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Abstract. We discuss the distribution of the local solutions of the Celis–Dennis–Tapia (CDT)
subproblem, which appears in some trust region algorithms for nonlinear optimization. We also give
some examples to show the differences between the CDT subproblem and the single-ball-constraint
subproblem. These results show that the complexity of the CDT subproblem does not depend on
the complexity of the structure of the dual plane. Thus they provide the possibility to search for the
global minimizer in the dual plane.
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1. Introduction. In this paper, we study some theoretical properties of local
solutions to the following minimization problem with a quadratic objective and two
quadratic constraints:

min
d∈Rn

Φ(d) =
1

2
dTBd+ gTd(1.1)

subject to

‖d‖ ≤ ∆,(1.2)

‖ATd+ c‖ ≤ ξ,(1.3)

where g ∈ Rn, B ∈ Rn×n, A ∈ Rn×m, c ∈ Rm, ∆ > 0, ξ ≥ 0, and B is a symmetric
matrix. Throughout this paper, the norm ‖ · ‖ is the 2-norm. Problem (1.1)–(1.3) is
a subproblem of some trust region algorithms for nonlinear programming (see Celis,
Dennis, and Tapia [2] and Powell and Yuan [15]), and it is often called the CDT
subproblem.

As an important application, the CDT subproblem was used as an inner iteration
in the algorithm given by Powell and Yuan [15], whose superlinear convergence prop-
erty is obtained under certain conditions. However, for general B and A, there is still
no satisfactory method with which to find the global solution of problem (1.1)–(1.3)
which is required in some trust region algorithms.

The properties of the CDT subproblem have been studied; see Yuan [16] and Peng
and Yuan [13] for its extension. Under some additional assumptions, some algorithms
have been given to solve it. For example, under the assumption that B is positive
definite, different kinds of algorithm are presented by Ecker and Niemi [6], Mehrotra
and Sun [12], Phan-Huy-Hao [14], Yuan [17], and Zhang [18]. Instead of the above
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assumption, under the assumption that A = I and B is semidefinite an algorithm is
given by Heinkenschloss [9], which is modified by Chen [3]. A global algorithm for
the case A = I and general symmetric B is given by Mart́ınez and Santos [11].

Some approximate methods are given since the CDT problem, used as a subprob-
lem of nonlinear programming algorithms, is needed to obtain a sufficient descent
feasible point instead of the global minimizer. See El-Alem and Tapia [7] and Fu,
Luo, and Ye [8] for algorithms based on approximations of the feasible region. Byrd
and Schnabel [1] and Dennis and Williamson [4] solve the CDT subproblem in the
two-dimensional subspace {g, (AT )+c}. These alternative CDT subproblems work in
some nonlinear programming to some extent—for example, in the so-called PNCDT
method of El-Alem and Tapia [7]. However, it is not clear how to compute the global
solution of the CDT problem efficiently.

As a subproblem, ξ can be chosen such that problem (1.2)–(1.3) has feasible
points; see Dennis, El-Alem, and Maciel [5] and references therein. If the CDT sub-
problem has no interior point, it is deduced to a simple case which is discussed in
Yuan [16]. So we assume that problem (1.2)–(1.3) has interior points and we do not
discuss the choice of ξ.

The rest of this paper is organized as follows. Some basic results are restated
in section 2. The structure of the dual plane of the CDT problem is investigated
in section 3. The dual function of the CDT problem is extended to a closed region,
and some properties of the extend dual function are given, in section 4. Sections 5
and 6 are the main part of this paper. The global minimizer of the CDT problem is
divided into three cases. By defining a “related region,” we prove that the Lagrangian
multipliers corresponding to the global minimizer locate in the related region if the
maximizer of the dual function does not correspond to a global minimizer. Then we
find the smallest related region. The differences between the local minimizers of the
trust region subproblem and those of the CDT problem are presented in section 7.
Also shown is that the Lagrangian multipliers of the CDT problem corresponding
to local minimizers are permuted in the way of the connected branches of the region
where the Hessian has exactly one negative eigenvalue. Conclusions and some possible
ways to solve the CDT problem are presented in section 8.

2. Some basic results. In this section, we restate some fundamental results of
the CDT problem. For their proofs, see Yuan [16].

Theorem 2.1. Let d∗ be a global solution of the problem (1.1)–(1.3). Assume
that ξ > min‖d‖≤∆ ‖AT d+ c‖. Then there exist nonnegative constants λ, µ such that

(B + λI + µAAT )d∗ = −(g + µAc),(2.1)

where λ and µ satisfy the complementarity conditions

λ(∆− ‖d∗‖) = 0,(2.2)

µ(ξ − ‖AT d∗ + c‖) = 0.(2.3)

Furthermore, the matrix

H(λ, µ) = B + λI + µAAT(2.4)

has at most one negative eigenvalue if the multipliers λ and µ are unique.
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To say that H(λ, µ) has one negative eigenvalue means that the negative eigen-
value of H(λ, µ) is a single eigenvalue. For the case that the multipliers λ and µ are
not unique, we have the following result.

Theorem 2.2. Assume that the conditions of Theorem 2.1 hold. Then there
exists (λ, µ) ∈ Ω such that the matrix (2.4) has at most one negative eigenvalue,
where Ω is the set of Lagrangian multipliers.

We have the following sufficient optimality condition for a global minimizer of
problem (1.1)–(1.3).

Theorem 2.3. If d∗ is a feasible point of (1.2)–(1.3), if there are two multipliers
λ and µ such that (2.1)–(2.3) hold, and if the matrix (2.4) is positive semidefinite,
then d∗ is a global solution of the problem (1.1)–(1.3).

3. Structure of dual plane. A dual algorithm is given in Yuan [17] for solving
subproblem (1.1)–(1.3) with B positive definite, based on the equivalent problem:

min
d∈Rn

Φ(d) =
1

2
dTBd+ gTd(3.1)

subject to

‖d‖2 ≤ ∆2,(3.2)

‖ATd+ c‖2 ≤ ξ2.(3.3)

Similar to the single-ball constrained trust region subproblem, the CDT subproblem
may be hard when the Hessian of the Lagrangian is positive semidefinite but not pos-
itive definite. Furthermore, the Hessian at the global solution may have one negative
eigenvalue (see Theorem 2.1). The dual problem for (3.1)–(3.3) can also be defined
when the Hessian of the Lagrangian is singular. This will be discussed in the next
section.

First, we consider the case in which the Hessian of the Lagrangian is nonsingular.
The Hessian of the Lagrangian is (2.4), where λ ≥ 0, µ ≥ 0 are the Lagrangian
multipliers of problem (3.1)–(3.3), and they are also the dual variables. Using the
notations of Yuan [17], we define the vector

d(λ, µ) = −H(λ, µ)−1(g + µAc),(3.4)

which satisfies the first equation of the well-known KKT system (2.1)–(2.3) of problem
(3.1)–(3.3). We also define the Lagrangian dual function of problem (3.1)–(3.3) as

Ψ(λ, µ) = Φ(d(λ, µ)) +
λ

2
(‖d(λ, µ)‖2 −∆2) +

µ

2
(‖ATd(λ, µ) + c‖2 − ξ2)(3.5)

and the region

Ω0 = {(λ, µ) ∈ R2
+ | H(λ, µ) is positive semidefinite},(3.6)

where d(λ, µ) is defined by (3.4) and R2
+ = {λ ≥ 0, µ ≥ 0}. Direct calculations show

that

∇Ψ(λ, µ) =
1

2

( ‖d(λ, µ)‖2 −∆2

‖ATd(λ, µ) + c‖2 − ξ2

)
(3.7)
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and

∇2Ψ(λ, µ) = −
(
d(λ, µ)TH(λ, µ)−1d(λ, µ) d(λ, µ)TH(λ, µ)−1y(λ, µ)
d(λ, µ)TH(λ, µ)−1y(λ, µ) y(λ, µ)TH(λ, µ)−1y(λ, µ)

)
,(3.8)

where y(λ, µ) is the vector

y(λ, µ) = A(ATd(λ, µ) + c).(3.9)

In order to study the dual function, we define the region

Ω(ε) = {(λ, µ) ∈ Ω0 | dist((λ, µ), ∂Ω0) ≥ ε},(3.10)

where ε > 0, dist(·, ·) is the 2-norm distance function, and ∂Ω denotes the boundary
of a region Ω. It is easy to see that Ω0 and Ω(ε) are convex sets. First we show a
property of the Hessian on Ω(ε).

Lemma 3.1. For any (λ, µ) ∈ Ω(ε), H(λ, µ) is positive definite.
Proof. Define Bη to be the Euclidean ball in R2 with radius η and

X ⊕ Y = {x+ y | x ∈ X, y ∈ Y }(3.11)

for two sets X and Y . We have, for any (λ, µ) ∈ Ω(ε),

(λ, µ)⊕ B ε
2
⊂ Ω(ε)⊕ B ε

2
⊂ Ω

(ε
2

)
,(3.12)

which implies that (λ− ε
2 , µ) ∈ Ω( ε2 ) and H(λ− ε

2 , µ) is positive semidefinite. There-
fore,

H(λ, µ) = H
(
λ− ε

2
, µ
)

+
ε

2
I(3.13)

is positive definite.
From the above lemma, the dual function Ψ(λ, µ), its gradient, and its Hessian

are well defined in intΩ0, the interior of Ω0, and the region Ω(ε) for any ε > 0. Thus
by the concavity of Ψ(λ, µ) (from (3.8)), we can obtain the maxima of Ψ(λ, µ) on
Ω(ε). If there is an ε > 0 such that

(λ+, µ+) = arg max
(λ,µ)∈Ω(ε)

Ψ(λ, µ) ∈ intΩ(ε),(3.14)

then H(λ+, µ+) is positive definite and we can prove the following theorem. Actually,
this theorem holds for any positive definite H(λ+, µ+) if (λ+, µ+) ∈ Ω0.

Theorem 3.2. Suppose that (λ+, µ+) is any point defined by (3.14). Then the
global solution of (3.1)–(3.3) is d(λ+, µ+) given by (3.4).

Proof. Because H(λ+, µ+) is positive definite, d(λ+, µ+) is well defined by (3.4),
and (λ+, µ+) is a local maximizer of Ψ(λ, µ) in R2

+. Therefore, we have that

∇Ψ(λ+, µ+) ≤ 0(3.15)

and

(λ+, µ+)T∇Ψ(λ+, µ+) = 0.(3.16)

This shows that d(λ+, µ+) is the global solution of (3.1)–(3.3) and (λ+, µ+) are the
corresponding Lagrangian multipliers.
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Since arg max Ψ(λ, µ) is a convex set, it includes an interior point of Ω0 if it
strictly includes a segment. If arg max Ψ(λ, µ) on intΩ0 is a segment and there is a
point of this segment in the interior of Ω0, there exists a sufficient small ε > such that
(3.14) holds. Thus it follows from Theorem 3.2 that there exists a global solution of
(3.1)–(3.3) with a positive definite Hessian of the Lagrangian. Otherwise, the Hessian
of the Lagrangian might not be positive semidefinite. By the theorems stated in
section 2, the Hessian H(λ, µ) at the global solution of (3.1)–(3.3) has at most one
negative eigenvalue, and the corresponding Lagrangian multipliers (λ, µ) may locate
in the region

Ω1 = {(λ, µ) ∈ R2
+ | H(λ, µ) has one negative eigenvalue}.(3.17)

Next we investigate the structure of Ω1. Let

Ω1 =
⋃
k∈K

Ω1k,(3.18)

where K is an index set; Ω1k, k ∈ K, are connected sets; and Ω1k and Ω1j are discon-
nected for any k 6= j, k, j ∈ K. Whether K is a finite index set makes no difference to
our discussions by the location theorem given in section 5. By defining

uλk = sup(λ,µ)∈Ω1k
λ,(3.19)

uµk = sup(λ,µ)∈Ω1k
µ,(3.20)

lλk = inf(λ,µ)∈Ω1k
λ,(3.21)

and

lµk = inf(λ,µ)∈Ω1k
µ,(3.22)

we have the following lemma,
Lemma 3.3. If there are (λ1, µ1) ∈ Ω1k, (λ2, µ2) ∈ Ω1j, where k 6= j and λ1 > λ2,

then we have

lλk ≥ uλj ,(3.23)

uµk ≤ lµj .(3.24)

Moreover, (3.23) and (3.24) are both equalities or strict inequalities.
Proof. It is easy to show that the set {λ | ∃(λ, µ) ∈ Ω1k} is a segment for any fixed

µ, as is {µ | ∃(λ, µ) ∈ Ω1k} for any fixed λ. If lλk < uλj , there is a λ0 ∈ (lλk, uλj). By
the above definitions, there are µ0

k, µ0
j ∈ R such that (λ0, µ

0
k) ∈ Ω1k and (λ0, µ

0
j ) ∈ Ω1j .

Without loss of generality, let µ0
k < µ0

j . Denote ρi(B) as the ith eigenvalue of B. We
have

ρn(H(λ0, µ
0
k)) ≤ ρn(H(λ0, µ)) ≤ ρn(H(λ0, µ

0
j )) < 0,(3.25)

0 ≤ ρn−1(H(λ0, µ
0
k)) ≤ ρn−1(H(λ0, µ)) ≤ ρn−1(H(λ0, µ

0
j ))(3.26)
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for all µ ∈ (µ0
k, µ

0
j ). Thus (λ0, µ) ∈ Ω1 for all µ ∈ (µ0

k, µ
0
j ), which implies that Ω1k

and Ω1j are connected. The contradiction proves (3.23), and (3.24) can be proved
similarly.

If lλk > uλj and uµk = lµj , H(uλj , lµj) is positive semidefinite and H(lλk, uµk) =
H(uλj , lµj) + (lλk − uλj)I is positive definite, contradicting the definitions (3.19)–
(3.22).

Suppose that lλk = uλj and uµk < lµj . Since for any sufficiently small ε > 0,

(lλk − ε, µ) 6∈ Ω1l(3.27)

for any µ ∈ (uµk, lµj) and l ∈ K, H(lλk−ε, µ) has at least two negative eigenvalues. It
also can be shown that H(lλk+ε, µ) is positive definite. Thus taking ε→ 0, we obtain
that H(lλk, µ) has zero eigenvalues with multiplicity at least two for µ ∈ (uµk, lµj).

Since det(H(lλk, µ)) is a polynomial with zeros with multiplicity at least two for
µ ∈ (uµk, lµj), det(H(lλk, µ)) has zeros with multiplicity at least two for all µ ≥ 0,
which means that the dimension of Null(H(lλk, µ)) is no less than two. Therefore,
H(uλj − ε, µ) has at least two negative eigenvalues for all ε > 0 and µ > lµj , contra-
dicting the definition of Ω1j .

In the following, we denote Ω1k � Ω1j if (3.23)–(3.24) hold. Moreover, from the
above proof, there is at most one segment in the intersection of any positive-slope
straight line in R2

+ and any connected branch of Ω1.
Definition 3.4. Two connected branches Ω1k � Ω1j of Ω1 are called consecutive

connected branches if there is no other connected branch Ω1l of Ω1 such that

Ω1k � Ω1l � Ω1j ,(3.28)

and they are called two adjoint connected branches if (3.23) and (3.24) hold as equal-
ities.

The following lemma tells us the more detailed structure of the border of Ω0.
Lemma 3.5. For any two adjoint connected branches Ω1k and Ω1j of Ω1, Ω1k �

Ω1j, (lλk, uµk) is an extreme point of the convex set Ω0.
Proof. It suffices to prove that ∂Ω0

⋂
∂(Ω1k

⋃
Ω1j) is not a segment in any neigh-

borhood of (lλk, uµk). We prove this lemma by contradiction. Suppose

(lλk, uµk) ∈ Ω1k

⋂
Ω1j ,(3.29)

(λ̄k, µ̄k) ∈ ∂Ω0

⋂
Ω1k,(3.30)

and

(λ̄j , µ̄j) ∈ ∂Ω0

⋂
Ω1j(3.31)

are in a straight line. Then there exists 0 < δ < 1, such that

H(lλk, uµk) = δH(λ̄k, µ̄k) + (1− δ)H(λ̄j , µ̄j).(3.32)

Since (λ̄k − ε, µ̄k − ε) ∈ Ω1k for ε > 0 sufficient small, H(λ̄k − ε, µ̄k − ε) has
exactly one negative eigenvalue. Taking ε → 0+, we can show that H(λ̄k, µ̄k) is
positive semidefinite and has one multiple zero eigenvalue. The fact is also true for
H(λ̄j , µ̄j). Suppose that

z1 ∈ Null(H(λ̄k, µ̄k))(3.33)
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and

z2 ∈ Null(H(λ̄j , µ̄j)),(3.34)

where Null(·) denotes the null space of a matrix. Since H(lλk, uµk) is positive semidef-
inite, for any ε > 0, H((1+ε)lλk, (1+ε)uµk) is positive definite. For any Ω1l satisfying
Ω1l � Ω1k,

lλl > (1− ε)lλk,(3.35)

while for any Ω1l satisfying Ω1j � Ω1l,

uµl > (1− ε)uµk,(3.36)

for any ε > 0. So for any ε > 0, ((1 − ε)lλk, (1 − ε)uµk) 6∈ Ω1j for all j, and hence
H((1 − ε)lλk, (1 − ε)uµk) has at least two negative eigenvalues. Let ε → 0+; we can
see that H(lλk, uµk) is positive semidefinite and has zero eigenvalues with multiplicity
at least two.

Suppose span{v1, v2} ⊂ Null(H(lλk, uµk)). Then for all z ∈ span{v1, v2},
zTH(lλk, uµk)z = zT(δH(λ̄k, µ̄k) + (1− δ)H(λ̄j , µ̄j))z = 0.(3.37)

The above equality implies that zTH(λ̄k, µ̄k)z = 0 and zTH(λ̄j , µ̄j)z = 0, so z1 = z2,
and

Null(H(λ̄k, µ̄k)) = Null(H(λ̄j , µ̄j)),(3.38)

and the dimension of Null(H(lλk, uµk)) is equal to 1, contradicting the fact that
H(lλk, uµk) has zero eigenvalues with multiplicity two.

4. Definitions on the boundary. In this section, we deal with the boundary of
Ω0. First we define the dual function on the boundary of Ω0 based on the definitions
in intΩ0. Assuming that (λ̄, µ̄) ∈ ∂Ω0 with H(λ̄, µ̄) singular, we define

Ψ(λ̄, µ̄) = lim
ε→0+

Ψ(λ̄+ ε, µ̄).(4.1)

In summary, Ψ(λ̄, µ̄) is the right limit of Ψ(·, ·) at the point (λ̄, µ̄) along the line µ = µ̄.
Because Ψ(·, ·) is continuous in intΩ0, definition (4.1) also holds for the interior point
of Ω0.

Lemma 4.1. Equation (4.1) is well defined.
Proof. Equation (3.5) can be rewritten as

Ψ(λ, µ) = −1

2
(g + µAc)TH(λ, µ)−1(g + µAc)− λ

2
∆2 − µ

2
(ξ2 − ‖c‖2)(4.2)

when (λ, µ) ∈ intΩ0. Therefore,

Ψ(λ, µ) ≤ −λ
2

∆2 − µ

2
(ξ2 − ‖c‖2),(4.3)

which shows that Ψ(λ, µ) is locally upper bounded in intΩ0.
If (2.1) is inconsistent, the right-hand side of (4.1) is −∞. Otherwise, suppose

that g + µ̄Ac = H(λ̄, µ̄)v for some v ∈ Rn. It is easy to see that for any positive
semidefinite matrix A,

lim
ε→0+

(A+ εI)−1A = A+A.(4.4)
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Therefore, the following limit exists:

limε→0+ d(λ̄+ ε, µ̄)
= limε→0+−H(λ̄+ ε, µ̄)−1(g + µ̄Ac)
= limε→0+−H(λ̄+ ε, µ̄)−1H(λ̄, µ̄)ḡ
= −H(λ̄, µ̄)+H(λ̄, µ̄)ḡ.

(4.5)

d(λ̄ + ε, µ̄) is uniformly bounded when ε → 0+. Suppose there are two sequences
{λ1k} and {λ2k} such that

lim
λ1k→λ̄+

Ψ(λ1k, µ̄) 6= lim
λ2k→λ̄+

Ψ(λ2k, µ̄).(4.6)

By the mean value theorem, we have

Ψ(λ1k, µ̄)−Ψ(λ2k, µ̄) =
1

2
(λ1k − λ2k)‖d(λm, µ̄)‖.(4.7)

The right-hand side of (4.7) vanishes by the boundedness of d(·, µ̄), contradicting
(4.6). This completes our proof.

Thus Ψ(λ, µ) is defined on the closed set Ω0 and can take a finite value or −∞,
but not +∞. However,

max
(λ,µ)∈Ω0

Ψ(λ, µ)(4.8)

may be +∞, and

arg max
(λ,µ)∈Ω0

Ψ(λ, µ)(4.9)

may lie at the infinity on the dual space R2
+. In section 5, we will see that this case

can be handled in the same way as the finite case. Since Ψ(·, ·) is well defined on the
closed set Ω0, we define the set

S =

{
(λ, µ) ∈ Ω0 | (λ, µ) = arg max

Ω0

Ψ(λ, µ)

}
.(4.10)

Because Ψ(λ, µ) is concave in intΩ0 and also concave on Ω0 by Lemma 4.2 given
below, its maxima point set may be a segment on the ∂Ω0. Then Lemma 3.5 implies
that this segment belongs to only one connected branch.

Lemma 4.2. Ψ(λ, µ) is a concave function on the closed set Ω0.
Proof. Let (λ1, µ1) and (λ2, µ2) be two points in Ω0. Then we have that

H(λ1 + ε, µ1) and H(λ2 + ε, µ2) are positive definite for all ε > 0, and hence so
is H(λ1+λ2+2ε

2 , µ1+µ2

2 ). Since Ψ(·, ·) is concave in intΩ0,

Ψ

(
λ1 + λ2 + 2ε

2
,
µ1 + µ2

2

)
≥ 1

2
(Ψ(λ1 + ε, µ1) + Ψ(λ2 + ε, µ2)).(4.11)

Taking limits on both sides of the above inequality we deduced that Ψ(λ, µ) is concave
on Ω0.

Assuming (λ̄, µ̄) ∈ ∂Ω0, we define

d(λ̄, µ̄) = lim
ε→0+

d(λ̄+ ε, µ̄).(4.12)
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If (2.1) is inconsistent for (λ̄, µ̄), the right-hand side of (4.1) goes to −∞. In this
case d(λ̄, µ̄) is undefined in (4.12). Suppose (2.1) is consistent at (λ̄, µ̄). Then we
can choose, for convenience, the minimum norm least square solution of (2.1). In the
following, we will see that it is important that the limit (4.12) satisfies the property
stated in Lemma 4.3 instead of the definition (4.12) itself.

Lemma 4.3. Assuming that (2.1) holds at (λ̄, µ̄) ∈ ∂Ω0, we have the following
property:

lim
ε→0+

H(λ̄, µ̄)d(λ̄+ ε, µ̄) = −(g + µ̄Ac).(4.13)

Proof. First we have

H(λ̄, µ̄)d(λ̄+ ε, µ̄) = −H(λ̄, µ̄)H(λ̄+ ε, µ̄)−1(g + µ̄Ac)

= −H(λ̄, µ̄)
(
H(λ̄, µ̄) + εI

)−1
(g + µ̄Ac).

(4.14)

It is easy to see that for any positive semidefinite matrix A,

lim
ε→0+

A(A+ εI)−1 = AA+,(4.15)

where A+ is the Moore–Penrose generalized inverse of A. Thus, it follows from (4.14)
and (4.15) that

limε→0+H(λ̄, µ̄)d(λ̄+ ε, µ̄) = −H(λ̄, µ̄)H(λ̄, µ̄)+(g + µ̄Ac)

= −(g + µ̄Ac),
(4.16)

which gives (4.13).

Since we have

limε→0+(g + µ̄Ac)TH(λ̄+ ε, µ̄)−1(g + µ̄Ac)

= limε→0+(g + µ̄Ac)TH(λ̄+ ε, µ̄)−1H(λ̄+ ε, µ̄)H(λ̄+ ε, µ̄)−1(g + µ̄Ac)

= limε→0+(g + µ̄Ac)TH(λ̄+ ε, µ̄)+H(λ̄+ ε, µ̄)H(λ̄+ ε, µ̄)+(g + µ̄Ac)

= (g + µ̄Ac)TH(λ̄, µ̄)+(g + µ̄Ac),

(4.17)

the following result follows from our extended definitions given in (4.1).

Lemma 4.4. For (λ̄, µ̄) ∈ Ω0,

Ψ(λ̄, µ̄) =


−∞ if (2.1) is inconsistent,

− 1
2 (g + µ̄Ac)TH(λ̄, µ̄)+(g + µ̄Ac)− λ

2 ∆2 − µ
2 (ξ2 − ‖c‖2)

otherwise

(4.18)

and

d(λ̄, µ̄) =

 undefined if (2.1) is inconsistent,

−H(λ̄, µ̄)+(g + µ̄Ac) otherwise.
(4.19)
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5. Location of global solution. In this section, we study the relations between
the set S defined by (4.10) and the Lagrangian multipliers (λ̄, µ̄) at the global solutions
of problem (1.1)–(1.3). First, we consider the following cases:

• There exists a (λ+, µ+) ∈ S satisfying (3.14). So, d(λ+, µ+) is a global
solution of problem (3.1)–(3.3) due to Theorem 3.2. In this case, S may be a
singleton or a segment.
• A segment of S lies in ∂Ω1k for some k ∈ K. (k is unique due to Lemma 3.5.)

Theorem 5.4, given below, states that we have obtained the desired global
solution.
• S is a singleton such that S ⊂ ∂Ω1. For this case, in this section we give the

locating branches in which the global solution lies, which generally includes
two or three connected branches of Ω1. In this case, the Hessian of any global
solution of problem (3.1)–(3.3) might not be positive semidefinite. And we
still cannot determine in which connected branch the global solution lies.
This is the hard case of subproblem (1.1)–(1.3).

The following examples show the last two cases.
Example 5.1. A segment maxima of the dual function. Let

B = diag(−4,−2), A = diag(1, 2), g = (0, 4)′, c = (0, 3)′,∆ = 3, ξ =
√

6.

Then d = (±√5,−2)′ with the Lagrangian multiplier (4 − µ, µ) and the Hessian of
Lagrangian diag(0, 2 + 3µ), where µ ∈ [0, 4].

The following two examples show the hardness of the last case.
Example 5.2. Let

B = diag(−2, 2), A = diag(1, 1), g = (2, 0)′, c = (−2, 0)′,∆ = 2, ξ = 1.

Then d = (2, 0)′ with the Lagrangian multiplier (1, 0) and the Hessian of Lagrangian
diag(−1, 3).

Example 5.3. Let

B = diag(−1,−2), A = diag(1, 1), g = (−4, 6)′, c = (0,−6)′,∆ = 5, ξ = 5.

Then d = (4, 3)′ with the Lagrangian multiplier (1, 1) and the Hessian of Lagrangian
diag(1, 0).

The contours of the dual functions of the above examples are given in Figures
5.1, 5.2, and 5.3.

If S ⊂ Ω1k is a segment for some k ∈ K, we already get the solution by adding a
null-space-step of the Hessian of the Lagrangian by Theorem 5.4.
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Theorem 5.4. If S ⊂ ∂Ω1k is a segment, then there exists a solution of (2.1)–
(2.3) where the Hessian of the Lagrangian is positive semidefinite.

Proof. Let (λ̄, µ̄) and (λ̂, µ̂) be two different points of S. By the definition of S,
we have

lim
i→+∞

Ψ(λ̄i, µ̄) = max
Ω0

Ψ(λ, µ),(5.1)

lim
i→+∞

Ψ(λ̂i, µ̂) = max
Ω0

Ψ(λ, µ),(5.2)

where λ̄i − λ̄ → 0+ and λ̂i − λ̂ → 0+. Since Ψ(·, ·) approximates to a constant in a
neighborhood of S, the above two relations give that

lim
i→+∞

( ‖d(λ̄i, µ̄)‖2 −∆2

‖AT d(λ̄i, µ̄) + c‖2 − ξ2

)T(
λ̄− λ̂
µ̄− µ̂

)
= 0(5.3)

and

lim
i→+∞

d(λ̄i, µ̄)(λ̄i − λ̂i)− y(λ̄i, µ̄)(µ̄− µ̂) = 0.(5.4)

Since S ⊂ ∂Ω1k, H(λ̄, µ̄), and H(λ̂, µ̂) are singular. By the concavity of Ψ(·, ·), we
have that H(λ, µ) is singular and positive semidefinite for all (λ, µ) in the segment

between (λ̄, µ̄) and (λ̂, µ̂). For any 0 6= v ∈ Null(H(λ̄, µ̄)) we have that

vTH(λ̄, µ̄)v = vTH(λ̂, µ̂)v = 0,(5.5)

which implies that

‖v‖2(λ̄− λ̂) + ‖AT v‖2(µ̄− µ̂) = 0.(5.6)

Therefore,

lim
i→+∞

vT (d(λ̄i, µ̄)(λ̄i − λ̂i)− y(λ̄i, µ̄)(µ̄− µ̂)) = 0,(5.7)

which, together with (5.4) and (5.6), gives that

lim
i→+∞

( ‖d(λ̄i, µ̄) + tv‖2 −∆2

‖AT (d(λ̄i, µ̄) + tv) + c‖2 − ξ2

)T(
λ̄− λ̂
µ̄− µ̂

)
= 0(5.8)

for all t ∈ R. Since the right-hand sides of (5.1) and (5.2) are not −∞, it can be seen

that (2.1) is consistent at (λ̄, µ̄) and (λ̂, µ̂). Thus

lim
i→∞

d(λ̄i, µ̄) = d(λ̄, µ̄).(5.9)

Since (λ̄, µ̄) ∈ S, by the reasons mentioned in Theorem 3.2, we see that ‖d(λ̄, µ̄)‖ ≤ ∆.
Therefore, we can choose ti such that

lim
i→+∞

‖d(λi, µ) + tiv‖ = ∆.(5.10)
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Let d̄ be any limit point of {d(λi, µ) + tiv}, so

‖d̄‖ = ∆,(5.11)

‖AT d̄+ c‖ = ξ,(5.12)

and

H(λ̄, µ̄)d̄ = −(g + µ̄Ac),(5.13)

which implies that d̄ is a global solution, (λ̄, µ̄) is the corresponding pair of Lagrangian
multipliers, and H(λ̄, µ̄) is positive semidefinite.

6. Location of global solution: Hard case. We now consider the hard case
of problem (1.1)–(1.3), in which S is a singleton on ∂Ω0 and the Hessian at the global
solution may have one negative eigenvalue. In order to determine the region where the
solution locates, we introduce the following definition. In all the following discussion
we assume that S = {(λ+, µ+)} ⊂ ∂Ω0 is a singleton.

Definition 6.1. Define two sets

L = {λe < λ+ | ri{{λ = λe} ∩ Ω1} = ∅} ∪ {0}(6.1)

and

M = {µe < µ+ | ri{{µ = µe} ∩ Ω1} = ∅} ∪ {0}.(6.2)

For λe ∈ L and µe ∈M, the set

Ω(λe, µe) =
(
Ω1 ∪ S

) ∩ {λ ≥ λe, µ ≥ µe}(6.3)

is called a related region of S.
Because S might not be in Ω1 or even Ω1, the term Ω1 ∪ S must occur in (6.3).

Here, ri{{λ = λe}∩Ω1} = ∅ implies that it is impossible for H(λe, µ) to have exactly
one negative eigenvalue for any µ. In the latter case, for the λ-direction, we may have
the following two cases:

(i) λ+ > 0, and for all 0 ≤ λe < λ+, ri{{λ = λe} ∩ Ω1} 6= ∅;
(ii) λ+ = 0.

Similarly, we have two cases for the µ-direction. If λe = 0 or µe = 0, the related
region is the same as Ω1 ∪S in the λ-direction or in the µ-direction. Therefore, there
exists a Lagrange multiplier at the global solution lies in the related region in the λ-
direction or in the µ-direction. Thus, we need only to consider the case when λe 6= 0
and µe 6= 0. In this case we have that λ+ 6= 0 and µ+ 6= 0.

First, we need the following lemma to prove our location theorem.
Lemma 6.2. Assume that S is a singleton. If the triple (λ∗, µ∗, d∗) satisfies KKT

system (2.1)–(2.3) with (λ∗, µ∗) ∈ Ω0, and if either of the statements
(i) λ∗ 6= 0,
(ii) µ∗ 6= 0 and det(B + λ∗I + µAAT ) does not vanish identically for µ ≥ µ∗

holds, then

S = {(λ∗, µ∗)}.(6.4)

Proof. It suffices to prove, for any fixed (λ, µ) ∈ intΩ0,

Ψ(λ∗, µ∗) ≥ Ψ(λ, µ).(6.5)
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We assume, first, that λ∗ 6= 0. For any ε > 0, it is easy to see that d∗ is a global
solution of the subproblem

min
d∈Rn

Φ̄(d) =
1

2
dTBd+ ḡTd(6.6)

subject to

‖d‖ ≤ ∆,(6.7)

‖ATd+ c‖ ≤ ξ,(6.8)

where ḡ = g−εd∗ and the corresponding pair of Lagrangian multipliers is (λ∗+ε, µ∗).
Define that

d̄(λ, µ) = −H(λ, µ)−1(ḡ + µAc)(6.9)

and

Ψ̄(λ, µ) = −1

2
(ḡ + µAc)TH(λ, µ)−1(ḡ + µAc)− λ

2
∆2 − µ

2
(ξ2 − ‖c‖2)(6.10)

when H(λ, µ) is positive definite. If H(λ, µ) is singular, Ψ(λ, µ) can be defined as in
(4.1). Then we have

∇Ψ̄(λ∗ + ε, µ∗) ≤ 0(6.11)

and

(λ∗ + ε, µ∗)T∇Ψ̄(λ∗ + ε, µ∗) = 0.(6.12)

Since the Hessian H(λ∗ + ε, µ∗) is positive definite, (6.11) and (6.12) imply that
(λ∗+ε, µ∗) is a stationary point of Ψ̄(λ, µ). Since Ψ̄(λ, µ) is concave in Ω0, (λ∗+ε, µ∗)
is a global maximizer of Ψ̄(λ, µ) on Ω0, i.e.,

Ψ̄(λ∗ + ε, µ∗) ≥ Ψ̄(λ, µ) for all (λ, µ) ∈ intΩ0.(6.13)

For the left-hand side of (6.13), we have

limε→0+ Ψ̄(λ∗ + ε, µ∗)

= limε→0+− 1
2d
∗TH(λ∗ + ε, µ∗)d∗ − λ∗+ε

2 ∆2 − µ∗

2 (ξ2 − ‖c‖2)

= − 1
2d
∗TH(λ∗, µ∗)d∗ − λ∗

2 ∆2 − µ∗

2 (ξ2 − ‖c‖2).

(6.14)

Because (λ∗, µ∗, d∗) satisfies the KKT system, it follows that

− 1
2d
∗TH(λ∗, µ∗)d∗

= − 1
2d
∗TH(λ∗, µ∗)H+(λ∗, µ∗)H(λ∗, µ∗)d∗

= − 1
2 (g + µ∗Ac)TH+(λ∗, µ∗)(g + µ∗Ac).

(6.15)

Equations (6.14), (6.15), and (4.18) imply that

lim
ε→0+

Ψ̄(λ∗ + ε, µ∗) = Ψ(λ∗, µ∗).(6.16)
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For any (λ, µ) ∈ intΩ0, H(λ, µ) is positive definite. Thus, it is easy to see that

lim
ε→0+

Ψ̄(λ+ ε, µ) = Ψ(λ, µ) for all (λ, µ) ∈ intΩ0.(6.17)

Therefore, (6.5) follows from (6.13), (6.16), and (6.17).
Now we consider the case that µ∗ 6= 0, and det(B+λ∗I +µAAT ) 6≡ 0 for µ ≥ µ∗.

Let ḡ = g − εAAT d∗, where d∗ is a global solution of (6.6)–(6.8) with (λ∗, µ∗ + ε)
the corresponding pair of Lagrangian multipliers. Our assumption implies that there
exists a small ε∗ such that

B + λ∗I + (µ∗ + ε)AAT(6.18)

is positive definite for all 0 < ε < ε∗. Then, we also have equalities (6.15) and (6.17),
and, similarly, we have

limε→0+ Ψ̄(λ∗, µ∗ + ε)

= − 1
2d
∗TH(λ∗, µ∗)d∗ − λ∗

2 ∆2 − µ∗

2 (ξ2 − ‖c‖2).
(6.19)

Thus we can prove the same result.
Moreover, with the additional assumption that d∗ is feasible for both constraints,

we can prove the result of Lemma 6.2 without the assumption that det(H(λ∗, µ)) 6≡ 0
for µ > µ∗. Suppose the condition det(H(λ∗, µ)) 6≡ 0 for µ > µ∗ fails, i.e., det(B +
λ∗I + µAAT ) ≡ 0 for µ ≥ µ∗. Let µc be the minimal µ such that (λ∗, µ) ∈ Ω0, i.e.,
H(λ∗, µ) is positive semidefinite for µ = µc and is not positive semidefinite for µ < µc.
By Lemma 4.2, Ψ(λ∗, µ) is a concave function on µ ∈ [µc,+∞). By the arguments of
Theorem 3.2,

dΨ(λ∗, µ)

dµ
|µ=µ∗ ≤ 0,(6.20)

which holds as an inequality only if µ∗ = µc. Hence µ∗ is the maximizer of function
Ψ(λ∗, ·) on [µc,+∞). Thus, by (3.15) and (3.16), (λ∗, µ∗) is the maximizer of Ψ(λ, µ).

In the following, we discuss some properties of the so-called shifted problem.
We consider the “shifted” problem P̂ :

min Φ̂(d̂) =
1

2
d̂T (B + λeI + µeAA

T )d̂+ (g + µeAc)
Td̂(6.21)

subject to

‖d̂‖2 ≤ ∆2,(6.22)

‖ATd̂+ c‖2 ≤ ξ2.(6.23)

Actually, except for a constant, the objective function Φ̂(d) is the sum of the original
objective function Φ(d) and a penalty term 1

2 (λe‖d‖2 + µe‖ATd+ c‖2).

The dual function of P̂ is

Ψ̂(λ̂, µ̂) = Φ̂(d̂) +
λ̂

2
(‖d̂‖2 −∆2) +

µ̂

2
(‖ATd̂+ c‖2 − ξ2),(6.24)

where

d̂ = d̂(λ̂, µ̂) = −(B̂ + λ̂I + µ̂AAT)−1(ĝ + µ̂Ac),(6.25)
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B̂ = B+λeI +µeAA
T, ĝ = g+µeAc, and λ̂ ≥ 0, µ̂ ≥ 0 are the multipliers of problem

P̂ . The Hessian of the Lagrangian is Ĥ(λ̂, µ̂) = B̂ + λ̂I + µ̂AAT . We also define the
regions,

Ω̂0 = {(λ̂, µ̂) ∈ R2
+ | Ĥ(λ̂, µ̂) is positive semidefinite},(6.26)

and

Ω̂1 = {(λ̂, µ̂) ∈ R2
+ | Ĥ(λ̂, µ̂) has one negative eigenvalue}.(6.27)

It is easy to show that

Ω̂0 = (Ω0 ∩ {λ ≥ λe, µ ≥ µe})− (λe, µe)(6.28)

and

Ω̂1 = (Ω1 ∩ {λ ≥ λe, µ ≥ µe})− (λe, µe).(6.29)

The statement (6.29) also holds for the connected branches Ω̂1j and Ω1j of the regions

Ω̂1 and Ω1, respectively, if Ω1j ∪ {λ ≥ λe, µ ≥ µe} 6= ∅. We also have that two

connected branches Ω̂1j and Ω̂1k of Ω̂1 are consecutive or adjoint if and only if their
counterparts, Ωij and Ω1k, the connected branches of Ω1, are consecutive or adjoint
(assuming that all the connected branches are well defined). In other words, the
translated dual plane holds all these properties of the dual plane of original problem
if the dual variables satisfy λ ≥ λe and µ ≥ µe. Similarly to (3.7),

∇Ψ̂(λ̂, µ̂) =
1

2

( ‖d̂(λ̂, µ̂)‖2 −∆2

‖ATd̂(λ̂, µ̂) + c‖2 − ξ2

)
.(6.30)

From the KKT conditions of the original problem and those of problem P̂ , we have

d(λ+ λe, µ+ µe) = d̂(λ, µ).(6.31)

So, by (6.30) and (3.7), the following equation holds:

∇Ψ(λ+ λe, µ+ µe) = ∇Ψ̂(λ, µ).(6.32)

Moreover, the difference between the dual functions of these two problems is only a
constant depending on λe and µe:

Ψ(λ+ λe, µ+ µe) = Ψ̂(λ, µ) +
λe
2

∆2 +
µe
2

(ξ2 − ‖c‖2).(6.33)

By definition (4.1), the equality (6.33) holds also for (λ, µ) ∈ ∂Ω0. Hence,

(λ+ − λe, µ+ − µe) = arg max
(λ̂,µ̂)∈Ω̂0

Ψ̂(λ̂, µ̂).(6.34)

Now we are ready to prove the main result of this section.
Theorem 6.3. If S is a singleton, there exist multipliers (λ, µ) in the related

region of S such that (λ, µ) are the corresponding Lagrangian multipliers of a global
minimizer of (1.1)–(1.3).

Proof. If there is a feasible point d∗ such that the triple (λ+, µ+, d∗) solves (2.1)–
(2.3), then the global solution of problem (3.1)–(3.3) is d∗.
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Suppose d̂g is a global solution of problem (6.21)–(6.23), and (λ̂g, µ̂g) ∈ Ω̂1 are

the corresponding Lagrangian multipliers. If we suppose λe 6= 0, then we have λ̂g 6= 0.
Otherwise, since

ri{{λ̂ = λ̂g} ∩ Ω1} = ∅,(6.35)

Ĥ(λ̂g, µ̂g) is positive semidefinite, and then Ψ̂ reaches its maximum at two points

(λ̂g, µ̂g) and (λ+−λe, µ+−µe), which means that Ψ also reaches its maximum at two

points. This contradicts the assumption that S is a singleton. If λ̂g = 0, then λe = 0

and λe + λ̂g = 0. Then we have

(λ̂g + λe)(‖d(λ̂g + λe, µ̂g + µe)‖ −∆) = λ̂g(‖d̂(λ̂g, µ̂g)‖ −∆) = 0(6.36)

and, similarly,

(6.37)

(µ̂g + µe)(‖ATd(λ̂g + λe, µ̂g + µe) + c‖ − ξ) = µ̂g(‖ATd̂(λ̂g, µ̂g) + c‖ − ξ) = 0.

This implies that

Φ̂(d̂g) = Φ(d̂g) +
λe
2

∆2 +
µe
2

(ξ2 − ‖c‖2).(6.38)

Moreover,

d(λg, µg) = d̂(λ̂g, µ̂g)(6.39)

follows (6.31) with (λg, µg) the corresponding Lagrangian multipliers. Furthermore,
for any feasible d ∈ Rn of the original problem, we have that

Φ̂(d̂g) ≤ Φ̂(d).(6.40)

Expressions (6.38) and (6.40) imply that

Φ(d(λg, µg)) ≤ Φ(d) + λe(‖d‖2 −∆2) + µe(‖ATd+ c‖2 − ξ2)
≤ Φ(d).

(6.41)

The above inequality indicates that d(λg, µg) is a global solution of the original prob-
lem. This completes our proof.

The above theorem illustrates the relation between the location of the Lagrangian
multipliers and the maxima of the dual function on the region where the Hessian of
the Lagrangian is positive semidefinite. From Definition 6.1, we can see that the
choices of λe and µe are independent of each other. It can be seen that the larger
λe and µe are, the smaller the related region is. Now we choose the minimal related
region of S, i.e., we find the maxima (or supremum) of L and M.

First, we consider the set M. For ε > 0, we consider all the indices j such that

Ω1j ∩ {µ+ − ε < µ < µ+} 6= ∅.(6.42)

By Lemma 3.3, this set can be divided into three cases.
Case 1. For sufficiently small ε > 0, there is no such j. Then, we may choose

µe = µ+−ε for sufficiently small ε > 0. Actually, the global solution lies in {µ ≥ µ+}.
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Fig. 6.1. (a) of Example 6.4. Fig. 6.2. (b) of Example 6.4. Fig. 6.3. (c) of Example 6.4.

Ω12

Ω11

Ω2

Ω11

Case 2. For sufficiently small ε > 0, there is exactly one such j. Then we easily
see that the best choice of µe is µe = lµj .

Case 3. For any small ε > 0, there are infinitely many j such that (6.42) holds.
Then µe can be chosen as any lµj , which implies, actually, that the global solution
lies in {µ ≥ lµj} for all j. Since the supremum of all these indices is µ+, then the
global solution lies in {µ ≥ µ+} as in the first case.

These three cases show that the number of existent connected branches in {µ <
µ+} is at least one. See Figures 6.1, 6.2, and 6.3.

Example 6.4. (a) Let

B = diag(−2,−4), A = diag

(√
2

2
,
√

2

)
.

The related region of (4/3, 4/3) is Ω11 ∪ Ω12.
(b) Let

B = diag(−2,−2,−4), A = diag

(√
2

2
,

√
2

2
,
√

2

)
.

The related region of (4/3, 4/3) is Ω11, and the Hessian with Lagrangian multiplier in
Ω2 has two negative eigenvalues.

(c) We would like to show an example where there are infinitely many connected
branches near one point. However, we could not find such an example or prove its
nonexistence.

For the λ-direction, the case is slightly different. Considering Case 2, if there
exists k such that Ω1k ∩ {λ+ − ε < λ < λ+} 6= ∅, then the following statement may
fail:

ri{{λ = λλk} ∩ Ω1} = ∅.(6.43)

That is to say, B + lλkI + µAAT can be singular and have one negative eigenvalue in
an interval (µs, µs). Therefore, we cannot set λe = lλk. In this case,

det(B + lλkI + µAAT ) = 0(6.44)

for µ ∈ (µs, µs). Since det(B+ lλkI +µAAT ) is a polynomial of µ, the above relation
implies that

det(B + lλkI + µAAT ) = 0 for allµ ≥ 0.(6.45)
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Thus for any λ < λλk, B + λI + µAAT has at least one negative eigenvalue for all
µ, which implies that lλk′ = 0 and uµk′ = +∞ if there is a connected branch Ω1k′

such that Ω1k � Ω1k′ . Therefore, there is at most one Ω1k′ such that Ω1k � Ω1k′ .
So we can set λe = 0 and there are at most two connected branches in the region
{0 ≤ λ ≤ λ+}.

For example, let

B = diag(−5,−8,−3), A =

 1 0
0 2
0 0

 ;(6.46)

then λ = 3 is the singular line and (µs, µs) = ( 5
4 , 2). In section 7, we will present

an example to show that the Hessian at the global solution may have one negative
eigenvalue and can be singular.

From the above analyses, there are at most three connected branches of Ω1 in the
minimal related region of S. In the case that there are three connected branches in
the minimal related region of S, we will have that (λ+, µ+) is an adjoint point of two
connected branches of Ω1. Moreover, there must be a singular line of the Lagrangian
Hessian in the related region. Thus there are indices k, k′ ∈ K such that

lλk = λ+ = uλk′(6.47)

uµk = µ+ = lµk′ ,(6.48)

and

det(B + lλk′I + µAAT ) ≡ 0 for allµ ≥ 0.(6.49)

Here, it follows from (6.47)–(6.48) that Ω1k and Ω1k′ are two adjoint connected
branches.

7. Distribution of local solutions. In this section we show that, for the CDT
problem, there may exist two local solutions whose corresponding Lagrangian mul-
tipliers lie in the same connected branch Ω1k defined by (3.18) of the region where
the Hessian of the Lagrangian possesses exactly one negative eigenvalue. It is also
possible that the Hessian of the Lagrangian can have one negative eigenvalue and a
zero eigenvalue. The following example shows that there may exist two local solutions
in one connected branch of Ω1.

Example 7.1. Let

B =

( −34/9
−3

)
, A =

(
4/3

1

)
, g =

(
24
27

)
, c =

( −10
13

)
,(7.1)

∆ = 13, and ξ = 10.
The global and local-nonglobal solutions of problem (3.1)–(3.3) are

dg =

(
0
−13

)
, dl =

(
12
−5

)
,(7.2)

with the Lagrangian multipliers (λg, µg) = (12/13, 9/5) and (λl, µl) = (28/51, 94/51),
respectively. Then we easily see, from Figures 7.1 and 7.2, that the two points
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Fig. 7.1. Primal space. Fig. 7.2. Dual space.

(0,−13) = dg

dl = (12,−5)

λ

µ

(λl, µl) = (28/51, 94/51)

(λg , µg) = (12/13, 9/5)

(12/13, 9/5), (28/51, 94/51) are in the same connected branch. For the single-ball-
constrained quadratic minimization, there is at most one local-nonglobal solution; see
Mart́ınez [10].

To show the distribution of local solutions, first we need a lemma.
Lemma 7.2. Assume that
(a) d(λ∗1, µ

∗
1) and d(λ∗2, µ

∗
2) are two stationary points of problem (3.1)–(3.3), i.e.,

satisfy the KKT system, (2.1)–(2.3);

(b) λ∗2 ≥ λ∗1 ≥ 0 and µ∗2 ≥ µ∗1 ≥ 0;
then

Φ(d(λ∗2, µ
∗
2)) ≤ Φ(d(λ∗1, µ

∗
1)).(7.3)

The equality in (7.3) holds if and only if

λ∗2 = λ∗1(7.4)

and

(µ∗2 − µ∗1)AT(d(λ∗2, µ
∗
2)− d(λ∗1, µ

∗
1)) = 0.(7.5)

Proof. For simplicity, we use the notations

H1 = H(λ∗1, µ
∗
1), H2 = H(λ∗2, µ

∗
2),(7.6)

and

g1 = g + µ∗1Ac, g2 = g + µ∗2Ac.(7.7)

Let di = d(λ∗i , µ
∗
i ), i = 1, 2. Then we get

H1d1 = −g1, H2d2 = −g2.(7.8)

Using (7.8), we have

Φ(di) = −1

2
di
THidi − λ∗i

2
∆2 − µ∗i

2
(ξ2 − ‖c‖2)(7.9)
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for i = 1, 2. Hence

Φ(d1)− Φ(d2)

= 1
2d
T
2 H2d2 − 1

2d
T
1 H1d1 + 1

2 (λ∗2 − λ∗1)∆2 + 1
2 (µ∗2 − µ∗1)(ξ2 − ‖c‖2)

≥ 1
2d
T
1 g1 − 1

2d
T
2 g2 + 1

2 (λ∗2 − λ∗1)dT1 d2

+ 1
2 (µ∗2 − µ∗1)((AT d1 + c)T (AT d2 + c)− ‖c‖2)

= 1
2d
T
1 g1 − 1

2d
T
2 g2 + 1

2d
T
1 (H2 −H1)d2 + 1

2 (µ∗2 − µ∗1)(d1 + d2)TAc

= 1
2d
T
1 g1 − 1

2d
T
2 g2 − 1

2d
T
1 g2 + 1

2d
T
2 g1 + 1

2 (d1 + d2)T (g2 − g1)

= 0.

(7.10)

The equality in (7.3) holds if and only if the equality in (7.10) holds, which is
equivalent to

(λ∗2 − λ∗1)(∆2 − d1
Td2) = 0(7.11)

and

(µ∗2 − µ∗1)(ξ2 − (ATd1 + c)T(ATd2 + c)) = 0.(7.12)

If λ∗2 > λ∗1, (7.11) gives

d1
Td2 = ∆2 = d1

Td1 = d2
Td2,(7.13)

which implies that d1 = d2. Then,

(λ∗2 − λ∗1)d1 + (µ∗2 − µ∗1)A(ATd1 + c) = 0,(7.14)

and any triple (λ, µ, d), with (λ, µ) in the straight line joining (λ∗2, µ
∗
2) and (λ∗1, µ

∗
1),

is also a solution to the KKT system. Similar to equation (2.48) of Yuan [16],

d1
TA(ATd1 + c) ≥ 0.(7.15)

Relations (7.14), (7.15) and µ∗2 ≥ µ∗1 give

(λ∗2 − λ∗1)‖d1‖2 ≤ 0,(7.16)

which contradicts λ∗2 > λ∗1 and (7.13). Therefore, (7.11) is true if and only if λ∗2 = λ∗1.
If µ∗2 > µ∗1, the equality in (7.12) gives

(ATd1 + c)T(ATd2 + c) = ξ2 = ‖ATd1 + c‖2 = ‖ATd2 + c‖2,(7.17)

which implies ATd1 + c = ATd2 + c, i.e., AT(d1 − d2) = 0. On the other hand, if
A(d1 − d2) = 0, we have AT d1 + c = AT d2 + c, which implies

(ATd1 + c)T(ATd2 + c) = ‖ATd1 + c‖2 = ‖ATd2 + c‖2.(7.18)

Since µ∗2 > µ∗1 ≥ 0, we have

‖ATd2 + c‖ = ξ;(7.19)

therefore (ATd1 + c)T(ATd2 + c) = ξ2. Thus we see that (7.12) is equivalent to
(7.5).
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In Theorem 7.4, we have two points satisfying (b) of Lemma 7.2. Furthermore,
Theorem 7.4 states that these two points are not local solutions at the same time while
both the Hessians are not singular. This assumption cannot be moved, as the following
example shows. In this example we show that there may exist a global solution of
(3.1)–(3.3) with its Hessian having one negative eigenvalue and being singular.

Example 7.3. In this example, (3.1)–(3.3) have the global solution (λg, µg, dg)
satisfying λg = 0, both constraints are active at dg and the Hessian H(λg, µg) has
one negative eigenvalue.

B =

( −1
−4

)
, A =

(
1

1

)
, g =

(
2
−10

)
, c =

(
0
3

)
,(7.20)

∆ =
√

2 and ξ =
√

5; then dg = (−1,−1)T with its Lagrangian multipliers (λg, µg) =
(0, 3) is the global solution of (3.1)–(3.3). Then the problem is

min
d̄∈R3

1

2
d̄TB̄d̄+ ḡTd̄(7.21)

subject to

‖d̄‖2 ≤ ∆2,(7.22)

‖ĀTd̄+ c̄‖2 ≤ ξ2,(7.23)

where d̄ = (d1, d2, d3)T, B̄ = diag(B, 0), ĀT = (AT , 0), ḡT = (gT, 0), and c̄T = (cT, 0).
Its global solution is d̄g = (−1,−1, 0)T, with the Lagrangian multipliers (λg, µg) =
(0, 3) and the Hessian Hg = diag(2,−1, 0). So the Hessian Hg at the global solution
has one negative eigenvalue and is singular. However, for the single-ball-constrained
quadratic minimization, there is no local solution where the Hessian has one negative
eigenvalue and is singular (see Mart́ınez [10]).

Theorem 7.4. It is not possible for two local solutions d(λ∗1, µ
∗
1) and d(λ∗2, µ

∗
2)

of problem (3.1)–(3.3) to satisfy λ∗1 > λ∗2 > 0, µ∗1 ≥ µ∗2 > 0, with H(λ∗i , µ
∗
i ), i = 1, 2,

being a nonsingular matrix with exactly one negative eigenvalue.
Proof. Suppose that (λ∗1, µ

∗
1) and (λ∗2, µ

∗
2) are the Lagrangian multipliers satisfying

the above assumption.
Consider the following problem (P̃ ):

min
d̃∈Rn

1

2
d̃TB̃d̃+ g̃Td̃(7.24)

subject to

‖D̃Td̃+ c̃‖ ≤ ξ̃,(7.25)

where

B̃ = B + λ∗2I + µ∗2AA
T,

g̃ = g + µ∗2Ac,
D̃ = (τ1I + τ2AA

T)
1
2 ,

c̃ = τ2D̃
−1Ac,

ξ̃ = (c̃Tc̃− τ2ξ2 + τ2c
Tc+ τ1∆2)

1
2 ,

(7.26)
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and τ1 = λ∗1 − λ∗2 and τ2 = µ∗1 − µ∗2.
Since λ∗1 > λ∗2 > 0 and µ∗1 ≥ µ∗2 > 0, D̃ and c̃ in (7.26) are well defined. Suppose

t̃ is the Lagrangian multiplier of (P̃ ); then the KKT system of (P̃ ) is

(B̃ + t̃D̃D̃T)d̃∗ = −(g̃ + t̃D̃c̃)(7.27)

and

t̃(‖D̃Td̃∗ + c̃‖ − ξ̃) = 0.(7.28)

It can be verified that d(λ∗1, µ
∗
1) and d(λ∗2, µ

∗
2) are two stationary points of (P̃ ) with

multipliers t̃ = 1 and t̃ = 0, respectively. Set

φ(t̃) =
1

2
(‖D̃Td̃(t̃) + c̃‖2 − ξ̃2).(7.29)

By direct calculations and from the result given by Mart́ınez [10], we have

φ′(t̃)|t̃=0

= −(g̃ − B̃D̃−T c̃)TH̃−1D̃D̃TH̃−1D̃D̃TH̃−1(g̃ − B̃D̃−T c̃)|t̃=0

= −(τ1d
∗
1 + τ2y

∗
1)TH(λ∗1, µ

∗
1)−1(τ1d

∗
1 + τ2y

∗
1)

= (τ1, τ2)∇2Ψ(λ∗1, µ
∗
1)

(
τ1
τ2

)
< 0,

(7.30)

where H̃ = B̃ + t̃D̃D̃T, d∗1 = d(λ∗1, µ
∗
1), and y∗1 = A(ATd∗1 + c). Since there are

two stationary points with the Hessian one negative eigenvalue, from Lemma 4.3 in
Mart́ınez [10], (7.30) is a strict inequality.

Let δd = d∗2 − d∗1, where d∗2 = d(λ∗2, µ
∗
2); then

H(λ∗1, µ
∗
1)δd = τ1d

∗
1 + τ2y

∗
1(7.31)

follows by direct calculations. Hence

δdTH(λ∗1, µ
∗
1)δd = δdTH(λ∗1, µ

∗
1)H(λ∗1, µ

∗
1)−1H(λ∗1, µ

∗
1)δd

= −(τ1, τ2)∇2Ψ(λ∗1, µ
∗
1)

(
τ1
τ2

)
> 0.

(7.32)

Define

S1 =

{
d | 〈 d‖d‖ ,

δd

‖δd‖〉 ≥ 1− ε
}
∪ {0}(7.33)

and

S2 =

{
d | 〈 d‖d‖ ,

δd

‖δd‖〉 ≤ 1− 1

2
ε

}
∪ {0},(7.34)

where

ε
1
2 =

δdTH∗δd
8‖δd‖2‖H∗‖(7.35)
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and H∗ = H(λ∗1, µ
∗
1). Since H∗ has one negative eigenvalue and δd 6= 0, (7.35) is well

defined. It is easy to verify that S1 and S2 are closed sets. Moreover, if d ∈ S1,∥∥∥∥ d

‖d‖ −
δd

‖δd‖
∥∥∥∥ ≤ 2ε(7.36)

and
1
‖d‖2 d

TH∗d

=
(

d
‖d‖ − δd

‖δd‖ + δd
‖δd‖

)T
H∗
(

d
‖d‖ − δd

‖δd‖ + δd
‖δd‖

)
≥ δdTH∗δd

‖δd‖2 − 2
√

2ε‖H∗‖ − 2ε‖H∗‖
≥ 0,

(7.37)

while if d ∈ S2,

dT
(
I − δdδdT

‖δd‖2
)
d ≥ 0.(7.38)

Let

θ1 = min{dTH∗d | ‖d‖ = 1, d ∈ S1},(7.39)

θ2 = min

{
dT
(
I − δdδdT

‖δd‖2
)
d | ‖d‖ = 1, d ∈ S2

}
,(7.40)

and θ = min{θ1, θ2}. It can be verified that θ > 0 since S1, S2, and {d | ‖d‖ = 1}
are all closed sets. From Lemma 2.3 of Yuan [16], there are α1 ≥ 0 and α2 ≥ 0 with
α1 + α2 = 1 such that

α1(H∗ − θI) + α2

(
I − θI − δdδdT

‖δd‖2
)

(7.41)

is positive semidefinite. Since neither (H∗ − θI) nor (I − θI − δdδdT

‖δd‖2 ) is positive semi-

definite, α1 6= 0 and α2 6= 0. Let m0 = α2

α1
; the matrix H∗ +m0(I − δdδdT

‖δd‖2 ) is positive

semidefinite. Now the problem (Pp)

min
d

1

2
dTBpd+ gTpd(7.42)

subject to

‖d‖ ≤ ∆,(7.43)

‖ATd+ c‖ ≤ ξ,(7.44)

where Bp = B+m0(I− δdδdT

‖δd‖2 ) and gp = g−(Bp−B)d∗1, possesses two global solutions

(λ∗1, µ
∗
1, d
∗
1) and (λ∗2, µ

∗
2, d
∗
2),(7.45)

both with positive semidefinite Hessian. That their objective function value must be
the same contradicts Lemma 7.2.

Remark. From Theorem 7.4, all the local solutions with the multipliers in intΩ1

are permuted in the way the connected branches of Ω1 are. As Example 7.1 shows,
in one connected branch of Ω1, there may exist a global and a local solution simul-
taneously. It is important to give the characteristic of the global solution and hence
construct an algorithm with which to find the global solution instead of the local
solution.
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8. Conclusions and future work. We investigated the dual plane of the CDT
subproblem which is related to a matrix pencil with two parameters. We also extended
the general Lagrangian dual function from the region where the Lagrangian Hessian
is positive definite to its closure. The location and permutation of the Lagrangian
multipliers were studied and the differences between the CDT subproblem and the
trust region subproblem were presented.

We have given various results on the locations of the corresponding Lagrange
multipliers. These results may be used in the construction of numerical methods for
the CDT subproblem based on identifying the multipliers. The main result shows that
the Lagrangian multipliers corresponding to a global minimizer of the CDT problem
locates in finitely many, often two or three, connected branches of Ω1 if there is no
global minimizer with the Hessian of the Lagrangian positive semidefinite. Roughly
speaking, if we define the degree of the nonpositive definite of a symmetric matrix as
the number of its negative eigenvalues, an important property of the CDT problem
is that its complexity is not related to the nonpositive degree of the Hessian.

For some trust region methods, the trial step can be any sufficient descent feasible
direction instead of the global minimizer or a local minimizer. Thus, it is interesting
to search for efficient algorithms to compute approximate global minimizers of the
CDT subproblem in the primal space.

Acknowledgment. We would like to thank two anonymous referees for their
valuable comments which improved the paper.
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