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Abstract

Recently, Yamashita and Fukushima [11] established an interesting quadratic convergence result for
the Levenberg-Marquardt method without the nonsingularity assumption. This paper extends the

result of Yamashita and Fukushima by using lk ¼ kF ðxkÞkd, where d 2 ½1; 2�, instead of lk ¼ kF ðxkÞk2

as the Levenberg-Marquardt parameter. If kF ðxÞk provides a local error bound for the system of

nonlinear equations F ðxÞ ¼ 0, it is shown that the sequence fxkg generated by the new method con-

verges to a solution quadratically, which is stronger than distðxk ;X �Þ ! 0 given by Yamashita and
Fukushima. Numerical results show that the method performs well for singular problems.

AMS Subject Classifications: 34G20, 65K05, 90C30.
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1. Introduction

We consider the problem for solving nonlinear equations

F ðxÞ ¼ 0; ð1:1Þ

where F ðxÞ : Rn ! Rm is continuously differentiable and F 0ðxÞ is Lipschitz con-
tinuous. Throughout the paper, we assume that the solution set of (1.1) is non-
empty and denote it by X �. And in all cases k � k refers to the 2-norm.

The classical Levenberg-Marquardt method (see [2], [3]) for nonlinear Eqs. (1.1)
computes the trial step by

dk ¼ �ðJðxkÞT JðxkÞ þ lkIÞ�1JðxkÞT F ðxkÞ; ð1:2Þ

where JðxkÞ ¼ F 0ðxkÞ is the Jacobian, and lk � 0 is a parameter being updated
from iteration to iteration. Levenberg-Marquardt step (1.2) is a modification of
the Gauss-Newton’s step

dGN
k ¼ �ðJðxkÞT JðxkÞÞ�1JðxkÞT F ðxkÞ: ð1:3Þ
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The parameter lk is used to prevent dk from being too large when JðxkÞT JðxkÞ is
nearly singular. Furthermore, when JðxkÞT JðxkÞ is singular, the Gauss-Newton’s
step is undefined. A positive lk guarantees that (1.2) is well defined.

It is well known that the Levenberg-Marquardt method has a quadratic rate of
convergence when m ¼ n, if the Jacobian at the solution x� is nonsingular and if the
parameter is chosen suitably at each step. However, the condition of the nonsin-
gularity of Jðx�Þ is too strong. Recently, Yamashita and Fukushima [11] have
shown that under the weaker condition that kF ðxÞk provides a local error bound
near the solution, the Levenberg-Marquardt method still has a quadratic conver

gence if the parameter is chosen as lk ¼ kF ðxkÞk2. This is a very interesting result.

However, the quadratic term lk ¼ kF ðxkÞk2 has some unsatisfactory properties.

When the sequence is close to the solution set, lk ¼ kF ðxkÞk2 may be smaller than

the machine precision, so it will lose its role. On the other hand, when the sequence

is far away from the solution set, lk ¼ kF ðxkÞk2 may be very large, and the step dk

will be too small, consequently, it prevents the iterates moving to the solution set

quickly. Because of these observations, we consider the choice lk ¼ kF ðxkÞkd with
d 2 ½1; 2�. We prove that with this parameter, if kF ðxÞk provides a local error bound
near some x� 2 X , then the sequence fxkg generated by the new Levenberg-
Marquardt method converges quadratically to the solution of (1.1), that is

kxkþ1 � �xk � Qkxk � �xk2

holds for all sufficiently large k, where �x 2 X � and Q > 0 is a positive constant.

Definition 1.1: Let N be a subset of Rn such that N \ X � 6¼ ;. We say that kF ðxÞk
provides a local error bound on N for system (1.1), if there exists a positive constant
c > 0 such that

kF ðxÞk � cdistðx;X �Þ; 8x 2 N :

Note that, if Jðx�Þ is nonsingular at a solution x� of (1.1), then x� is an isolated
solution, hence kF ðxÞk provides a local error bound on some neighborhood of x�.
However, the converse is not necessarily true, see the example in [11]. So a local
error bound condition is weaker than that of the nonsingularity.

In the next section, we show that under the local error bound condition, the
sequence generated by the new Levenberg-Marquardt method without line search
converges to the solution quadratically. In Sect. 3, the global convergence result is
given when the line search is used. Finally in Sect. 4, we present the numerical
results for some singular nonlinear equations.

2. Local Convergence of the Levenberg-Marquardt Method

To study the convergence properties of the method, we make the following
assumptions.
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Assumption 2.1: (a) F ðxÞ is continuously differentiable, and the Jacobian JðxÞ is
Lipschitz continuous on some neighborhood of x� 2 X �, i.e., there exist positive
constants L1 and b1 < 1 such that

kJðyÞ � JðxÞk � L1ky � xk; 8x; y 2 Nðx�; b1Þ ¼ fx j kx� x�k � b1g: ð2:1Þ

(b) kF ðxÞk provides a local error bound on Nðx�; b1Þ for the system (1.1), i.e., there
exists a constant c1 > 0 such that

kF ðxÞk � c1distðx;X �Þ; 8x 2 Nðx�; b1Þ: ð2:2Þ

Note that, by Assumption 2.1a, we have

kF ðyÞ � F ðxÞ � JðxÞðy � xÞk � L1ky � xk2; 8x; y 2 Nðx�; b1Þ; ð2:3Þ

and, there exists a constant L2 > 0 such that

kF ðyÞ � F ðxÞk � L2ky � xk; 8x; y 2 Nðx�; b1Þ: ð2:4Þ

We discuss the local convergence of the Levenberg-Marquardt method without
line search, i.e., the next iterate xkþ1 is computed by

xkþ1 ¼ xk þ dk;

where dk is given by (1.2). For simplification, we use the notations
Fk ¼ F ðxkÞ; Jk ¼ JðxkÞ in the following. And we assume

Assumption 2.2:

lk ¼ kFkkd for all k; where d 2 ½1; 2�:

Yamashita and Fukushima [11] show the quadratic convergence of the Leven-

berg-Marquardt method when choosing lk ¼ kFkk2, based the analyses on an

unconstrained optimization problem. Here, we first prove the superlinear con-

vergence of the new Levenberg-Marquardt method when choosing lk ¼ kFkkd,
then, based on the singular value decomposition of the Jacobian matrix, we
obtain the quadratic convergence. In the following, we denote �xk the vector in
X � that satisfies

kxk � �xkk ¼ distðxk;X �Þ:

Lemma 2.1: Under the conditions of Assumptions 2.1 and 2.2, if xk 2 Nðx�; b1=2Þ,
then there exists a constant c2 > 0 such that

kdkk � c2distðxk;X �Þ: ð2:5Þ

On the Quadratic Convergence of the Levenberg-Marquardt Method 25



Proof: Since xk 2 Nðx�; b1=2Þ, we have

k�xk � x�k � k�xk � xkk þ kxk � x�k � kxk � x�k þ kxk � x�k � b1;

which means that �xk 2 Nðx�; b1Þ. Hence it follows from (2.2) and (2.4) that the
Levenberg-Marquardt parameter lk satisfies

cd
1k�xk � xkkd � lk ¼ kFkkd � Ld

2k�xk � xkkd: ð2:6Þ

Define

ukðdÞ ¼ kFk þ Jkdk2 þ lkkdk2:

It follows from (1.2) that dk is a stationary point of ukðdÞ. Hence the convexity of

ukðdÞ indicates that dk is also a minimizer of ukðdÞ. Thus, using �xk 2 Nðx�; b1Þ and
b1 < 1, we have

kdkk2 �
ukðdkÞ

lk

� ukð�xk � xkÞ
lk

¼ kFk þ Jkð�xk � xkÞk2 þ lkk�xk � xkk2

lk

� L2
1c
�d
1 k�xk � xkk4�d þ k�xk � xkk2

� ðL2
1c
�d
1 þ 1Þk�xk � xkk2:

The above inequality implies that

kdkk � c2 distðxk;X �Þ;

where c2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

L2
1c�d

1 þ 1
q

. h

Lemma 2.2: Under the conditions of Assumptions 2.1 and 2.2, if
xkþ1; xk 2 Nðx�; b1=2Þ, then we have

distðxk þ dk;X �Þ � c3 distðxk;X �Þ
2þd
2 ; ð2:7Þ

where c3 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

L2
1 þ Ld

2

q

þ L1c22
� �

=c1.

Proof: Since

ukðdkÞ � ukð�xk � xkÞ
¼ kFk þ Jkð�xk � xkÞk2 þ lkk�xk � xkk2

� L2
1k�xk � xkk4 þ Ld

2k�xk � xkk2þd

� ðL2
1 þ Ld

2Þk�xk � xkk2þd;
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we have

kF ðxk þ dkÞk � kFk þ Jkdkk þ L1kdkk2

�
ffiffiffiffiffiffiffiffiffiffiffiffiffi

ukðdkÞ
p

þ L1kdkk2

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

L2
1 þ Ld

2

q

k�xk � xkk
2þd
2 þ L1c22k�xk � xkk2

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

L2
1 þ Ld

2

q

þ L1c22

� �

k�xk � xkk
2þd
2 :

Hence

distðxk þ dk;X �Þ �
1

c1
kF ðxk þ dkÞk � c3 distðxk;X �Þ

2þd
2 ;

where c3 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

L2
1 þ Ld

2

q

þ L1c22
� �

=c1. The proof is completed. h

Theorem 2.1: Under the conditions of Assumptions 2.1 and 2.2, if x0 is chosen
sufficiently close to X �, then fxkþ1 ¼ xk þ dkg converges to some solution �x of (1.1)
superlinearly.

Proof: Let r ¼ min
b1

2ð1þ 11c2Þ
;
1

2c
2
d
3

( )

. First we show by induction that

if x0 2 Nðx�; rÞ, then xk 2 Nðx�; b1=2Þ for all k. It follows from Lemma 2.1 that

kx1 � x�k ¼ kx0 þ d0 � x�k � kx0 � x�k þ kd0k
� kx0 � x�k þ c2kx0 � �x0k � ð1þ c2Þr � b1=2;

which means x1 2 Nðx�; b1=2Þ. Suppose xi 2 Nðx�; b1=2Þ for i ¼ 2; . . . ; k. Then we
have from Lemma 2.2 that

kxi � �xik�c3kxi�1 � �xi�1k
2þd
2 � . . .�c

2
dðð

2þd
2 Þ

i�1Þ
3 kx0 � x�kð

2þd
2 Þ

i

� r
1

2

� �ð2þd
2 Þ

i�1
�2r

1

2

� �ð32Þ
i

:

Hence, it follows from the definition of r that

kxkþ1 � x�k � kx1 � x�k þ
X

k

i¼1
kdkk

� ð1þ c2Þr þ c2
X

k

i¼1
kxi � �xik

� ð1þ c2Þr þ 2rc2
X

k

i¼1

1

2

� �ð32Þ
i

� ð1þ c2Þr þ 2rc2 4þ
X

k

i¼1

1

2

� �ð3i
2Þ

 !

� ð1þ 9c2Þr þ 2rc2
X

1

i¼1

1

2

� �i

� ð1þ 11c2Þr
� b1=2;
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so xkþ1 2 Nðx�; b1=2Þ. Therefore, if x0 is chosen sufficiently close to X �, then all xk

are in Nðx�; b1=2Þ. Now it follows from (2.7) that

X

1

k¼0
distðxk;X �Þ < þ1;

which implies, due to Lemma 2.1, that

X

1

k¼0
kdkk < þ1:

Thus fxkg converges to some point �x 2 X �. It is obvious that

distðxk;X �Þ � distðxk þ dk;X �Þ þ kdkk:

The above inequality and (2.7) imply that

distðxk;X �Þ � 2kdkk ð2:8Þ

for all large k. Thus from (2.5), (2.7) and (2.8) we obtain that

kdkþ1k ¼ Oðkdkk
2þd
2 Þ:

Hence, fxkg converges to some solution �x 2 X . Therefore, we have

lim
k!1

kxkþ1 � �xk
kxk � �xk

2þd
2

¼ lim
k!1

k
P1

j¼kþ1 djk

k
P1

j¼k djk
2þd
2

¼ lim
k!1

kdkþ1k
kdkk

2þd
2

� ~c;

where ~c � 0 is a constant. The above inequality implies that fxkg converges to the
solution �x quadratically when d ¼ 2 and superlinearly when d 2 ½1; 2Þ. h

Without loss of generality, we assume that fxkg converges to x� 2 X �, and the
singular value decomposition (SVD) of Jðx�Þ is

Jðx�Þ ¼U�R�V �T

¼U �

r�1
. .

.

r�r
0

. .
.

0

0

B

B

B

B

B

B

B

@

1

C

C

C

C

C

C

C

A

V �T

¼U�1R�1V
�T
1 ;

where r�1 � r�2 � . . . � r�r > 0 and rank ðR�1Þ ¼ r. Suppose the SVD of JðxkÞ and
its decomposition form is as follows:
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JðxkÞ ¼ UkRkV T
k

¼ ðUk;1;Uk;2;Uk;3Þ

rðkÞ1

. .
.

rðkÞr

rðkÞrþ1

. .
.

rðkÞrþq

0

. .
.

0

0

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

@

1

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

A

V T
k;1

V T
k;2

V T
k;3

0

B

@

1

C

A

¼ Uk;1Rk;1V T
k;1þUk;2Rk;2V T

k;2;

ð2:9Þ

where Rk;1;Rk;2 > 0, rank ðRk;1Þ ¼ r and rank ðRk;2Þ ¼ q � 0. In the following, if
the context is clear, we supress the subscription k in Rk;i and Uk;i; Vk;iði ¼ 1; 2; 3Þ.
Consequently, (2.9) can be written as

Jk ¼ U1R1V T
1 þ U2R2V T

2 :

To prove quadratic convergence when d 2 ½1; 2Þ, we first give the following lemma.

Lemma 2.3: Under the conditions of Assumption 2.1, if xk 2 Nðx�; b1=2Þ, then we
have

(a) kU1UT
1 Fkk � L2kxk � �xkk;

(b) kU2UT
2 Fkk � 2L1kxk � x�k2;

(c) kU3UT
3 Fkk � L1kxk � �xkk2.

Proof: Result (a) follows immediately from (2.4). By the theory of matrix per-
turbation [10] and Assumption 2.1(a), we have

kdiagðR1 � R�1;R2; 0Þk � kJk � J �k � L1kxk � x�k:

The above relation gives

kR1 � R�1k � L1kxk � x�k and kR2k � L1kxk � x�k: ð2:10Þ

Let sk ¼ �Jþk Fk, where Jþk is the pseudo-inverse of Jk. It is easy to see that sk is the

least squares solution of min kFk þ Jksk, so we obtain from (2.3) that

kU3UT
3 Fkk ¼ kFk þ Jkskk � kFk þ Jkð�xk � xkÞk � L1kxk � �xkk2:
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Let ~Jk ¼ U1R1V T
1 and ~sk ¼ � ~Jþk Fk. Since ~sk is the least squares solution of

min kFk þ ~Jksk, it follows from (2.3) and (2.10) that

kðU2UT
2 þ U3UT

3 ÞFkk ¼ kFk þ ~Jk~skk
� kFk þ ~Jkð�xk � xkÞk
� kFk þ Jkð�xk � xkÞk þ kð ~Jk � JkÞð�xk � xkÞk
� L1k�xk � xkÞk2 þ kU2R2V T

2 ð�xk � xkÞk
� L1k�xk � xkk2 þ L1kx� � xkkk�xk � xkk
� 2L1kxk � x�k2:

Due to the orthogonality of U2 and U3, we get result (b). h

Theorem 2.2: Under the conditions of Assumptions 2.1 and 2.2, if the sequence fxkg
is generated by the new Levenberg-Marquardt method without line search with x0
sufficiently close to x�, then fxkg converges to the solution of (1.1) quadratically.

Proof: By the SVD of Jk, we know the step at the current iterate is

dk ¼ �V1ðR2
1 þ lkIÞ�1R1UT

1 Fk � V2ðR2
2 þ lkIÞ�1R2U T

2 Fk: ð2:11Þ

So we have

Fk þ Jkdk ¼ Fk � U1R1ðR2
1 þ lkIÞ�1R1UT

1 Fk � U2R2ðR2
2 þ lkIÞ�1R2U T

2 Fk

¼ lkU1ðR2
1 þ lkIÞ�1UT

1 Fk þ lkU2ðR2
2 þ lkIÞ�1UT

2 Fk þ U3U T
3 Fk: ð2:12Þ

Since fxkg converges to x� superlinearly, without loss of generality, we assume

that L1kxk � x�k < r�r=2 holds for all sufficient large k. Then we obtain from (2.10)
that

kðR2
1 þ lkIÞ�1k � kR�21 k �

1

ðr�r � L1kxk � x�kÞ2
<

4

r�2r
;

and

kðR2
2 þ lkIÞ�1k � l�1k :

The above two inequalities, together with (2.6) and Lemma 2.3 imply that

kFk þ Jkdkk �
4L1þd

2

r�2r
kxk � x�k1þd þ 3L1kxk � x�k2

� 4L1þd
2

r�2r
þ 3L1

� �

kxk � x�k2: ð2:13Þ
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Let c4 ¼ 4L1þd
2 =r�2r þ 3L1, then we get

c1distðxkþ1;X �Þ � kF ðxk þ dkÞk
� kFk þ Jkdkk þ L1kdkk2

� ðc4 þ c22L1Þkxk � x�k2:

It now follows from (2.8) and Lemma 2.1 that

kdkþ1k ¼ Oðkdkk2Þ;

which implies that fxkg converges quadratically to x�, namely,

kxkþ1 � x�k ¼ Oðkxk � x�k2Þ:

The proof is completed. h

Remark: From the proof above, we can see that if the Levenberg-Marquardt

parameter is chosen as lk ¼ kFkkd with d 2 ½1; 2�, then under the local error bound
condition we have

lkþ1
l2

k

¼ kFkþ1kd

kFkk2d
� O

kxkþ1 � �xkþ1kd

kxk � �xkk2d

 !

¼ O
kdkþ1kd

kdkk2d

 !

¼ Oð1Þ;

which implies the Levenberg-Marquardt parameter flkg and fkFkkg converges
quadratically to zero as the sequence fxkg converges quadratically to the solution of
the nonlinear equations.

Another natural question one may ask is whether we could extend the results for
even larger Levenberg-Marquardt parameters lk. For example, whether the

quadratic convergence result remains true if lk ¼ kF ðxkÞkd for d 2 ð0; 1Þ. It seems

that the parameter lk=kF ðxkÞk should be bounded to maintain quadratic con-
vergence. At least this is true for the case when n ¼ m and Jðx�Þ is nonsingular. In
this case, we have that

JT
k Jkðx� � xkÞ þ JT

k Fk ¼ Oðkxk � x�k2Þ:

If dk is a quadratic convergent step, we would have

xk þ dk � x� ¼ Oðkxk � x�k2Þ:
It follows from the definition of dk (1.2) and the above two relations that

lkdk ¼ Oðkxk � x�k2Þ;

which implies that

lk ¼ Oðkxk � x�kÞ:

On the Quadratic Convergence of the Levenberg-Marquardt Method 31



The nonsingularity of Jðx�Þ implies that kxk � x�k ¼ OðkF ðxkÞkÞ, thus it follows
that

lk ¼ OðkF ðxkÞkÞ:

Hence, we have shown that our results cannot be further improved to

lk ¼ kF ðxkÞkd for d < 1.

3. Global Convergence of the New Levenberg-Marquardt Method

In this section, we consider the globalization of our new Levenberg-Marquardt
method. Similar to unconstrained optimization problems, we impose line search
conditions on every iteration to guarantee convergence. The line search conditions
are based on the reduction of the following merit function

/ðxÞ ¼ 1

2
kF ðxÞk2:

At iteration k, we compute the next iterate by

xkþ1 ¼ xk þ akdk;

where dk is computed by (1.2) and ak satisfies certain line search conditions. One
commonly used inexact line search is the Wolfe line search which requires ak > 0
to satisfy

kF ðxk þ akdkÞk2 � kF ðxkÞk2 þ akb1F
T
k Jkdk ð3:1Þ

and

F ðxk þ akdkÞT Jðxk þ akdkÞdk � b2F
T
k Jkdk; ð3:2Þ

where b1 � b2 are two constants in ð0; 1Þ. Another famous inexact line search is

the Armijo line search which sets ak ¼ dt�a, where �a > 0 and d 2 ð0; 1Þ are two
positive constants, and t is the smallest nonnegative integer satisfying

kF ðxk þ dt�adkÞk2 � kF ðxkÞk2 þ b1d
t�aF T

k Jkdk: ð3:3Þ

Both inexact line searches imply that

kF ðxkþ1Þk2 � kF ðxkÞk2 � b1b3

ðF T
k JkdkÞ2

kdkk2
; ð3:4Þ

where b3 is some positive constant. For more details, please see [13].
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Algorithm 3.1: (New Levenberg-Marquardt method with line search):

Step 1: Given x0 2 Rn; d 2 ½1; 2�; g 2 ð0; 1Þ; k :¼ 0.

Step 2: If kJT
k Fkk ¼ 0 then stop; Set lk :¼ kFkkd; Compute dk by (1.2).

Step 3: If dk satisfies

kF ðxk þ dkÞk � gkF ðxkÞk; ð3:5Þ

then xkþ1 ¼ xk þ dk otherwise xkþ1 ¼ xk þ akdk where ak is obtained by
Wolfe or Armijo line search.

Step 4 k :¼ k þ 1; go to Step 2.

Theorem 3.1: Suppose Assumption 2.2 holds and F ðxÞ is continuously differentiable.
Let the sequence fxkg be generated by Algorithm 3.1. Then any accumulation point
of fxkg is a stationary point of /. Moreover, if an accumulation point x� is a solution
of nonlinear Eq. (1.1) and if Assumption 2.1 holds, then the whole sequence fxkg
converges to x� quadratically.

Proof: It is easy to see that kF ðxkÞk is monotonically decreasing and bounded
below. If kF ðxkÞk converges to zero, any accumulation point of fxkg is a solution of
(1.1). Otherwise, kF ðxkÞk ! c > 0, which means that (3.5) holds for only finitely
many times. Thus, inequality (3.4) is satisfied for all large k, which gives that

X

1

k¼1

ðF T
k JkdkÞ2

kdkk2
< þ1: ð3:6Þ

The above inequality, the definition of dk and kF ðxkÞk � c > 0 imply that

ðF T
k JkdkÞ2 ¼ ðdT

k ðJT
k Jk þ lkIÞdkÞ2 � c2dkdkk4: ð3:7Þ

Relations (3.6) and (3.7) show that

lim
k!1
kdkk ¼ 0: ð3:8Þ

This limit, (1.2) and the continuity of JðxÞ imply that at any accumulation point x� of

fxkg, we have that Jðx�ÞT F ðx�Þ ¼ 0, which says that x� is a stationary point of /ðxÞ.

We now proceed to prove the second part of the theorem. It suffices to prove that
(3.5) holds for all sufficiently large k. Since the stationary point x� is a solution of

(1.1), there exists a large ~k such that x~k 2 Nðx�; rÞ and kF~kk � ð
gc

2þd
2

1

L2c3
Þ
2
d, where

c1; c3; r and L2 are defined in Sect. 2. We now verify that (3.5) holds for all k � ~k.
Since x~k 2 Nðx�; rÞ, we have xk 2 Nðx�; b1=2Þ for all k � ~k. In view of (2.6), we see

kF ðxkþ1Þk
kF ðxkÞk

� L2kxkþ1 � �xkþ1k
c1kxk � �xkk

� L2c3
c1
kxk � �xkk

d
2 � L2c3kF ðxkÞk

d
2

c
2þd
2

1

:
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Hence, it follows from kF ðx~kÞk � ð
gc

2þd
2

1

L2c3
Þ
2
d that kF ðx~kþ1Þk � gkF ðx~kÞk and so

kF ðxkþ1Þk � gkF ðxkÞk for all k � ~k þ 1, which implies that the step size ak ¼ 1
holds for all sufficiently large k in Algorithm 3.1. Thus, we have fxkg converges to
the solution quadratically. h

4. Numerical Results

We tested our new Levenberg-Marquardt algorithm on some singular problems,
and compared it with the traditional trust region algorithm for nonlinear Eqs. (1.1).

The traditional trust region algorithm for nonlinear equations computes the trial
step dk at the k-th iterate by solving the following subproblem:

min
d2Rn
kFk þ Jkdk2 ¼4 �ukðdÞ
s: t: kdk � Dk;

ð4:1Þ

where Dk > 0 is the current trust region bound. The ratio between the actual
reduction and the predicted reduction of the function is defined by

rk ¼
Aredk

Predk
¼ kFkk2 � kF ðxk þ dkÞk2

�ukð0Þ � �ukðdkÞ
;

which is used to decide whether the trial step is acceptable and to adjust the new
trust region radius Dk. The algorithm can be stated as follows:

Algorithm 4.1: (Trust region algorithm for nonlinear Eqs. [12]):

Step 1: Given x1 2 Rn;D1 > 0; e � 0; 0 � p0 � p1 � p2 < 1; k :¼ 1.

Step 2: If kJT
k Fkk � e, then stop;

Solve (4.1) giving dk.

Step 3: Compute rk ¼ Aredk=Predk;

set

xkþ1 ¼
xk þ dk; if rk>p0,

xk; otherwise .

�

ð4:2Þ

Step 4: Choose Dkþ1 as

Dkþ1 ¼
min

�

Dk

4
;
kdkk
2

�

; if rk<p1,

Dk; if rk2[p1, p2],
maxf4kdkk; 2Dkg; if rk >p2;

8

>

>

<

>

>

:

ð4:3Þ

k :¼ k þ 1; go to Step 2.
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Both the trust region algorithm and the Levenberg-Marquardt algorithm have the
advantage of preventing the trial step from being too large, which is especially
useful for solving the singular nonlinear equations. However, the trust region
algorithm achieves it by updating the trust region directly, while the Levenberg-
Marquardt algorithm modifies the parameter lk. Many papers have considered
the relationship between these two algorithms, for more details, please see
[4, [5], [12], [14], etc.

First we test the Powell singular function [8], where n ¼ 4 and rankðJðx�ÞÞ ¼ 2.
The results are given in Table 1.

The other test problems were created by modifying the nonsingular problems given
by Moré, Garbow and Hillstrom [6], and have the same form as in [9],

F̂ ðxÞ ¼ F ðxÞ � Jðx�ÞAðAT AÞ�1AT ðx� x�Þ; ð4:4Þ

where F ðxÞ is the standard nonsingular test function, x� is its root, and A 2 Rn�k

has full column rank with 1 � k � n. Obviously, F̂ ðx�Þ ¼ 0 and

Ĵðx�Þ ¼ Jðx�ÞðI � AðAT AÞ�1AT Þ

has rank n� k. A disadvantage of these problems is that F̂ ðxÞmay have roots that
are not roots of F ðxÞ. We created two sets of singular problems, with Ĵðx�Þ having
rank n� 1 and n� 2, by using

A 2 Rn�1; AT ¼ ð1; 1; . . . ; 1Þ

and

A 2 Rn�2; AT ¼ 1 1 1 1 � � � 1
1 �1 1 �1 � � � �1

� �

;

respectively. Meanwhile, we made a slight alteration on the variable dimen-
sion problem, which has nþ 2 equations in n unknowns; we eliminated the
ðn� 1Þ-th and n-th equations. (The first n equations in the standard problem
are linear.)

We used p0 ¼ 0:0001; p1 ¼ 0:25 and p2 ¼ 0:75, which are popular for tests in trust
region method. And we applied Algorithm 2.6 in [7] to solve the trust region
subproblem (4.1) in Algorithm 4.1. And the initial trust region radius is chosen as

Table 1. Results on Powell singular problem

lk ¼ akF ðxkÞk lk ¼ akF ðxkÞk2 TR

a ¼ 1 a ¼ 10�4 a ¼ 1 a ¼ 10�4

Problem n x0 NF NF NF NF NF/NG

Powell 4 1 13 10 15 10 11
singular 10 34 13 485 13 13

100 198 16 – 22 16
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D1 ¼ kðJT
1 J1 þ l1kF1kIÞ�1JT

1 F1k: ð4:5Þ

We test several choices of the Levenberg-Marquardt parameter in the Levenberg-

Marquardt method. We choose lk ¼ akFkkd, with a ¼ 1 or 10�4 and d ¼ 1 or 2.

The algorithm is terminated when the norm of JT
k Fk, e.g., the derivative of

1
2 jjF ðxÞjj

2 at the k-th iterate, is less than 10�5, or when the number of the iterations

exceeds 100ðnþ 1Þ. The results for the first set problems of rank n� 1 are listed in
Table 2, and the second set of rank n� 2 in Table 3. The third column of the table
indicates that the starting point is x0; 10x0, and 100x0, where x0 is suggested by
Moré, Garbow and Hillstrom in [6]; ‘‘NF’’ and ‘‘NJ’’ represent the numbers of
function calculations and Jacobian calculations, respectively. We only present the
values of ‘‘NF’’ in the Levenberg-Marquardt method as ‘‘NF’’ is equal to ‘‘NJ’’
and in the trust region method if ‘‘NF’’ and ‘‘NJ’’ are the same. If the method

Table 2. Results on first singular test set with rankðF 0ðx�ÞÞ ¼ n� 1

lk ¼ akF ðxkÞk lk ¼ akF ðxkÞk2 TR

a ¼ 1 a ¼ 10�4 a ¼ 1 a ¼ 10�4

Problem n x0 NF NF NF NF NF/NG

1 2 1 43 15 24 15 15
10 63 18 125 19 17
100 234 21 – 25 21

3 2 1 64 OF OF OF OF
10 46 OF OF OF OF
100 – OF – OF OF

4 4 1 25 16 28 16 16
10 31 19 – 18 19
100 62 22 – 47 22

5 3 1 18 8 16 8 8
10 22 8 68 8 8
100 32 8 – 10 8

8 10 1 9 8 10 8 9
10 23 23 35 23 23
100 45 OF OF 45 OF

9 10 1 4 4 3 3 4
10 311 7 23 8 8
100 100 9 515 9 10

10 30 1 13 5 6 5 6
10 87 7 43 6 9
100 28 10 – 10 10

11 30 1 6 12 7 – 23/13
10 12 – – 13 –
100 – – 260 – –

12 10 1 14 14 15 14 14
10 16 16 112 16 16
100 36 19 – 20 19

13 30 1 14 – – – 9
10 26 – – – 14
100 30 – – – 18

14 30 1 12 11 112 11 13
10 18 17 519 17 19
100 24 22 – 28 24
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failed to find the solution in 100ðnþ 1Þ iterations, we denoted it by the sign ‘‘–’’,
and if the iterations have underflows or overflows, we denoted it by OF.

From the results, we can see that our new Levenberg-Marquardt algorithm
performs almost the same as the traditional trust region algorithm for problems
with rankðJðx�ÞÞ ¼ n� 1. However it performs much better than the traditional
trust region algorithm when rankðJðx�ÞÞ ¼ n� 2. Hence, it seems that our new
Levenberg-Marquardt algorithm may be more efficient for nonlinear equations
with higher rank deficiency.

When the starting point is far away from the solution set of the nonlinear
equations, the choice of a ¼ 10�4 is better than that of a ¼ 1 and the choice of
d ¼ 1 is better than that of d ¼ 2, whatever the rank of Jðx�Þ is. These facts

indicate that lk ¼ kFkk2 may be very large at the beginning of the iterations,

which may lead to smaller steps, and so prevent the sequence from converging

Table 3. Results on second singular test set with rankðF 0ðx�ÞÞ ¼ n� 2

lk ¼ akF ðxkÞk lk ¼ akF ðxkÞk2 TR

a ¼ 1 a ¼ 10�4 a ¼ 1 a ¼ 10�4

Problem n x0 NF NF NF NF NF/NG

1 2 1 11 11 12 11 24
10 14 13 58 13 31
100 17 17 – 17 38

3 2 1 – 33 35 OF 59/51
10 3 27 14 OF 4
100 3 114 3 OF 4

4 4 1 14 14 23 14 4
10 17 17 – 17 –
100 21 20 – 26 –

5 3 1 29 13 21 13 13
10 35 14 74 14 14
100 83 15 – 17 66/44

6 31 1 16 19 60 20 –
8 10 1 9 8 10 8 328

10 23 23 35 23 –
100 44 OF – 45 –

9 10 1 4 688 – 76 4
10 311 216 384 70 8
100 113 10 517 10 10

10 30 1 13 – 20 – 6
10 87 – 45 – 9
100 142 – – – 10

11 30 1 – 13 9 – 20/13
10 12 – 13 23 –
100 – – 261 – –

12 10 1 14 14 15 14 –
10 16 16 109 16 –
100 36 19 – 20 –

13 30 1 14 – 461 – 9
10 23 – – – 14
100 30 – – – 18

14 30 1 12 11 12 11 13
10 18 17 519 17 9
100 24 22 – 28 24
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quickly, and sometimes the method can not solve the problem in 100ðnþ 1Þ
iterations.

All in all, the Levenberg-Marquardt algorithm with the parameter being

lk ¼ kFkk performs most stable among the traditional trust region algorithm and

the Levenberg-Marquardt algorithm with other three choices of the parameter.

Hence, the choice of lk ¼ kFkk may be preferable to an arbitrary problem with
unknown rank.

Finally, it is worth pointing out that on the 100x0 case for Problem 11, when the

parameter is chosen as lk ¼ kFkk2, the new Levenberg-Marquardt algorithm

converges to a stationary point of minx2Rn kF ðxÞk, instead of that of F ðxÞ ¼ 0.
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