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Abstract. An algorithm for general nonlinearly constrained optimization is presented, which
solves an unconstrained piecewise quadratic subproblem and a quadratic programming subproblem
at each iterate. The algorithm is robust since it can circumvent the difficulties associated with the
possible inconsistency of QP subproblem of the original SQP method. Moreover, the algorithm
can converge to a point which satisfies a certain first-order necessary optimality condition even
when the original problem is itself infeasible, which is a feature of Burke and Han’s methods [Math.
Programming, 43 (1989), pp. 277–303]. Unlike Burke and Han’s methods, our algorithm does not
introduce additional bound constraints. The algorithm solves the same subproblems as the Han–
Powell SQP algorithm at feasible points of the original problem. Under certain assumptions, it is
shown that the algorithm coincides with the Han–Powell method when the iterates are sufficiently
close to the solution. Some global convergence results are proved and locally superlinear convergence
results are also obtained. Preliminary numerical results are reported.
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1. Introduction. We consider the optimization problem with general equality
and inequality constraints

min f(x)(1.1)

subject to (s.t.) ci(x) = 0, i ∈ E,(1.2)

ci(x) ≥ 0, i ∈ I,(1.3)

where f(x) : Rn → R and ci(x) : Rn → R(i ∈ E ∪ I) are continuously differentiable
functions, E = {1, 2, . . . ,me}, I = {me + 1, . . . ,m}, me and m are two positive
integers, and m ≥ me.

SQP algorithms for constrained optimization are iterative and generate a new
approximate to the solution by the procedure

x+ = x + sd,(1.4)

where x is the current point, d is a search direction which minimizes a quadratic
model subject to linearized constraints, and s is the step-length along the direction
such as [8, 13, 21]. For k ≥ 1, the original SQP method developed by Wilson, Han,
and Powell solves the following QP subproblem

min gTk d +
1

2
dTBkd(1.5)

s.t. ci(xk) + ∇ci(xk)T d = 0, i ∈ E,(1.6)

ci(xk) + ∇ci(xk)T d ≥ 0, i ∈ I,(1.7)
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at the kth iterate, where gk = ∇f(xk) is the gradient of the objective function and
Bk is an estimate of the Hessian of the Lagrangian function

L(x, λ) = f(x) −
m∑
i=1

λici(x),(1.8)

and (λ1, λ2, . . . , λm)T is a multiplier vector approximation.
Because of its nice convergence properties (for example, see [8, 13, 14] and [1]),

the SQP method has been attracting the attention of many researchers. It has been
extended to problems other than optimization [12, 20].

The requisite consistency of the linearized constraints of the QP subproblem
(1.5)–(1.7) is a serious limitation of the SQP method. Within the framework of the
SQP method, Powell suggests solving a modified subproblem at each iterate (see
[13, 19]):

min gTk d +
1

2
dTBkd +

1

2
δk(1 − µ)2(1.9)

s.t. µci(xk) + ∇ci(xk)T d = 0, i ∈ E,(1.10)

µici(xk) + ∇ci(xk)T d ≥ 0, i ∈ I,(1.11)

where

µi =

{
1, ci(xk) > 0
µ, ci(xk) ≤ 0

and 0 ≤ µ ≤ 1, δk > 0 is a penalty parameter. With some other technique, the compu-
tational investigation provided by Schittkowski [17, 18] shows that this modification
works very well.

A simple example presented by Burke and Han [3] and Burke [2] indicates this
approach may not be the best one. Assume there are two constraints on R:

c1(x) = 1 − ex = 0,(1.12)

c2(x) = x = 0,(1.13)

with any objective function f(x) on R. For any infeasible point x 
= 0, the linearized
constraints are inconsistent, and the only solution of the modified constraints (1.10)–
(1.11) is µ = 0 and d = 0. Although this example is too specialized to make a
general claim, it shows that the problem caused by the inconsistency of the linearized
constraints can not always be solved by using (1.10)–(1.11).

Based on a trust region strategy, Fletcher [6, 7] developed the Sl1QP method
for (1.1)–(1.3). Fletcher’s approach solves the following QP subproblem at the kth
iteration:

min gTk d +
1

2
dTBkd + δk||(c(xk) + ∇c(xk)T d)−||1(1.14)

s.t. ||d||∞ ≤ βk,(1.15)

where c(xk) = (c1(xk), . . . , cm(xk))T , (c(xk) + ∇c(xk)T d)− ∈ Rm with

(ci(xk) + ∇ci(xk)T d)− = ci(xk) + ∇ci(xk)T d, i ∈ E,(1.16)

(ci(xk) + ∇ci(xk)T d)− = min(0, ci(xk) + ∇ci(xk)T d), i ∈ I,(1.17)
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δk is a penalty parameter, βk is a positive constant. It has been shown that under
certain assumptions the search direction generated by (1.14)–(1.15) is locally identical
to that by (1.5)–(1.7).

Burke and Han [3] show that Fletcher’s approach is still incomplete. One of the
reasons is that the search direction may point away from the optimal point.

Similar to the method of Sahba [16], Burke and Han [3] and Burke [2] present
an approach to overcome difficulties associated with the inconsistency of the QP
subproblem (1.5)–(1.7). Their methods are also similar to the methods of Powell [13]
and Fletcher [6, 7]. A feature different from the other methods is that even when
(1.1)–(1.3) is itself infeasible their methods can converge to a point which meets a
certain first-order necessary optimality condition. However, Burke and Han’s method
is conceptual.

In this paper, we describe an implementable algorithm which is a modification to
the SQP method. Our motivation is to explore further techniques for overcoming the
inconsistency of the QP subproblem to derive an efficient reliable SQP algorithm. The
line search direction of our algorithm consists of two directions: one is computed by
solving a special nonsmooth l1QP subproblem that depends on only active constraints
defined by an active technique; another is obtained by solving a simplified QP problem
which is always feasible even when the QP subproblem of the standard SQP method
is infeasible. Our algorithm is a generalization of the algorithm presented by Liu and
Yuan [10], which is also similar to Burke and Han’s method [3]. However, unlike their
method, we do not introduce additional bound constraints. Our algorithm obtains
a direction which can be a nonzero descent direction of the merit function even if
(1.5)–(1.7) is infeasible. At a feasible point of (1.1)–(1.3), the algorithm solves the
same subproblem as (1.5)–(1.7). Moreover, under certain assumptions, our algorithm
generates the same iterates as the Han–Powell method. Some global convergence
results are proved and locally superlinear convergence is derived.

Our algorithm can be easily combined with the trust region approach. Thus, the
algorithm can be extended to a trust region algorithm for optimization with general
constraints.

The paper is organized as follows. We present our algorithm in section 2. The
stationary properties of the algorithm are given in section 3. In section 4 some global
convergence results are proved. We discuss the local properties of the algorithm in
section 5. In section 6, some preliminary numerical results are reported.

2. The algorithm. Define the penalty function associated with (1.1)–(1.3),

φ(x, r) = f(x) + r||c(x)−||,(2.1)

where || · || is any given convex norm on Rm, r > 0 is a penalty parameter, and
c(x)− ∈ Rm with

ci(x)− = ci(x), i ∈ E,(2.2)

ci(x)− = min(0, ci(x)), i ∈ I.(2.3)

It is straightforward to see that ||c(x)−|| = 0 if and only if x is a feasible point of
(1.1)–(1.3). If the norm || · || is the l1 norm, (2.1) is the l1 exact penalty function,
which is also a merit function employed by Han [8] and Powell [13, 14]. Throughout
this paper if the norm is not specified, it is the same as that used in (2.1).

Define the index sets

Ik = {i ∈ I : ci(xk) ≤ 0},(2.4)
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Īk = {i ∈ I : ci(xk) > 0},(2.5)

Jk = Ik ∪ E.(2.6)

These index sets are related to the current iterate xk and can be identified easily.
Under some assumptions, we will show that Jk tends to be the index set of the active
constraints of (1.1)–(1.3).

Our algorithm solves two subproblems at each iterate: one is an unconstrained
piecewise quadratic subproblem (see [13, 21]), and the other is a quadratic program-
ming subproblem. At the kth iteration the unconstrained subproblem has the follow-
ing form:

min
d∈Rn

ψk(d) =
1

2
dTBkd + rk||(cJk

(xk) + ∇cJk
(xk)T d)−||,(2.7)

where Bk positive definite is an estimate of the Lagrangian Hessian of (1.1)–(1.3),
cJk

(xk) ∈ R|Jk| is a vector whose components are ci(xk)(i ∈ Jk), |Jk| is the cardinality
of the index set Jk, and rk is the penalty parameter. Let dk1 be the solution of
(2.7). If xk is feasible, we have dk1 = 0. If dk1 
= 0, dk1 is a descent direction
of φ(xk, rk+1) for sufficiently large rk+1. Moreover, there is a τk ∈ (0, 1] such that
ci(xk) + δ∇ci(xk)T dk1 ≥ 0 for all δ ∈ [0, τk] and i ∈ Īk. In fact, we can let τk =
min{1, τ̂k}, where

τ̂k = min{−ci(xk)/(∇ci(xk)T dk1) : i ∈ Īk and ∇ci(xk)T dk1 < 0}.(2.8)

Let ĉi(xk) = ci(xk) + ∇ci(xk)T τkdk1 for i ∈ Īk. We generate dk2 by solving the
QP subproblem

min gTk d +
1

2
dTBkd(2.9)

s.t. ∇ci(xk)T d = 0, i ∈ E,(2.10)

∇ci(xk)T d ≥ 0, i ∈ Ik,(2.11)

ĉi(xk) + ∇ci(xk)T d ≥ 0, i ∈ Īk,(2.12)

and let dk = τkdk1 + dk2 be the search direction. It will be shown that dk is a
descent direction for the penalty function where the penalty parameter is updated
automatically. Therefore, (2.1) can be employed as a merit function to force the
global convergence of the algorithm.

The updating of penalty parameter for the SQP approach is important. In order
to obtain the global convergence, Han [8] and Powell [13] require that

r ≥ ||λk||∞(2.13)

for all k ≥ 1, where λk is an estimate of the Lagrangian multiplier vector at xk.
However, (2.13) is generally replaced by some updating procedure when practically
implementing an SQP algorithm because we do not know any information about the
multiplier vector of (1.8). Similar to Powell [13] and Burke and Han [3], a penalty
parameter updating procedure is employed in our algorithm. Since dk2 is not related
to the constraint violation, the object of updating the penalty parameter is to force
dk1 to be a descent direction of (2.1). Thus, at the kth iteration we let rk remain
unchanged if dk1 is a descent direction; otherwise, rk is increased in the following way:

rk+1 = max

{
2rk + ρ,

gTk dk1 + dTk1Bkdk1

||(cJk
)−|| − ||(cJk

+ ∇cTJk
dk1)−||

}
,(2.14)
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where ρ is a positive number.
Now we can state our algorithm as follows.
Algorithm 2.1 (a robust algorithm for optimization).

Step 1 [Step 0.] Given the initial approximate x0, an n×n symmetric positive definite
matrix B0, an initial penalty parameter r0 > 0, and some positive scalars ρ,
β and µ, where β < 1 and µ < 1

2 ; k = 0;

If the stopping criterion is satisfied, stop;
Solve subproblem (2.7) to generate dk1 and subproblem (2.9)–(2.12) to gener-
ate dk2;

Step 1.Step 2. Update penalty parameter. If

gTk dk1 +
1

2
dTk1Bkdk1 + rk(||(cJk

(xk) + ∇cJk
(xk)T dk1)−||(2.15)

− ||(ck(xk))−||) ≤ 0,

let rk+1 = rk; Otherwise, rk is updated by (2.14).
Step 3. dk = τkdk1 + dk2. Select the smallest positive integer s such that

φ(xk + βsdk, rk+1) − φ(xk, rk+1) ≤ µβs(gTk dk(2.16)

+ rk+1(||(c(xk) + ∇c(xk)T dk)−|| − ||(c(xk))−||)).
Let tk = βs and xk+1 = xk + tkdk;

Step 4. Generate Bk+1. Set k = k + 1 and goto Step 1.
The stopping criterion is not given in the algorithm. Generally, ||dk||2 = 0 can be

used as the stopping criterion. Since no assumption on regularity of the constraints
is made, it is possible that dk does not tend to zero for k → ∞. Thus, we use the
condition ||xk+1 − xk||2 = 0 as the stopping criterion. In practical implementation, a
positive tolerance number will be introduced.

Algorithm 2.1 is similar to the methods proposed by Burke and Han [3] and
Burke [2]. Since no additional bound constraints are employed, the algorithm can be
implemented in the same way as SQP algorithms.

It should be noted that our algorithm solves the same subproblem as (1.5)–(1.7)
at a feasible point of (1.1)–(1.3).

Two examples presented by Burke and Han [3] can help us to understand the
above algorithm and the differences between our algorithm and Burke and Han’s
methods.

Example 2.2. The constraint function c : R → R2 has the form

c(x) =

(
1 − ex

x

)
(2.17)

and me = m = 2. The norm is the l1 norm.
For this problem, (2.7) has the form

min
d∈R

1

2
Bkd

2 + rk(|1 − ex − exd| + |x + d|).(2.18)

For any xk = x 
= 0, by direct calculations, dk2 = 0 and

dk1 =

{
e−x − 1 or − rk

Bk
(ex + 1) if x > 0,

rk
Bk

(ex + 1) or − x if x < 0,
= 0 if x = 0.

(2.19)
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It is easily found that dk1 has the following properties:

dk1

{
> 0 for x < 0,
< 0 for x > 0,
= 0 for x = 0.

(2.20)

From (2.20), it is easy to see that our algorithm will converge to the solution x = 0
from any starting point.

Example 2.3. The constraint function c : R → R2 is given by

c(x) =

( −x2 − 1
−x

)
(2.21)

and me = 0, m = 2. Any problem with c(x) as its constraint is infeasible as c1(x) =
−x2 − 1 = 0 has no solution. Let the norm be the l1 norm.

For constraints (2.21), we have that

dk1 =




max
(
− 2rk

Bk
x, −x2+1

2x

)
if x < 0,

−x, −x2+1
2x , − rk(2x+1)

Bk
or − 2rk

Bk
x if 0 < x < 1,

−x, −x2+1
2x , − rk

Bk
or − rk

Bk
(2x + 1) if x > 1,

max
(
− 3rk

Bk
, −1

)
if x = 1,

0 if x = 0,

(2.22)

and

dk2

{
= 0 if x < 0,

≤ 0 if x ≥ 0.
(2.23)

Thus, the search direction generated by our algorithm always points toward the origin,
of which the image under c is the closest point to R2

+ for the l1 norm.
Algorithm 2.1 can also solve the problem (8.1) of Burke and Han [3] successfully

since dk2 = 0 and dk1 directs to the optimal solution for any iteration point x 
= 0.

3. Stationary properties of the algorithm. Examples 2.2 and 2.3 display
some properties of Algorithm 2.1. These properties are favorable in practice because
much information, such as consistency for (1.1)–(1.3), is not known beforehand. Since
no restrictions are imposed on the constraint functions, a cluster point of the sequence
generated by our algorithm can be one of three different types of points. Similar to
Yuan [23], we give their definitions and their stationary properties.

Definition 3.1. x ∈ Rn is called
(1) a strong stationary point of (1.1)–(1.3) if x is feasible and there exists a vector

λ = (λ1, λ2, . . . , λm)T ∈ Rm such that

g(x) −
m∑
i=1

λi∇ci(x) = 0,(3.1)

λi ≥ 0, λici(x) = 0, i ∈ I;(3.2)

(2) an infeasible stationary point of (1.1)–(1.3) if x is infeasible and

min
d∈Rn

||(c(x) + ∇c(x)T d)−|| = ||(c(x))−||;(3.3)
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(3) a singular stationary point of (1.1)–(1.3) if x is feasible and there exists an
infeasible sequence {vk} converging to x such that

lim
k→∞

mind∈Rn ||(c(vk) + ∇c(vk)T d)−||
||(c(vk))−|| = 1.(3.4)

Definition 3.1 is related to our algorithm closely. It should be noted that there are
some differences between our definition and that of [23], for example, the definition
on the singular stationary point.

A strong stationary point defined above is precisely a K − T point of (1.1)–(1.3).
If ||(c(xk))−|| = 0 and dk2 = 0, by the first-order K − T condition of (2.9)–(2.12), xk

is a strong stationary point of (1.1)–(1.3).
Throughout this report, we make the following assumption.
Assumption 3.2. (1) f(x) and ci(x), i ∈ E ∪ I, are twice continuously differ-

entiable functions; (2) the approximation Bk of the Lagrangian Hessian is positive
definite and there exists two positive constants M1 and M2 such that

M1||d||22 ≤ dTBkd ≤ M2||d||22(3.5)

holds for all d ∈ Rn and all k ≥ 1.
Lemma 3.3. The following statements hold:
(i) If (3.3) holds at xk, then d = 0 solves (2.7) uniquely;
(ii) if {xk} and {rk} are bounded, then {dk1} is also bounded.
Proof. (i) For any d 
= 0, by (3.3), there exists t > 0 sufficiently small such that

ψk(td) = (1/2)t2dTBkd + rk||(cJk
(xk) + ∇cJk

(xk)T (td))−||(3.6)

= (1/2)t2dTBkd + rk||(c(xk) + ∇c(xk)T (td))−||
≥ (1/2)t2dTBkd + rk||(c(xk))−|| > ψk(0).

Because ψk(d) is convex, we can see that d = 0 is the unique solution of (2.7).
(ii) The definition of dk1 shows that

ψk(0) ≥ ψk(dk1)(3.7)

≥ (1/2)M1||dk1||22 + rk||(cJk
(xk) + ∇cJk

(xk)T dk1)−||
≥ (1/2)M1||dk1||22.

Therefore,

||dk1||22 ≤ (2/M1)ψk(0) = (2/M1)rk||(c(xk))−||.(3.8)

Lemma 3.4. If x ∈ Rn is an infeasible stationary point or a singular stationary
point as defined above, then there exist λ0 ≥ 0 and λ ∈ Rm such that the first-order
necessary optimality condition

λ0g(x) −
m∑
i=1

λi∇ci(x) = 0,(3.9)

λi ≥ 0, i ∈ I,(3.10)

holds.
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Proof. Suppose that d(x) minimizes the unconstrained problem

min
d∈Rn

1

2
dTBd + ||(c(x) + ∇c(x)T d)−||(3.11)

at the iteration point x, where B is any positive definite matrix. Then, the first-order
optimality condition at x gives that

Bd + ∇c(x)µ(x) = 0,(3.12)

µ(x) ∈ ∂||u||∣∣
u=(c(x)+∇c(x)T d)−

,(3.13)

where µ(x) ∈ Rm. It follows directly from (3.13) that (µ(x))i ≤ 0 for i ∈ I.
If x is an infeasible stationary point, similar to the proof of Lemma 3.3, we have

that d(x) = 0. Let λ0 = 0 and λi = −(µ(x))i, which gives (3.9).
Now suppose that x is a singular stationary point, {xk : k ∈ K} is a subsequence,

and xk → x for k → ∞(k ∈ K). Suppose that d(xk) is a solution of (3.11) at xk; then
(3.12)–(3.13) holds at xk and

min
d∈Rn

||(c(xk) + ∇c(xk)T d)−|| − ||(c(xk))−||(3.14)

≤ −1

2
d(xk)TBd(xk) ≤ 0.

Combining (3.4), we have

lim
k→∞,k∈K

d(xk)TBd(xk)

||c(xk)−|| = 0.(3.15)

Thus, for k ∈ K,

lim
k→∞

||d(xk)|| = 0.(3.16)

It follows from (3.16) and (3.12) that

lim
k→∞,k∈K

∇c(xk)µ(xk) = 0.(3.17)

Because ||µ(xk)||0 ≤ 1 for all k (where || · ||0 is the dual norm of || · ||), there is a cluster
point µ∗ ∈ Rm with (µ∗)i ≤ 0 for i ∈ I. We see that (3.9) holds if we let λ0 = 0 and
λi = −(µ∗)i for i ∈ E ∪ I. This completes our proof.

4. Global convergence. First we show that if our algorithm stops after finite
many iterations, the last iterate point must be a strong stationary point or an infea-
sible stationary point of (1.1)–(1.3).

Lemma 4.1. Suppose that dk1 is a solution of (2.7) and dk2 solves (2.9)–(2.12).
If dk1 = 0 and dk2 = 0, then xk is either a strong stationary point or an infeasible
stationary point of (1.1)–(1.3).

Proof. If dk1 = 0 and dk2 = 0, it follows from the first-order Kuhn–Tucker
condition of (2.9)–(2.12) that there exists λk ∈ Rm such that

gk −∇c(xk)λk = 0,(4.1)

(λk)ici(xk) = 0 for i ∈ Īk,(4.2)

(λk)i ≥ 0 for i ∈ I.(4.3)
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If ||(c(xk))−|| = 0, then by (4.1)–(4.3) and Definition 3.1(1), xk is a strong stationary
point of (1.1)–(1.3).

Suppose that ||(c(xk))−|| 
= 0. We want to prove that (3.3) holds for xk. If it is
not the case, then there exist d̃k 
= 0 and 0 < τk ≤ 1 such that

min
d∈Rn

||(c(xk) + ∇c(xk)T d)−|| = ||(c(xk) + ∇c(xk)T d̃k)−||(4.4)

< ||(c(xk))−||
and

||(c(xk) + ∇c(xk)T (τkd̃k))−|| = ||(cJk
(xk) + ∇cJk

(xk)T (τkd̃k))−||.(4.5)

Let d̂k = τkd̃k; then it follows that

rk(||(cJk
(xk))−|| − ||(cJk

(xk) + ∇cJk
(xk)T d̂k)−||) ≤ 1

2
d̂TkBkd̂k.(4.6)

Define

t0 =
rk
2

||(cJk
(xk))−|| − ||(cJk

(xk) + ∇cJk
(xk)T d̂k)−||

d̂TkBkd̂k
;(4.7)

then by (4.6), 0 < t0 ≤ 1
4 and

ψk(t0d̂k) − ψk(dk1)(4.8)

≤ 1

2
t20d̂

T
kBkd̂k + rkt0{||(cJk

(xk) + ∇cJk
(xk)T d̂k)−|| − ||(cJk

(xk))−||}

≤ 3

4
t0τkrk{||(c(xk) + ∇c(xk)T d̃k)−|| − ||(c(xk))−||} < 0,

which gives a contradiction.
The following result shows that the line search procedure is well defined in the

algorithm.
Lemma 4.2. Suppose that at least one of dk1 and dk2 is nonzero; then τk is

defined by (2.8). Then τkdk1 + dk2 is a descent direction of the penalty function (2.1)
and the line search condition (2.17) is well defined.

Proof. Let q(x) = ||c(x)−||; then by Lemma 4.1 of Burke and Han [4],

q
′
(x; d) ≤ ||(c(x) + ∇c(x)T d)−|| − ||c(x)−||.(4.9)

Define dk = τkdk1 + dk2; then

φ
′
(xk, rk+1; dk) ≤ gTk dk + rk+1(||(c(xk) + ∇c(xk)T dk)−|| − ||c(xk)−||).(4.10)

By (2.9)–(2.12) and the convexity of the norm,

||(c(xk) + ∇c(xk)T dk)−|| − ||c(xk)−||(4.11)

≤ τk(||(cJk
(xk) + ∇cJk

(xk)T dk1)−|| − ||c(xk)−||).
Thus,

φ
′
(xk, rk+1; dk) ≤ gTk dk2 + τk{gTk dk1(4.12)

+ rk+1(||(cJk
(xk) + ∇cJk

(xk)T dk1)−|| − ||c(xk)−||)}.
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It follows from Step 2 of the algorithm that

φ
′
(xk, rk+1; dk) ≤ −1

2
dTk2Bkdk2 − 1

2
τkd

T
k1Bkdk1 < 0.(4.13)

Now we prove that the line search condition (2.17) is well defined. By the mean
value theorem, for any t > 0, there exists α ∈ (0, t) such that

f(xk + tdk) − f(xk) = tg(xk + αdk)T dk.(4.14)

Similarly there exist αi ∈ (0, t) such that

ci(xk + tdk) − ci(xk) = t∇ci(xk + αidk)T dk.(4.15)

Define Ak = (∇c1(xk + α1dk),∇c2(xk + α2dk), . . . ,∇cm(xk + αmdk)); then

φ(xk + tdk, rk+1) − φ(xk, rk+1) ≤ tg(xk + αdk)T dk(4.16)

+ trk+1(||(c(xk) + AT
k dk)−|| − ||c(xk)−||).

Since

||(c(xk) + AT
k dk)−|| − ||(c(xk) + ∇c(xk)T dk)−|| ≤ ||(Ak −∇c(xk))T dk||,(4.17)

it follows from the first part of the proof that there always exists a sufficiently small
t0 > 0 such that for all t ∈ (0, t0), α ∈ (0, t),

(g(xk + αdk) − gk)T dk + rk+1(||(Ak −∇c(xk))T dk||)(4.18)

+ (1 − µ)(gTk dk + rk+1(||(c(xk) + ∇c(xk)T dk)−|| − ||c(xk)−||)) < 0,

which completes the proof.
Assumption 4.3. {xk} and {dk} are uniformly bounded.
The assumption on {xk} is common in analyses on convergence of the algorithms.

Since the objective function (2.9) is coercive, and d = 0 is feasible for (2.10)–(2.12),
dk2 is bounded. If rk → ∞, in place of (2.7), we use the following subproblem:

min
1

2
dTBkd + rk||(cJk

(xk) + ∇cJk
(xk)T d)−||(4.19)

s.t. ||d||2 ≤ R,(4.20)

where R > 0 is a constant, and all analyses still hold since the norm is convex.
If rk → ∞, by Lemma 4.2 of [23], limk→∞ ||c(xk)−|| exists.
Lemma 4.4. If rk → ∞ and limk→∞ ||c(xk)−|| 
= 0, then there exists a convergent

subsequence of {xk} which converges to an infeasible stationary point of (1.1)–(1.3).
Proof. Let S be the set of the accumulation points of {xk}. If the lemma is not

true, for any x ∈ S, ||c(x)−|| 
= 0 and (3.3) does not hold. Thus, there exists a v > 0
such that for k large enough,

min
||d||2≤δ

||(c(xk) + ∇c(xk)T d)−|| ≤ ||c(xk)−|| − v,(4.21)

where δ is a positive constant.
Let d̂k be a vector such that ‖d̂k‖ ≤ δ and that

||(c(xk) + ∇c(xk)T d̂k)−|| = min
||d||2≤δ

||(c(xk) + ∇c(xk)T d)−||.(4.22)
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The fact that ‖d̂k‖ ≤ δ,

||(cJk
(xk) + ∇cJk

(xk)T d̂k)−|| ≤ ||(c(xk) + ∇c(xk)T d̂k)−||,(4.23)

rk → ∞, and that dk1 solves (2.7) implies that inequality

gTk dk1 +
1

2
dTk1Bkdk1 + rk(||(cJk

(xk) + ∇cJk
(xk)T dk1)−|| − ||(c(xk))−||)(4.24)

≤ gTk dk1 +
1

2
d̂TkBkd̂k + rk(||(cJk

(xk) + ∇cJk
(xk)T d̂k)−|| − ||(c(xk))−||)

≤ gTk dk1 +
1

2
Mδ2 − rkv < 0

holds for all sufficiently large k, which contradicts the parameter updating
procedure.

Similarly, we have the following result.
Lemma 4.5. If rk → ∞ and limk→∞ ||c(xk)−|| = 0, then there exists a convergent

subsequence of {xk} which converges to a singular stationary point of (1.1)–(1.3).
Proof. Let x be any accumulation point of {xk}. Then x is a feasible point of

(1.1)–(1.3). The condition rk → ∞ implies that there exists an infinite subsequence
{xk : k ∈ K} such that ||(c(xk))−|| 
= 0 for k ∈ K.

If the result is not true, then for any convergent subsequence {xk : k ∈ K̃}(K̃ ⊂
K), (3.4) does not hold. Hence, there exists a positive number v such that (4.21)
holds. Similar to Lemma 4.4, the proof can be completed.

The above two lemmas imply that rk is bounded if no subsequence of {xk} con-
verges to an infeasible stationary point or a singular stationary point of (1.1)–(1.3).

Lemma 4.6. Suppose that rk = r (r is a positive constant) for all k large enough,
{xk} is an infinite sequence, and {xk : k ∈ K̂} is a convergent subsequence. Then
dk → 0 for k ∈ K̂ and k → ∞.

Proof. We proceed by contradiction. Without loss of generality, assume that
rk = r for all k.

Suppose that there exist an infinite subset K
′ ⊂ K̂ and a positive constant η such

that ||dk||2 ≥ η for k ∈ K
′
. By Lemma 4.2, there exists η̂ > 0 such that

∇tφ(xk + tdk, r)|t=0 ≤ −η̂ < 0.(4.25)

Thus, there exists a constant σ > 0 and sufficiently small tk > 0 such that for k ∈ K
′
,

φ(xk + tkdk, r) ≤ φ(xk, r) − σ.(4.26)

The above inequality implies that

Σk∈K′ (φ(xk + tkdk, r) − φ(xk, r)) ≤ −Σk∈K′σ = −∞,(4.27)

which is a contradiction. This completes the proof.
In the following theorem, we assume that (dk2, λk) is a Kuhn–Tucker pair of

(2.9)–(2.12) at xk, where λk ∈ Rm is a Lagrange multiplier vector associated with
dk2.

Theorem 4.7. Suppose that {xk} is an infinite sequence generated by the algo-
rithm, {rk} and {λk} are bounded, and {xk : k ∈ K̂} is a subsequence converging to
x∗. If ||c(x∗)−|| = 0, then x∗ is a strong stationary point of (1.1)–(1.3).
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Proof. Since (dk2, λk) is a Kuhn–Tucker pair of (2.9)–(2.12) at xk, we have

gk + Bkdk2 −∇c(xk)λk = 0,(4.28)

(λk)i∇ci(xk)T dk2 = 0 for i ∈ Ik,(4.29)

(λk)i(ĉi(xk) + ∇ci(xk)T dk2) = 0 for i ∈ Īk,(4.30)

(λk)i ≥ 0 for i ∈ I,(4.31)

and (2.10)–(2.12) hold. Moreover, (dk1, µJk
) satisfies that

Bkdk1 + rk∇cJk
(xk)µJk

= 0,(4.32)

µJk
∈ ∂||u||∣∣

u=(cJk
(xk)+∇cJk

(xk)T dk1)−
,(4.33)

where µJk
∈ R|Jk| is a vector with (µJk

)i(i ∈ Jk) as its components. It follows from
(4.33) that (µJk

)i ≤ 0 for i ∈ Ik. Thus, we have

gk + Bkdk −∇c(xk)uk = 0,(4.34)

(uk)i(ci(xk) + ∇ci(xk)T dk) = 0 for i ∈ Īk,(4.35)

(uk)i ≥ 0 for i ∈ I,(4.36)

where

(uk)i = (λk)i − rkτk(µJk
)i for i ∈ Jk,(4.37)

and

(uk)i = (λk)i for i ∈ Īk.(4.38)

Let I(x∗) = {i : i ∈ Ik for infinitely many k ∈ K̂}, I(x∗) = {i ∈ I : ci(x
∗) = 0}. Then

I(x∗) ⊃ I(x∗).
By (4.33), ||µJk

||0 ≤ 1, where || · ||0 is the dual norm of || · || defined by (2.1).
Then it follows from Lemma 4.6 that there exists a cluster point u∗ ∈ Rm of {uk}
such that

g(x∗) −∇c(x∗)u∗ = 0,(4.39)

(u∗)ici(x
∗) = 0 for i ∈ I,(4.40)

with (u∗)i ≥ 0 for i ∈ I.
The condition on λk is not restrictive. The boundedness of {rk} implies that

(2.15) holds for sufficiently large k. Thus, by (4.32)–(4.33) and (4.28), we have

rk ≥ ((∇c(xk)T dk1)Tλk)/||∇c(xk)T dk1||(4.41)

for sufficiently large k. On the other hand, if we suppose the Mangasarian–Fromovitz
condition holds at x∗, it can be proved that λk is bounded.

It should be noted that the above convergence results do not rely on any linear
independence assumption of the gradients of the constraints. Thus, the algorithm
may terminate at some iteration, which is not a Kuhn–Tucker point of (1.1)–(1.3),
even if the penalty parameter is bounded. A simple example will demonstrate this
case.
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Example 4.8. Consider the problem

min y1 + (1/2)y2
2(4.42)

s.t. (1/2)y2
1 = 0,(4.43)

y1 + y3
2 − 3/2 = 0.(4.44)

Let the penalty parameter r = 1; the algorithm will terminate at (1, 0), which is not
a Kuhn–Tucker point of (4.42)–(4.44).

5. Local convergence. To study local convergence properties of the algorithm,
we make the following assumption.

Assumption 5.1. (1) xk → x∗, where x∗ is a Kuhn–Tucker point of (1.1)–(1.3);
(2) let I∗ = {i ∈ I : ci(x

∗) = 0}; ∇ci(x
∗)(i ∈ E ∪ I∗) are linearly independent; (3)

rk = r for k ≥ k̂, where r > 0 is a constant, and k̂ is a sufficiently large positive
integer.

The definitions of (2.4)–(2.5) imply that for infinitely many k, there exists a small
ε > 0 such that ci(xk) ≥ ε for i ∈ Īk. Thus, by Assumption 4.3 and (2.8), we have
τk ≥ τ0 for infinitely many k, where τ0 > 0 is a constant.

For sufficiently large k, by definitions of (2.4)–(2.5), Īk ⊇ Īk+1. Thus, Ik = I∗

for sufficiently large k. Moreover, under Assumption 5.1, it follows from (3.8) that
||dk1||2 → 0 for k → ∞. Therefore, τk → 1 for sufficiently large k.

Lemma 5.2. Under Assumption 5.1, suppose that dk1 is a solution of (2.7) at the
point xk; then there exists a sufficiently large k

′
, such that for k ≥ k

′
,

(cJk
(xk) + ∇cJk

(xk)T dk1)− = 0.(5.1)

Proof. The first-order necessary condition of (2.7) imply that (4.32)–(4.33) hold
and ||µJk

||0 ≤ 1 with || · ||0 being the dual norm of || · || defined by (2.1). If at the kth
iteration (cJk

(xk) + ∇cJk
(xk)T dk1)− 
= 0, then ||µJk

||0 = 1.
Define pk = ||Bkdk1+rk∇cJk

(xk)µJk
||2 and J∗ = E∪I∗. If for sufficiently large k,

(cJk
(xk) + ∇cJk

(xk)T dk1)− 
= 0, then it follows from Lemma 4.6 and the equivalence
of the norm that

pk = ||rk∇cJ∗(x∗)µJk
||2 + O(||xk − x∗||2) + O(||dk1||2)(5.2)

≥ rk||µJk
||2/||∇cJ∗(x∗)+||2 + o(1)

≥ c0rk||µJk
||0/||∇cJ∗(x∗)+||2 + o(1)

≥ c0r/(2||∇cJ∗(x∗)+||2),

where ∇cJ∗(x∗) ∈ Rn×|J∗| is a matrix with ∇ci(x
∗) (i ∈ J∗) as its volume vectors,

∇cJ∗(x∗)+ is its generalized inverse matrix, and c0 > 0 is a constant. Equation (5.2)
contradicts (4.32). This completes our proof.

The above lemma shows that there exists a sufficient large integer k0, such that
for k ≥ k0, the piecewise quadratic subproblem (2.7) is equivalent to the following
quadratic programming problem:

min
1

2
dTBkd(5.3)

s.t. ci(xk) + ∇ci(xk)T d = 0, i ∈ E,(5.4)

ci(xk) + ∇ci(xk)T d ≥ 0, i ∈ Ik.(5.5)
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Assumption 5.3. Suppose that λ∗ is a Lagrangian multiplier vector associated
with x∗: (1) The strict complementarity condition holds at (x∗, λ∗); (2) ∇2L(x∗, λ∗)
is positive definite for all nonzero d in the null space {d : ∇ci(x

∗)T d = 0, i ∈ E∪I∗},
where L(x, λ) is defined as (1.8).

It follows from Assumption 5.3 that (x∗, λ∗) is an isolated Kuhn–Tucker pair of
(1.1)–(1.3). If the conditions in Assumption 5.3 hold, then for sufficiently large k, dk1

derived by (5.3)–(5.5) is a solution of the problem

min
1

2
dTBkd(5.6)

s.t. ci(xk) + ∇ci(xk)T d = 0 for i ∈ E ∪ I∗,(5.7)

and dk2 generated by (2.9)–(2.12) solves

min gTk d +
1

2
dTBkd(5.8)

s.t. ∇ci(xk)T d = 0 for i ∈ E ∪ I∗.(5.9)

Let ∇cJ∗(xk) be an n × |J∗| matrix with ∇ci(xk)(i ∈ J∗) as its components. By
direct calculations, it follows from (5.6)–(5.7) that

dk1 = −B−1
k ∇cJ∗(xk)(∇cJ∗(xk)TB−1

k ∇cJ∗(xk))−1cJ∗(xk),(5.10)

and by (5.8)–(5.9),

dk2 = B−1
k ∇cJ∗(xk)(∇cJ∗(xk)TB−1

k ∇cJ∗(xk))−1∇cJ∗(xk)TB−1
k gk(5.11)

− B−1
k gk.

Thus, dk1 + dk2 is a solution of the problem

min gTk d +
1

2
dTBkd(5.12)

s.t. ci(xk) + ∇ci(xk)T d = 0 for i ∈ J∗.(5.13)

The above discussion can be stated as the following lemma.
Lemma 5.4. If the conditions in Assumptions 5.1 and 5.3 hold, then there exists

a sufficiently large k1, k1 ≥ k0, such that for k ≥ k1, the algorithm generates identical
directions with the Han–Powell method.

By Lemma 5.4 and the related results of the SQP method (for example, see [1]
and [22]), the superlinear convergence of the algorithm is a direct result.

Lemma 5.5. Suppose that the conditions in Assumption 5.3 hold. If

lim
k→∞

||P ∗(Bk −∇2L(x∗, λ∗))dk||2
||dk||2 = 0,(5.14)

where P ∗ is a projection matrix on the null space {d : ∇ci(x
∗)T d = 0, i ∈ E ∪ I∗};

then

lim
k→∞

||xk + dk − x∗||
||xk − x∗|| = 0.(5.15)
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A superlinear convergence step may be truncated due to the nonsmoothness of
the merit function, which is known as “the Marotos effect” (for example, see [22, 24]).
In order to avoid this difficulty, the second-order correction technique is considered
by Mayne and Polak [11], Coleman and Conn [5], Fletcher [7], and so on. For our
problem, when ||cJk

(xk)|| ≤ ε (ε is a prescribed number), we solve the subproblem

min
d∈Rn

1

2
dTBkd + rk||(cJk

(xk + dk) + ∇cJk
(xk)T d)−||(5.16)

to generate the second-order correction step d̃k. The algorithm with the second-order
correction technique is presented, which is a modification to Algorithm 2.1.

Algorithm 5.6.
Step 1 [Step 0.] Given x0 ∈ Rn, B0 ∈ Rn×n, r0 > 0, 0 < µ < 1

2 , 0 < β < 1, ρ > 0,
ε0, ε1, ε2, ε3 > 0, k := 0.

Generate Jk and Īk by (2.4)–(2.6), solve (2.7) giving dk1;
Calculate τk by (2.8); Solve (2.9) giving dk2; dk = τkdk1 + dk2;
If ||dk|| ≤ ε0, stop;
If ||cJk

(xk)|| ≤ ε1 solve (5.16) giving d̃k; else d̃k = 0.
Step 1.Step 2. rk+1 := rk if (2.15) holds, otherwise compute rk+1 by (2.14).
Step 3. s = 0, 1, 2, . . .; If

φ(xk + βsdk + β2sd̃k, rk+1) − φ(xk, rk+1) ≤ µβs(gTk dk(5.17)

+ rk+1(||(c(xk) + ∇c(xk)T dk)−|| − ||(c(xk))−||)).

Let tk = βs and xk+1 = xk + tkdk + t2kd̃.
Step 4. If ||xk+1 − xk|| ≤ ε3, stop.
Step 5. Compute the values of f(x), c(x), ∇f(x), and ∇c(x) at xk+1;

Generate Bk+1; k := k + 1 and goto Step 1.
Similar to the above discussion on Lemmas 5.2 and 5.4, and to the analyses in

[11, 22, 24], we have the following result.
Theorem 5.7. Under Assumptions 5.1 and 5.3, suppose that (5.14) holds, εi =

0(i = 0, 1, 2, 3), and {xk} is an infinite sequence generated by Algorithm 5.6. Then

lim
k→∞

||xk + dk + d̃k − x∗||
||xk − x∗|| = 0,(5.18)

and there exists a sufficiently large k2 such that for k ≥ k2, tk = 1. Thus, {xk}
converges Q-superlinearly.

6. Numerical results. A FORTRAN subroutine was programmed to test our
algorithm. Our experiments were done on an SGI indigo workstation at the State Key
Laboratory of Scientific and Engineering Computing, Chinese Academy of Sciences,
Beijing.

The norm in (2.1) is selected to be the l∞ norm. We solve the piecewise quadratic
subproblem (2.7) by reformulating it as follows:

min
1

2
wTQkw + pTkw(6.1)

s.t. y −∇ci(xk)T d ≥ ci(xk) for i ∈ E,(6.2)

y + ∇ci(xk)T d ≥ −ci(xk) for i ∈ Jk,(6.3)
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where Qk = ( Bk

0
) ∈ R(n+1)×(n+1), w = ( d

y
) ∈ Rn+1, pk = ( 0

rk
)∈ Rn+1.

Problem (6.1)–(6.3) is a convex quadratic programming problem, which is, in our
algorithm, solved by Powell’s subroutine ZQPCVD [15]. The second-order correction
subproblem (5.16) is solved similarly.

The first test problem that we solved is taken from [16]:

min x1x2(6.4)

s.t. − sin(x1) ≥ 0,(6.5)

cos(x1) ≥ 0,(6.6)

−x2
1 − x2

2 + π/2 ≥ 0,(6.7)

x1 + π ≥ 0,(6.8)

x2 + π/2 ≥ 0,(6.9)

and the standard starting point is x0 = (0, 5)T . Sahba’s algorithm terminates at the
point x∗ = (0,−1.25331)T , which is an approximate Kuhn–Tucker point and not the
approximate minimum point of (6.4)–(6.9). The other test problems are from Hock
and Schittkowski [9].

In our implementation of the algorithm, a small positive tolerance number ε is
introduced and the index sets

Ik(ε) = {i ∈ I : ci(xk) ≤ ε},(6.10)

Īk(ε) = {i ∈ I : ci(xk) > ε},(6.11)

Jk(ε) = Ik(ε) ∪ E(6.12)

are employed instead of (2.4)–(2.6).

For each problem, the standard initial point is used. We choose initial parameters
µ = 0.1, β = 0.5, ρ = 1, and εi = 10−6 for i = 0, 1, 2, 3. The choice of the initial
penalty parameter is scale dependent and r0 = 1 is chosen for our test problems. The
initial Lagrangian Hessian estimate B0 = I and Bk is updated by the damped BFGS
formula (see [14]):

Bk+1 = Bk − Bksks
T
kBk

sTkBksk
+

yky
T
k

sTk yk
,(6.13)

where

yk =

{
ŷk, ŷTk sk ≥ 0.2sTkBksk,
θkŷk + (1 − θk)Bksk, otherwise,

(6.14)

and ŷk = gk+1−gk+(∇c(xk+1)−∇c(xk))λk, sk = xk+1−xk, θk = 0.8sTkBksk/(sTkBksk−
sTk ŷk), λk is a multiplier associated with (2.9)–(2.12).

The test problems are also solved by Powell’s subroutine VMCWD, which is a very
successful algorithm for many nonlinear programming problems. The error tolerance
for VMCWD is 10−8.

The subroutine VMCWD failed to solve Sahba’s problem (6.4)–(6.9) since the
constraints seem to be inconsistent after the first iteration. The numerical results
given by our algorithm are presented in Table 1, where R −KT and R − CV repre-
sent the l2 norms of the gradient of the Lagrangian and the violation of the constraints,
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Table 1

k x
(1)
k

x
(2)
k

rk τk tk R−KT R− CV

0 0.0 5.0 1.0 1.0 1.0 5.0 2.3429E+1
1 -3.1416 2.6571 1.0 1.0 1.0 3.2415 1.5391E+1
2 -1.1116 2.3552 1.0 1.0 1.0 1.7142 5.2119
3 -0.8262 1.3834 1.0 1.0 1.0 8.8489E-1 1.0257
4 -0.9236 0.9546 1.0 1.0 1.0 4.4570E-2 1.9339E-1
5 -0.8899 0.8858 1.0 1.0 1.0 6.1008E-3 5.8572E-3
6 -0.8870 0.8854 1.0 1.0 1.0 2.4008E-3 7.7911E-6
7 -0.8863 0.8862 1.0 1.0 1.0 1.3274E-4 0.0

Table 2

VMCWD Our algorithm
Problem n me m NI-NF-NG Residual NI-NF-NG Residual
HS7 2 1 1 12-14-14 4.94E-08 9-18-10 3.85E-08
HS14 2 1 2 5-6-6 7.90E-11 4-5-5 2.98E-07
HS22 2 0 2 5-7-7 3.18E-10 23-46-24 4.58E-08
HS38 4 0 8 81-104-104 8.96E-04 38-64-39 6.68E-05
HS43 4 0 3 12-15-15 5.14E-06 12-23-13 4.48E-06
HS52 5 3 3 5-9-9 2.21E-05 16-21-17 2.43E-12
HS63 3 2 5 8-9-9 6.72E-07 7-8-8 2.41E-07
HS76 4 0 7 5-6-6 1.45E-04 6-7-7 2.12E-07
HS86 5 0 15 4-6-6 1.78E-04 4-7-5 6.22E-05
HS113 10 0 8 12-17-17 6.46E-06 14-20-15 4.07E-05

respectively. The algorithm terminates at the approximate minimum point of (6.4)–
(6.9).

Some numerical results for equality constrained optimization problems have been
reported in Liu and Yuan [10]. It has been noticed that our algorithm can over-
come the difficulties associated with the linear dependence of the gradients of the
constraints, since an unconstrained subproblem is solved at each iterate.

The numerical results for other test problems are listed in Table 2. The problems
are numbered in the same way as in Hock and Schittkowski [9]. For example, “HS43”
is problem 43 in Hock and Schittkowski [9]. NI, NF, and NG represent the numbers
of iterations, function, and gradient calculations, respectively.

The numerical results show that our algorithm is comparable to VMCWD. How-
ever, our algorithm requires slightly more function evaluations.

Acknowledgement. We would like to thank an anonymous referee for valuable
comments.
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