form:

f(x) = (x− x∗)T Diag(λ1, · · · , λn)(x− x∗). x ∈ <n. (4.1)

The diagonal structure of the Hessian of the objective function does not lose generality
because the gradient method is invariant with respect to orthogonal transformations. We
test problems from small scale to large scale, with n = 10i(i = 1, 2, 3, 4, 5, 6). The solution
vector x∗i (i = 1, ..., n) ∈ (−5, 5) are randomly generated. We let λ1 = 1 and λn = Cond(=
10L, L = 1, 2, 3, 4, 5, 6) which is the condition number of the Hessian of function f(x). λi(i =
2, · · · , n− 1) are randomly chosen in the interval (1, λn). For all problems the initial point is
the zero vector (0, · · · , 0)T . We use two stop conditions. One is

‖gk‖2 ≤ 10−5‖g0‖2, (4.2)

and the other is
‖gk‖2 ≤ 10−5. (4.3)

The numerical results with the two different stopping conditions (4.2) and (4.3) are re-
ported in Table 1 and Table 2 separately. For each case (different n and different λn), 10
runs are made and the average numbers of iterations required by each algorithm are listed.
For each case, The least average iteration number is given in bold font to indicate the winner
amongst all the algorithms.

7

n λn ABB BB1 BB2 m=2 m=3 m=4 m=5 m=10 m=20
10 10 19.1 19.1 18.1 18.7 19.0 19.8 22.0 22.5 29.9
10 102 42.7 47.8 54.5 45.1 49.9 52.2 46.5 52.9 67.7
10 103 51.9 103.2 92.9 87.8 77.7 82.6 72.1 73.6 76.2
10 104 76.2 169.6 199.3 106.6 102.4 77.4 72.3 59.0 62.8
10 105 22.2 21.6 24.0 20.9 21.0 22.5 22.2 26.5 34.2
10 106 22.1 23.2 22.1 22.4 21.8 21.6 23.0 28.0 33.9
102 10 19.4 19.4 20.0 19.0 18.9 20.8 21.2 28.3 29.8
102 102 46.6 50.9 56.8 56.5 53.2 55.7 57.1 57.2 64.8
102 103 96.3 110.2 109.0 116.0 111.0 103.2 94.3 103.5 125.0
102 104 149.9 171.6 211.1 168.8 172.9 167.7 144.1 130.3 141.9
102 105 75.8 92.5 124.9 99.2 93.1 81.0 82.1 85.1 95.1
102 106 77.9 88.2 92.0 86.1 74.4 78.0 81.5 79.0 96.7
103 10 19.0 19.0 20.3 18.7 19.0 20.5 21.0 26.7 30.0
103 102 50.1 53.7 56.5 56.4 53.4 60.0 59.7 59.9 65.5
103 103 103.3 109.2 111.8 108.7 104.3 103.3 111.5 113.2 133.5
103 104 106.7 109.2 109.3 107.7 105.6 105.5 105.0 108.6 129.3
103 105 111.4 108.1 124.9 120.8 117.2 110.4 123.2 119.2 129.3
103 106 103.2 107.3 114.1 114.8 108.8 100.6 109.5 109.2 124.9
104 10 19.0 19.0 19.9 18.8 19.0 20.2 21.0 26.3 30.0
104 102 52.6 54.0 56.3 54.9 55.2 55.7 56.3 57.9 65.2
104 103 101.4 111.3 117.2 108.1 101.5 103.7 107.7 106.9 126.0
104 104 116.6 120.0 124.5 127.0 117.5 115.8 121.4 118.3 140.9
104 105 117.7 123.0 119.0 117.5 119.4 112.0 112.3 111.8 132.8
104 106 107.6 121.6 116.0 118.3 111.1 116.2 114.7 117.6 132.5
105 10 19.0 19.0 20.0 19.0 19.0 20.0 21.0 26.0 30.0
105 102 53.7 52.7 59.0 52.2 54.4 55.0 53.6 57.1 65.0
105 103 101.9 96.5 110.9 108.5 95.9 102.0 104.4 116.5 121.0
105 104 111.6 121.8 123.8 118.2 115.5 116.7 121.7 119.9 141.8
105 105 110.9 117.2 120.0 117.7 116.7 124.4 124.1 120.8 142.4
105 106 117.6 115.5 129.6 125.3 123.7 120.9 124.3 120.9 142.6
106 10 19.0 19.0 20.0 19.0 19.0 20.0 21.0 26.0 30.0
106 102 52.0 51.3 59.5 49.8 54.4 56.0 48.1 57.0 65.0
106 103 94.5 103.1 110.7 108.4 94.0 98.1 102.3 111.3 121.0
106 104 110.8 116.8 123.6 122.2 113.1 112.4 124.3 120.3 148.7
106 105 125.5 114.4 118.6 120.8 121.1 115.6 122.8 120.3 149.0
106 106 113.6 113.9 123.6 119.1 113.6 114.7 122.3 120.3 149.0

TABLE 1. Iteration numbers of different gradient methods (‖gk‖2 ≤ 10−5||g0||2)

When the stopping condition is (4.2), from Table 1 we find that the ABB method is the
winner, as it wins 14 times out of the all 36 cases. Ranking by achieving the least number
of iterations, the next best algorithms are SBB(2), SBB(1) and BB1, with winning on 7, 6
and 5 cases respectively. Table 1 also shows that BB1 is much better than BB2 as expected.
If we make a one-to-one comparison between BB1 and BB2 on all the 36 cases, we find that
BB2 wins only 5 cases while BB1 wins 31 cases. These results agree with the general belief
that BB1 is better than BB2.

8

n λn ABB BB1 BB2 m=1 m=2 m=3 m=4 m=9 m=19
10 10 24.4 24.4 25.3 24.2 24.9 25.3 26.3 32.7 32.7
10 102 66.7 81.4 85.6 69.5 72.9 73.3 69.4 65.4 76
10 103 98.6 200.3 228.1 183.6 127.7 125.1 105.7 92.4 91.6
10 104 117.1 679.5 608.0 286.3 158.5 116.7 103.6 77.4 85.4
10 105 329.8 2235.0 1148.0 356.5 169.7 122.9 105.2 92.3 95
10 106 1011.6 3052.3 908.4 307.7 152.2 137.1 100.3 97.6 102.2
102 10 30.3 30.3 30.4 30.6 30.7 30.0 29.4 34.1 35.6
102 102 85.8 98.5 106.5 98.3 96.5 93.8 93.4 101.8 111.2
102 103 197.4 328.8 318.2 300.4 277.5 258.3 223.2 179 182.8
102 104 310.4 989.9 937.1 879.9 640.7 502.5 437.1 251.5 220.6
102 105 774.5 2872.9 1903.9 1261.4 792.5 599.5 480.6 260.3 225.6
102 106 1214.4 4522.3 2038.0 1114.8 672.7 537.7 443.8 258.2 236.4
103 10 32.2 32.2 30.5 31.8 31.8 33 31.6 36.1 38.0
103 102 101.1 109.8 104.1 109.2 106.8 105.5 107.3 106.6 121.1
103 103 286.8 343.5 385.4 341.2 305.3 319.8 283.5 217.9 216.1
103 104 530.3 1140.3 1149.2 965.8 819.9 694.3 521.0 337.4 302.3
103 105 988.9 2927.7 2443.9 1638.9 1096.4 934.0 717.8 401.5 346
103 106 1587.5 4534.8 2310.5 1590.7 1076.2 858.2 693.9 384.6 333.7
104 10 34.3 34.3 31.1 32.6 33.1 37.7 34.1 37.0 48.2
104 102 106.9 115.0 113.3 111.2 108.8 114.2 113.6 114.0 133.3
104 103 334.4 380.7 370.2 385.1 351.8 321.7 304.9 233.1 233.5
104 104 921.6 1272.5 1250.8 1071.9 888.8 742.6 646.0 387.4 338.4
104 105 1610.6 3226.1 2574.3 1827.0 1424.7 1014.5 940.8 502.0 425.1
104 106 2316.0 5954.0 3404.7 1993.3 1602.7 1271.6 1069.7 534.6 454.1
105 10 35.0 35.0 33.5 35.7 35.3 39.3 38.4 38.0 57.0
105 102 115.3 119.3 121.7 117.5 115.6 117.7 122.2 120.5 150.3
105 103 349.5 402.0 416.8 392.2 367.9 325.9 317.9 239.3 244.8
105 104 1055.7 1341.9 1195.8 1057.7 869.4 748.5 645.7 389.3 357.1
105 105 2291.1 2640∗ 2475.3 2088.8 1527.6 1217.6 979.6 559.4 461.0
105 106 2140∗ 5120∗ 3149∗ 2445.1 1924.8 1571.7 1263.5 654.9 531.5
106 10 36.9 36.9 35.2 36.7 36.5 39.4 41.0 40.0 58.0
106 102 121.1 123.4 131.5 129.3 125.3 123.0 123.1 122.3 150.3
106 103 369∗ 376∗ 461∗ 470∗ 410∗ 387∗ 303∗ 243∗ 220∗

106 104 1154∗ 1130∗ 1325∗ 1128∗ 977∗ 760∗ 613∗ 406∗ 364∗

106 105 Fail Fail Fail Fail 1557∗ 1192∗ 1023∗ 520∗ 456∗

106 106 Fail Fail Fail Fail Fail 1357∗ 1343∗ 652∗ 567∗

TABLE 2. Iteration numbers of different gradient methods (‖gk‖2 ≤ 10−5)

Now, let us discuss Table 2, where the results with the stopping condition (4.3) are given.
Since in general the stopping condition (4.3) is more strict than (4.2), some algorithms fail to
find a solution within the maximum allowed CPU time, which is set to 10 minutes. In Table
2, a number followed by a superscript “∗” is the iteration number of a single run instead of
the average of 10 runs. While “Fail” indicates that even a single run failed to find a solution
within 10 minutes.

9

It is surprising to find that in Table 2 the winner now is SBB(19), which wins 18 cases
out of all the 36 cases, particularly it wins all the cases when both n and λn are large.
Please notice that the only change that makes Table 1 and Table 2 different is the stopping
condition. For a given case, the 10 repeated randomly generated problems for both Table 1
and Table 2 are also the same. This shows that SBB(19) use far less numbers of iterations to
reduce ‖gk‖2 from 10−5‖g0‖2 to 10−5. Another interesting point is that now BB2 performs
much better than BB1, which is unexpected. If we have a one-to-one comparison between
BB1 and BB2, we find that BB2 wins 23 cases while BB1 wins only 11 cases. Particularly,
BB2 wins over BB1 for all the very ill-conditioned cases, namely when λn = 105 or λn = 106.

Now we consider two specific distributions of the eigenvalues λi(i = 2, ..., n−1). The first
case is

λi+1

λi
=

(
λn

λ1

) 1
n−1

, i = 1, 2, ..., n− 1. (4.4)

And the second case is to have λi(i = 2, ..., n− 1) equally distributed in the interval (1, λn).
To be more exact, we let λi+1 − λi be constant:

λi+1 − λi =
λn − λ1

n− 1
, i = 1, 2, ..., n− 1. (4.5)

In both cases, the stopping condition is

‖gk‖2 ≤ 10−6‖g0‖2. (4.6)

The solution is chosen by vector x∗i (i = 1, ..., n) ∈ (−0.5, 0.5) randomly, and the average
number of iterations out of 10 runs with the fixed starting point (0, 0, ..., 0)T are given in
Table 3 and Table 4 for the two cases respectively.

n λn ABB BB1 BB2 m=1 m=2 m=3 m=4 m=9 m=19
10 10 25.3 25.3 25.5 24.7 25.3 25.5 26.2 34.3 32.4
103 10 25.4 25.4 26.3 25.7 25.9 23.1 24.3 32.0 32.2
105 10 25.0 25.0 26.0 25.0 26.0 23.0 25.0 32.0 33.0
10 103 178.9 173.5 169.1 149.1 113.5 103.7 95.5 101.6 132.9
103 103 200.3 245.4 246.8 230.4 230.8 211.8 212.2 187.5 179.7
105 103 196.5 215.8 240.0 236.8 202.5 202.4 213.0 193.7 222.0
10 105 836.9 802.8 720.7 203.6 130.0 118.7 127.2 136.7 179.5
103 105 1262.6 1444.1 1702.1 1391.2 1148.5 966.6 832.8 477.9 377.6
105 105 1297.5 1482.5 1447.0 1406.7 1291.2 1175.5 1025.7 678.8 437.3

TABLE 3. Iteration numbers of different gradient methods when λi+1/λi is constant.

From Table 3, the numerical results favor our SBB method over the ABB, BB1 and BB2
methods. Particularly, for very ill-conditioned problems, namely problems with λn = 105,
our SBB method performs much better than ABB, BB1 and BB2. Therefore, we believe that
for ill-conditioned problems with λi+1/λ1 ≈ constant, the SBB method will be much faster
than ABB, BB1 and BB2.

10

n λn ABB BB1 BB2 m=1 m=2 m=3 m=4 m=9 m=19
10 10 22.0 22.0 23.9 21.6 23.0 24.0 25.0 33.8 32.5
103 10 24.4 24.4 25.7 23.5 23.4 22.9 24.1 33.0 32.0
105 10 24.0 24.0 26.0 23.0 23.0 23.0 24.0 33.0 32.0
10 103 54.8 130.4 131.7 125.8 96.1 108.4 107.8 96.5 70.5
103 103 145.6 163.7 168.4 157.8 162.3 160.7 155.1 147.1 177.0
105 103 144.5 158.0 163.0 155.9 146.5 152.5 153.0 149.7 168.5
10 105 237.9 382.1 549.9 280.3 158.3 111.6 104.5 77.0 109.7
103 105 151.4 164.0 185.7 164.4 165.0 155.0 165.4 148.8 159.2
105 105 262.0 286.4 295.3 274.7 266.9 282.7 268.1 238.5 244.1

TABLE 4. Iteration numbers of different gradient methods when λi+1 − λi is constant.

From Table 4, we can see that all the algorithms perform more or less the same. Actually, the
ABB method, which wins when λn = 103 for n = 10, 103 and 105, can be regarded as the overall best
method when the stopping condition is (4.6). Similar to the phenomenon revealed in Tables 1 and
2, we also observe that our SBB method will outperform ABB method if a more accurate solution is
needed. For example, let us consider the situation when n = 103 and λn = 103, which is the case that
ABB wins for the stopping condition (4.6). If the stopping condition is replaced by ‖gk‖2 ≤ 10−9‖g0‖2
the ABB method needs 263.6 iterations while the SBB(9) method needs 243.7 iterations. If we use an
even more strict stopping condition ‖gk‖2 ≤ 10−12‖g0‖2, the ABB method would need 380.2 iterations
against 304.3 iterations by the SBB(9) method. Even for the situation when n = 10 and λn = 103, for
which the ABB method preforms much better than the other methods under the stopping condition
(4.6), we find that the ABB method requires 126.0 iterations comparing 117.2 iterations by SBB(9)
method if the stopping condition is replaced by ‖gk‖2 ≤ 10−13‖g0‖2. Of course, in real applications
it is unlikely to require such high accurate solutions.

For many practical problems, matrix A is obtained by finite difference approximation to Laplace’s
equation[9, 22]. For such A, we can easily see that the difference λi+1−λi are of the same magnitude
for many i. Therefore, we expect that for such problems derived from Laplace equations the best
gradient method to use is the ABB method. Indeed, we tested the Laplace1(b) problem of Fletcher[9]
in which A is defined by

A =




W −I
−I W −I

−I W
. . .

. −I
−I W



∈ <106×106

(4.7)

where

W =




T −I
−I T −I

−I T
. . .

. −I
−I T



∈ <104×104

, T =




6 −1
−1 6 −1

−1 6
. . .

. −1
−1 6



∈ <102×102

. (4.8)

It is known[9] for this matrix A we have λn/λ1 ≈ 4133.6. In Table 5, we give the numbers of iterations
needed for all the algorithms with different stopping conditions

‖Axk − b‖2 ≤ θ‖b‖2, θ = 10−4, 10−5, 10−6, 10−7, 10−8, 10−9. (4.9)

The starting point is x0 = (0, 0, ..., 0)T for all the runs.

11

θ ABB BB1 BB2 m=1 m=2 m=3 m=4 m=9 m=19
10−4 173 176 157 178 200 199 166 181 225
10−5 276 394 392 278 289 298 290 322 417
10−6 387 462 611 374 426 558 361 442 605
10−7 460 510 864 478 458 760 493 652 701
10−8 570 590 1017 737 601 844 645 820 759
10−9 590 611 1062 775 819 851 676 881 942

TABLE 5. Iterations for Laplace1(b) with different stopping conditions

Our results in Table 5 confirm the finding of Zhou et. al.[22] that the ABB method is better than
the BB1 method. Moreover, for this specific problem, BB1 is much better than BB2. Though our
short BB2 steps do provide improvements over the original BB2 method, the SBB methods perform
not yet as good as the ABB method for this Laplace1(b) problem. Therefore it is reasonable for us
to believe that, if we want to find a better gradient method than the ABB method for such problems
derived from Laplace equations, we might need to explore special step-lengths which make good use
of the special eigenvalue distributions of such matrices. This is an interesting and important problem
to study because many practical problems are derived from Laplace equations.

5 Discussion

In this chapter we have generalized the convergence result for the gradient method with retards by
Friedlander et. al.[10] from (2.1) to (2.2). Our simple generalization allows more choices of step-lengths
αk. We give an intuitive analysis on the impact of the step-length of the gradient method for large
scale and ill-conditioned problems, and believe that short step-lengths in the interval (2.2) should
perform better than long step-lengths. We propose the short BB2 (SBB) method, which uses the
smallest value of all the BB2 step-lengths in the previous m iterations as the step-length. Numerical
results on large scale and ill-conditioned problems show that the SBB method performs better than
the BB methods and the adaptive BB method if a high accurate solution is needed. Our numerical
results also reveal that BB2 is better than BB1 when we need to find a very high accurate solution
for large scale and ill-conditioned problems. This is, to some extent, a surprising discovery because in
general it has been widely regarded that BB1 is better than BB2. Our numerical results also suggest
that corresponding special step-lengths might be needed to construct efficient gradient methods for
solving problems with certain special eigenvalue distributions such as those problems derived from
Laplace equations.

References

[1] J. Barzilai and J. M. Borwein, Two point step size gradient methods, IMA J. Numer. Anal.,
8(1988) 141-148.

[2] Y.H. Dai, Alternate step gradient method, Optimization 52(2003) 395-415.

[3] Y.H. Dai and R. Fletcher, On the asymptotic behaviour of some new gradient methods, Math.
Program. 13(2005) 541-559.

[4] Y,H. Dai and L.Z. Liao, R-linear convergence of the Barzilai and Borwein gradient method, IMA
J. Numer. Anal. 22(2002) 1-10.

[5] Y.H. Dai, J.Y. Yuan, and Y. Yuan, Modified two-point step-size gradient methods for uncon-
strained optimization, Computational Optimization and Applications, 22(2002), 103-109.

[6] Y.H. Dai and Y. Yuan, Alternate minimization gradient method, IMA Journal of Numerical
Analysis, 23(2003), 377-393.

12

[7] Y.H. Dai and Y. Yuan, Analysis of monotone gradient methods, J. Industrial and Management
Optimization, 1(2005) 181-192.

[8] Y. H. Dai and H. Zhang, An adaptive two-Point step-size gradient method, Numerical Algorithm,
27(2001) 377-385.

[9] R. Fletcher, On the Barzilar-Borwein method, Research Report, University of Dundee, UK,
2001.

[10] A. Friedlander, J. M. Mart́ınez, B. Molina, and M. Raydan, Gradient method with retards and
generalizations, SIAM J. Numer. Anal., 36(1999), 275-289.

[11] J. Nocedal, A. Sartenaer and C. Zhu, On the behavior of the gradient norm in the steepest
descent method, Computational Optimization and Applications 22(2002) 5-35.

[12] M. Raydan, On the Barzilai and Borwein choice of steplength for the gradient method, IMA J.
Numer. Anal. 13(1993) 321-326.

[13] M. Raydan, The Barzilai and Borwein gradient method for the large scale unconstrained mini-
mization problem, SIAM J. Optim., 7(1997) 26-33.

[14] M. Raydan and B. F. Svaiter, Relaxed Steepest Descent and Cauchy-Barzilai-Borwein Method,
Computational Optimization and Applications, 21(2002) 155-167.

[15] M.N. Vrahatis, G.S. Androulakis, J.N. Lambrinos and G.D. Magoulas, A class of gradient uncon-
strained minimization algorithms with adaptive step-size, J. Comp. and Appl. Math. 114(2000)
367-386.

[16] Y.F. Wang, Y. Yuan and H.C. Zhang, A trust region-CG algorithm for delurring problem in
atmospheric image reconstruction, Science in China 45(2002) 731-740.

[17] Y.F. Wang and Y. Yuan, On the regularity of a trust region-CG algorithm for nonlinear ill-posed
inverse problems, in: T. Sunada, P.W. Sy and L. Yang, Eds., Proceedings of the Third Asian
Mathematical Conference (World Scientific, Singapore, 2002) pp.562-580.

[18] Y.F. Wang and Y. Yuan, A trust region method for solving distributed parameter identification
problems, Journal of Comp. Math. 21(2003) 759-772.

[19] Y.F. Wang and Y. Yuan, Convergence and regularity of trust region methods for nonlinear
ill-posed inverse problems, Inverse Problems, 21(2005) 821-838.

[20] Y. Yuan, A new stepsize for the steepest descent method, Journal of Comp. Math. 24(2006)
149-156.

[21] Y. Yuan, Step-sizes for the gradient method, in: K.S. Liu, Z.P. Xin and S.T. Yau, eds., Third
International Congress of Chinese Mathematicians (AMS/IP Studies in Advanced Mathematics,
2008), pp. 785-796.

[22] B. Zhou, L. Gao and Y.H. Dai, Gradient methods with adaptive stp-sizes, Computational Opti-
mization and Applications, 35(2006) 69-86.

13

