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Abstract We propose a new geometric buildup algorithm for the solution of the distance
geometry problem in protein modeling, which can prevent the accumulation of the round-
ing errors in the buildup calculations successfully and also tolerate small errors in given
distances. In this algorithm, we use all instead of a subset of available distances for the
determination of each unknown atom and obtain the position of the atom by using a least-
squares approximation instead of an exact solution to the system of distance equations.
We show that the least-squares approximation can be obtained by using a special singular
value decomposition method, which not only tolerates and minimizes small distance er-
rors, but also prevents the rounding errors from propagation effectively, especially when
the distance data is sparse. We describe the least-squares formulations and their solution
methods, and present the test results from applying the new algorithm for the determi-
nation of a set of protein structures with varying degrees of availability and accuracy of
the distances. We show that the new development of the algorithm increases the modeling
ability, and improves stability and robustness of the geometric buildup approach signifi-
cantly from both theoretical and practical points of view.

Keywords Biomolecular modeling · Protein structure determination · Distance
geometry · Linear and nonlinear systems of equations · Linear and nonlinear
optimization

1. Introduction

A well-known problem in protein modeling is the determination of the structure of a pro-
tein with a given set of interatomic or interresidue distances obtained from either physical
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experiments or theoretical estimates. A more general and abstract form of the problem is
known as the distance geometry problem in mathematics (Blumenthal, 1953), the graph
embedding problem in computer science (Saxe, 1979), and the multidimensional scaling
problem in statistics (Torgerson, 1958). In general, the problem can be stated as to find the
coordinates for a set of points in some topological space given the distances for certain
pairs of points. Therefore, in addition to protein modeling where everything is discussed
only in three-dimensional Euclidean space, the problem has applications in many other
scientific and engineering fields as well, such as sensor network localization (Biswas et
al., 2006), image recognition (Klock and Buhmann, 1997), and protein classification (Hou
et al., 2003), to name a few. In any case, the problem may or may not have a solution in a
given topological space, and even if it does have a solution, the solution may not be easy
to find, depending on the given distances.

Let n be the number of atoms in a given protein and x1, . . . , xn be the coordinate
vectors for the atoms 1, . . . , n, where xi = (xi,1, xi,2, xi,3)

T and xi,1, xi,2, and xi,3 are the
first, second, and third coordinates of atom i. Let di,j be the distance between atoms i

and j , di,j = ‖xi − xj‖, where ‖ · ‖ is the Euclidean norm. Then the distance geometry
problem for a given set of distances {di,j : (i, j) in S} is to find the coordinates x1, . . . , xn

for the atoms 1, . . . , n so that the distances between atoms i and j are equal to the given
distances di,j , i.e., ‖xi − xj‖ = di,j where (i, j) is in S. In practice, the distances may
have errors and, therefore, a more general yet practical form of the problem would be to
find the coordinates x1, . . . , xn for the atoms given only a set of lower and upper bounds,
li,j and ui,j , of the distances di,j such that li,j ≤ di,j ≤ ui,j where (i, j) is in S.

The distance geometry problem is polynomial time solvable if the distances for all
pairs of atoms are available (Havel, 1995). However, it has been proved to be NP-hard
in general (Saxe, 1979). Even if errors are allowed for the distances, the problem is still
hard, if only small errors are allowed (Moré and Wu, 1996). The existing approaches to
the problem and their recent developments include, for example, the embed algorithm by
Crippen and Havel (1988), Havel (1991), the alternating projection method by Glunt et
al. (1990, 1993), the graph reduction approach by Hendrickson (1992, 1995), the global
smoothing method by Moré and Wu (1997, 1999), the stochastic/perturbation method by
Zou et al. (1997), the multidimensional scaling method by Kearsly et al. (1998), Trosset
(1998), the dc programming method by Le Thi Hoai and Pham Dinh (2003), the semidef-
inite programming approach by Biswas et al. (2007), and the stochastic search method by
Grosso et al. (2007).

We investigate the solution of the distance geometry problem within a so-called geo-
metric buildup framework. Dong and Wu (2002, 2003) first implemented a geometric
buildup algorithm for the solution of the distance geometry problem with exact distances
and justified the linear computation time for the case when the distances required in every
buildup step are always available. Central to the algorithm is the idea that whenever there
are four determined atoms that are not in the same plane and there are distances from these
atoms to an undetermined atom, the undetermined atom can immediately be determined
uniquely by solving a system of four distance equations using the available distances. If
for every atom, the required atoms and the distances can be found, the whole structure
can be determined uniquely. The distance equations can in fact be reduced to a set of lin-
ear equations, and hence solved in constant time. Therefore, in ideal cases, a geometric
buildup algorithm can solve a distance geometry problem with only 4n distances in O(n)

computing time, while the conventional singular value decomposition algorithm requires
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all n(n − 1)/2 distances and O(n2) computing time, where n is the number of atoms to
be determined.

The geometric buildup algorithm can be sensitive to the numerical errors though, for
the coordinates of the atoms are determined using the coordinates of previously deter-
mined atoms and the rounding errors in the previously determined atoms can be passed
to and accumulated in later determined atoms, resulting in incorrect structural results. Wu
and Wu (2007) proposed an updating scheme to prevent the accumulation of the numer-
ical errors. The idea of the scheme is based on the fact that the coordinates of any four
atoms can be determined without any other information if all the distances among them
are given. Therefore, the coordinates of any four determined atoms can be recalculated
whenever possible using the distances among them, before they are used as a basis set of
atoms for the determination of other atoms. The recalculated coordinates do not depend
on the coordinates of previously determined atoms and, therefore, do not inherit any errors
from them. They are determined from “scratch” and will not pass errors to later atoms.

The geometric buildup algorithm cannot tolerate errors in given distances either, for
the distances then may not be consistent and the systems of distance equations may not
be solvable. However, in practice, the distances must have errors because they come from
either experimental measures or theoretical estimates. In order for the algorithm to handle
inexact distances (distances with errors), the general buildup procedure has to be mod-
ified. First, in every buildup step, if l distances are found from an undetermined atom
to l determined atoms, l ≥ 4, all l distances should be used for the determination of the
unknown atom. The reason is that if the distances have errors, they can be inconsistent.
Then the atom satisfying four of the distances may not necessarily satisfy the rest of the
distances and, therefore, it should be determined with all its distance constraints. Sec-
ond, if l ≥ 4, an over-determined system of equations is obtained for the determination
of the position of the unknown atom. If the distances have errors, the system may not be
consistent. Therefore, we can only solve the system approximately by using for example
a least-squares method. Third, a new updating scheme may be necessary to prevent the
accumulation of the rounding errors. The previously developed updating scheme may not
be practical any more for l � 4 because it requires all the distances available among l

determined atoms.
We propose a new geometric buildup algorithm which can prevent the accumulation

of the rounding errors in the buildup calculations successfully and also tolerate small
errors in the given distances. In this algorithm, we use all (instead of a subset of) the dis-
tances available for the determination of each unknown atom and obtain the position of
the atom by using a least-squares approximation (instead of solving a system of equations
exactly, see Fig. 1). The least-squares approximation can be implemented with either a
linear or nonlinear formulation. The linear formulation can be obtained from the reduced
linear system of equations for the determination of the coordinates of the unknown atom.
The nonlinear formulation can be defined directly with the original system of distance
equations. The linear least-squares problem can be solved using a standard method. The
nonlinear least-squares problem may not be solved easily if an iterative method is used.
However, we show that it can actually be solved by using a special singular value de-
composition method, which can not only provide a good solution to the problem, but also
prevent the accumulation of the rounding errors in the buildup procedure effectively. We
describe these least-squares formulations and their solution methods. We present the test
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Fig. 1 Tolerance of distance errors The algorithm tries to determine the coordinates of each atom by
taking all available distance constraints into account and by minimizing the errors for all the constraints. In
this way, all the constraints are intended to be satisfied, and the algorithm is also more stable with possible
errors in the distance data.

results from applying the new algorithm to the determination of a set of protein struc-
tures with varying degrees of availability and accuracy of the distances and show that the
new development increases the modeling ability and improves stability and robustness of
the geometric buildup approach significantly from both theoretical and practical point of
views.

2. The general geometric buildup approach

Given an arbitrary set of distances, the general geometric buildup algorithm first finds four
atoms that are not in the same plane and determines the coordinates for the four atoms
with all the distances among them (assuming available). Then for any undetermined atom
j , the algorithm repeatedly performs a procedure as follows: Find four determined atoms
that are not in the same plane and have distances available to atom j , and determine
the coordinates for atom j . Let xi = (xi,1, xi,2, xi,3)

T , i = 1,2,3,4, be the coordinate
vectors of the four atoms. Then the coordinates xj = (xj,1, xj,2, xj,3)

T for atom j can be
determined by using the distances di,j from atoms i = 1,2,3,4 to atom j . Indeed, xj can
be obtained from the solution of the following system of equations,

‖xi‖2 − 2xT
i xj + ‖xj‖2 = d2

i,j , i = 1,2,3,4. (1)

By subtracting equation i from equation i + 1 for i = 1,2,3, we can eliminate the
quadratic terms for xj to obtain

−2(xi+1 − xi)
T xj

= (
d2

i+1,j − d2
i,j

) − (‖xi+1‖2 − ‖xi‖2
)
, i = 1,2,3. (2)

Let A be a matrix and b a vector, and

A = −2

⎡

⎢⎢
⎣

(x2 − x1)
T

(x3 − x2)
T

(x4 − x3)
T

⎤

⎥⎥
⎦ , b =

⎡

⎢⎢
⎣

(
d2

2,j − d2
1,j

) − (‖x2‖2 − ‖x1‖2
)

(
d2

3,j − d2
2,j

) − (‖x3‖2 − ‖x2‖2
)

(
d2

4,j − d2
3,j

) − (‖x4‖2 − ‖x3‖2
)

⎤

⎥⎥
⎦ . (3)
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We then have Axj = b. Since x1, x2, x3, x4 are not in the same plane, A must be nonsingu-
lar, and we can therefore solve the linear system to obtain a unique solution for xj . Here,
solving the linear system requires only constant time. Since we only need to solve n − 4
such systems for n−4 coordinate vectors xj , the total computation time is proportional to
n, if in every step, the required coordinates xi and distances di,j , i = 1,2,3,4 are always
available.

The General Geometric Buildup Algorithm

1. Find four atoms that are not in the same plane.
2. Determine the coordinates of the atoms with the distances among them.
3. Repeat:

For each of the undetermined atoms,
If the atom has 4 distances to 4 determined atoms that are not in the same plane,

Determine the atom with the distances.
End

End
4. If no atom can be determined in the loop, stop.
5. All atoms are determined.

The theoretical basis of the geometric buildup approach can be traced back in the study
of distance geometry in mathematics (Blumenthal, 1953). The earliest proposal for such
an approach can be found in Sippl and Scheraga (1985, 1986). Huang et al. (2003) recently
discussed some related theoretical issues in the context of distance matrix completion.
Based on the distance geometry theory, any point in a Euclidean space can be determined
in terms of the distances from this point to a special set of points.

Definition 2.1. A set of points B in a space S is a metric basis of S provided each point
of S is uniquely determined by its distances from the points in B .

Definition 2.2. A set of k + 1 points in Rk is called independent if it is not a set of points
in Rk−1.

Theorem 2.1. Any k + 1 independent points in Rk form a metric basis for Rk .

Proof: It follows directly by generalizing the basic geometric buildup step to the
k-dimensional Euclidean space. Let xi = (xi,1, . . . , xi,k)

T be the coordinate vectors of an
independent set of points i = 1, . . . , k + 1 in Rk . Let xj = (xj,1, . . . , xj,k)

T be the coor-
dinate vector for any point j in Rk with distances di,j from points i = 1, . . . , k + 1 to
point j . Then

‖xi‖2 − 2xT
i xj + ‖xj‖2 = d2

i,j , i = 1, . . . , k + 1, (4)



A Geometric Buildup Algorithm for the Solution of the Distance 1919

and Axj = b, where

A = −2

⎡

⎢⎢
⎢⎢
⎢⎢
⎣

(x2 − x1)
T

(x3 − x2)
T

...

(xk+1 − xk)
T

⎤

⎥⎥
⎥⎥
⎥⎥
⎦

, b =

⎡

⎢⎢
⎢⎢
⎢⎢
⎣

(
d2

2,j − d2
1,j

) − (‖x2‖2 − ‖x1‖2
)

(
d2

3,j − d2
2,j

) − (‖x3‖2 − ‖x2‖2
)

...
(
d2

k+1,j − d2
k,j

) − (‖xk+1‖2 − ‖xk‖2
)

⎤

⎥⎥
⎥⎥
⎥⎥
⎦

. (5)

Since the points i = 1, . . . , k + 1 are not in Rk−1, the matrix A must be nonsingular and
xj is determined uniquely. �

3. Control of numerical errors

The general geometric buildup algorithm can be sensitive to the numerical errors gen-
erated during the calculation of the coordinates of the atoms. With this algorithm, the
coordinates of many atoms are determined by using the coordinates of previously deter-
mined atoms and, therefore, the errors in the previously determined atoms are passed to
and accumulated in later determined atoms. As a result, the coordinates for later deter-
mined atoms may become completely incorrect, especially if there is a long sequence of
atoms to be determined.

Wu and Wu (2007) proposed an updating scheme to prevent the accumulation of the
numerical errors. The idea of the scheme is based on the fact that the coordinates of any
four atoms can be determined without any other information if all the distances among
them are given. Therefore, the coordinates of any four determined atoms should be recal-
culated whenever possible using the distances among them, before they are used as a basis
set of atoms for the determination of other atoms. The recalculated coordinates do not de-
pend on the coordinates of previously determined atoms and, therefore, do not inherit any
errors from them. They are determined from “scratch” and will not pass previous errors
to later atoms as well. In this way, the coordinates of many atoms can be “corrected,”
and the errors in the calculated coordinates can be prevented from growing into incorrect
structural results.

The recalculation of the coordinates of the four atoms in the above algorithm usually
is done in an independent coordinate system, which is not related to the overall structure
already constructed by the algorithm. However, they can be moved back to the original
structure by aligning them to their original locations with an appropriate translation and
rotation. In other words, the new coordinates of the four atoms can be translated and
rotated so that the root-mean-square-deviation (RMSD) between the new coordinates and
the old ones is minimized.

Let y1, . . . , y4 be the coordinate vectors of the four atoms calculated in the regular
geometric buildup process, and x1, . . . , x4 the recalculated coordinate vectors. Let Y and
X be the corresponding coordinate matrices, i.e.,

Y = {yi,k : i = 1, . . . ,4, k = 1,2,3} and X = {xi,k : i = 1, . . . ,4, k = 1,2,3}.
(6)
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In order to move X to the position where Y is located in the molecule, the geometric
centers of X and Y are calculated first:

xT
c =

4∑

i=1

X(i, :)/4, yT
c =

4∑

i=1

Y (i, :)/4. (7)

Then X is translated so that the geometric centers of X and Y are at the same location,

X � X + e(yc − xc)
T , (8)

where e = (1,1,1,1)T . After the translation, a rotation for X is selected so that the root-
mean-square-deviation of X and Y is minimized. In fact, the calculation of such a devia-
tion can be done by solving an optimization problem,

min
Q

‖Y − XQ‖F , QQT = I, (9)

where ‖‖F is the matrix Frobenius norm and Q the rotation matrix. Let C = XT Y , and let
C = UΣV T be the singular-value decomposition of C. Then it is not difficult to verify
that Q = UV T solves the above optimization problem (Golub and van Loan, 1989).

4. Tolerance of distance errors

In practice, the distance data often contains errors. As a result, the distances may become
inconsistent or have violated some basic rules such as the triangle inequality. In terms of
graph embedding, the distance graph may not be realizable in a given space for such a
set of distances. Generally, the geometric buildup algorithm assumes that the distances
are consistent and, therefore, in every step, only four distances are required for the deter-
mination of the coordinates of an atom uniquely, although there may be more available.
However, this will not be the case if the distances are not consistent.

The geometric buildup algorithm can be extended in a straightforward manner to
handling the possible errors from the distance data. For example, in every buildup
step, in addition to the four required distances, we can include all the available dis-
tances, say l distances, from the determined atoms to the one to be determined. Let
xi = (xi,1, xi,2, xi,3)

T , i = 1, . . . , l, be the coordinate vectors of the l determined atoms
and di,j the distances from atoms i = 1, . . . , l to the undetermined atom j . Then the
coordinates xj = (xj,1, xj,2, xj,3)

T for atom j can be obtained from the solution of the
following system of equations,

‖xi‖2 − 2xT
i xj + ‖xj‖2 = d2

i,j , i = 1, . . . , l. (10)

By subtracting equation i from equation i + 1 for i = 1, . . . , l − 1, we can eliminate the
quadratic terms for xj to obtain

−2(xi+1 − xi)
T xj

= (
d2

i+1,j − d2
i,j

) − (‖xi+1‖2 − ‖xi‖2
)
, i = 1, . . . , l − 1. (11)
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Let A be a matrix and b a vector, and

A = −2

⎡

⎢⎢
⎢⎢
⎢⎢
⎣

(x2 − x1)
T

(x3 − x2)
T

...

(xl − xl−1)
T

⎤

⎥⎥
⎥⎥
⎥⎥
⎦

, b =

⎡

⎢⎢
⎢⎢
⎢⎢
⎣

(d2
2,j − d2

1,j ) − (‖x2‖2 − ‖x1‖2)

(d2
3,j − d2

2,j ) − (‖x3‖2 − ‖x2‖2)

...

(d2
l,j − d2

l−1,j ) − (‖xl‖2 − ‖xl−1‖2)

⎤

⎥⎥
⎥⎥
⎥⎥
⎦

. (12)

We then have Axj = b. This system is certainly over-determined if l > 4. However, it can
be solved by using a standard linear least-squares method. For example, we can compute
the QR factorization of A to obtain an equation QRxj = b, where Q is (l − 1) × 3 and
R is 3×3. If at least four of the l determined atoms are not in the same plane, A must
be full rank and R be nonsingular. We can solve the linear system QRxj = b to obtain an
unique solution xj = R−1QT b. Here, solving the linear system QRxj = b requires O(l)

computing time, but QR factorization may take O(l2) time. We can also take another
so-called normal equation method, although it may not be as stable as the QR method:
We can first multiply the equation Axj = b by AT to obtain AT Axj = AT b. If at least
four of the l determined atoms are not in the same plane, A must be full rank and AT A

be nonsingular. We can then solve the linear system AT Axj = AT b to obtain a unique
solution xj = [AT A]−1AT b. Here, solving the linear system AT Axj = AT b requires only
constant time, but AT A may take O(l) time. In either case, since we only need to solve
∼n linear least-squares problems for ∼n coordinate vectors xj , the total computation
time must be in order of either l2

mn or lmn, if in every step, the required coordinates xi and
distances di,j are always available, where lm = maxj {|Sj |}, Sj = {i : (i, j) in S}.

The above solution to the system Axj = b can be exact, if the system is consistent or
in other words, if the original distance are consistent and do not have errors. However,
it still provides the best approximation to the solution of the system, even if the system
is inconsistent or in other words, if the original distances are inconsistent or have errors.
In this sense, the extended geometric buildup algorithm should be more robust and stable
than the general algorithm, in addition to being able to tolerate small errors in the distance
data.

Geometric Buildup with Linear Least-Squares

1. Find four atoms that are not in the same plane.
2. Determine the coordinates of the atoms with the distances among them.
3. Repeat:

For each of the undetermined atoms,
If the atom has l distances to l determined atoms that are not in the same plane,

Determine the atom with the least-squares fit to the distances.
End

End
4. If no atom can be determined in the loop, stop.
5. All atoms are determined.
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Again, the theory for the extended geometric buildup algorithm can be established
and generalized to any k-dimensional Euclidean space in a similar fashion as that for
the general geometric buildup algorithm. For this purpose, we define an extended set of
independent points in Rk .

Definition 4.1. A set of l points is said to be an extended set of independent points in Rk

if it contains k + 1 independent points.

The following result is a trivial generalization of Theorem 2.1 and we state it without
proof.

Theorem 4.1. An extended set of l independent points in Rk forms a metric basis for Rk .

5. Singular value decomposition

The algorithm described in the previous section may not necessarily be stable for pre-
venting rounding errors from growing, because in every step, the coordinates of the un-
known atom must have rounding errors, which can still be propagated and accumulated
into later calculations. Different from the general algorithm, it is difficult to apply an up-
dating scheme as described in Section 3 in the new algorithm, because the scheme requires
the availability of the distances among all l determined atoms, which is not so realistic
when l is large. Here, we describe another buildup procedure that may resolve this prob-
lem. The idea is to determine the unknown atom in each buildup step by using not only the
l distances from l determined atoms to the unknown atom, but also the distances among
all the l determined atoms. The l distances from l determined atoms to the unknown atom
must be given. The distances among the l determined atoms may not necessarily be pro-
vided, but they can be calculated. In any case, once all these distances become available,
the coordinates for the unknown atom and the l known atoms can all be calculated (or
recalculated) using these distances.

In general, let x1, . . . , xl and xl+1 be the coordinate vectors of atoms 1, . . . , l +1. If the
distances among all these atoms, di,j , i, j = 1, . . . , l + 1, are available, then ‖xi − xj‖ =
di,j for all i, j = 1, . . . , l + 1, and

‖xi‖2 − 2xT
i xj + ‖xj‖2 = d2

i,j , i, j = 1, . . . , l + 1. (13)

Since the structure formed by these atoms is invariant under any translation or rotation,
we can set a reference system so that the origin is located at the last atom or in other
words, xl+1 = (0,0,0)T . It follows that ‖xi‖ = di,l+1, ‖xj‖ = dj,l+1, and

d2
i,l+1 − 2xT

i xj + d2
j,l+1 = d2

i,j , i, j = 1, . . . , l. (14)

Define a coordinate matrix X and an induced distance matrix D,

X = {xi,k : i = 1, . . . , l, k = 1,2,3} and

D = {(
d2

i,l+1 − d2
i,j + d2

j,l+1

)
/2 : i, j = 1, . . . , l

}
.

(15)



A Geometric Buildup Algorithm for the Solution of the Distance 1923

Then it is easy to verify that XXT = D and D must be of maximum rank 3.
Let D = UΣUT be the singular value decomposition of D, where U is an orthogonal

matrix and Σ a diagonal matrix with the singular values of D along the diagonal. If D is
a matrix of rank less than or equal to 3, X = V Λ1/2 solves the equation XXT = D, where
V = U(:, l : 3) and Λ = Σ(1 : 3,1 : 3). In other words, if the distances di,j are available
for all i, j = 1, . . . , l + 1, we can always construct an induced matrix D for the distances
and then, based on the singular value decomposition of D, obtain the coordinates for all
the atoms 1, . . . , l as given in X with atom l + 1 fixed at (0,0,0)T .

The above procedure can in fact be applied to any l + 1 atoms, and is one of the stan-
dard algorithms for the solution of the distance geometry problems, when the distances
for all pairs of atoms in the molecule are given. The algorithm can also be generalized
to problems in any k-dimensional Euclidean space, with X being an l × k matrix and D

being an l × l matrix. In general,

Theorem 5.1. Let {di,j : i, j = 1, . . . , l + 1} be a set of distances in Rk , for some k < l.
Then the matrix D as induced in (15) is of maximum rank k.

Proof: It follows from the facts that D = XXT and X is an l × k matrix with maximum
rank k when k < l. �

Theorem 5.2. Let D = UΣUT be the singular value decomposition of D. If D is a
matrix of rank less than or equal to k,X = V Λ1/2 solves the equation XXT = D, where
V = U(:,1 : k) and Λ = Σ(1 : k,1 : k).

Proof: If D is of maximum rank k,D can be decomposed into UΣUT with U being
an l × k orthogonal matrix and Σ an k × k diagonal matrix. It follows that XXT = D, if
X = V Λ1/2. �

Note that the distances may have errors. Then the matrix D may have a higher rank
than k or in other words, the equation XXT = D may not have an exact solution. However,
X = V Λ1/2 as defined above is still a good approximation to the solution of the equation
in the following nonlinear least-squares sense.

Theorem 5.3. Let D = UΣUT be the singular value decomposition of D. Let V =
U(:,1 : k) and Λ = Σ(1 : k,1 : k). Then X = V Λ1/2 minimizes ‖D − XXT ‖F , where
‖‖F is the matrix Frobenius norm.

Proof: (Havel, 1998) Let f (X) = ‖D − XXT ‖2. Then (D − XXT )X = 0 for any sta-
tionary point X of f . It follows that (D − XXT )X = (D − XXT )XXT = 0 and

f (X) = trace
(
D2

)− trace
(
2DXXT −XXT XXT

) = trace
(
D2

)− trace
(
XXT XXT

)
.

Let σ1 ≥ · · · ≥ σl ≥ 0 be the singular values of D and λ1 ≥ · · · ≥ λk > 0 be the singular
values of XXT . Then

f (X) = trace
(
D2

) − trace
(
XXT XXT

) =
l∑

j=1

σ 2
j −

k∑

j=1

λ2
j .
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Let XXT = V ΛV T be the singular value decomposition of XXT , where V is an l × k

orthogonal matrix and Λ = diag{λ1, . . . , λk}. Since DXXT = XXT XXT ,V T DV = Λ

and, therefore, {λj : j = 1, . . . , k} ⊂ {σj : j = 1, . . . , n}. It follows that f (X) is minimized
when λj = σj for j = 1, . . . , k. �

Based on the above discussion, a buildup procedure can immediately be implemented
as follows. In every buildup step, construct an induced matrix D from the distances
di,j , i, j = 1, . . . , l + 1 among l + 1 atoms,

D = {(
d2

i,l+1 − d2
i,j + d2

j,l+1

)
/2 : i, j = 1, . . . , l

}
, (16)

where di,j , i, j = 1, . . . , l are the distances among l determined atoms and di,l+1, i =
1, . . . , l are the distances from the determined atoms to the undetermined one. The former
are either given in the original distance data or calculated using the determined coordi-
nates of the related atoms. The latter must be given and cannot be calculated because
atom l + 1 is undetermined. Assuming the availability of all these distances, we can
then compute the singular value decomposition of D = UΣUT , and obtain X = V Λ1/2

with V = U(:, l : 3) and Λ = Σ(1 : 3,1 : 3), and hence the coordinates of all the atoms
1, . . . , l + 1, with the coordinates of atom l + 1 , the undetermined atom, at (0,0,0)T .

The results from the above calculations have several folds. First, the coordinates of
the unknown atom are determined by using l previously determined atoms, to which the
unknown atom has distances given. Second, the coordinates are determined by solving
a system of distance equations approximately. They are the best possible estimations in
a nonlinear least-squares sense as stated in Theorem 5.3, and can therefore be evaluated
even if the distances have errors. Third, the calculations not only determine the coordi-
nates of the unknown atom, but also recalculate the coordinates of all the involved atoms
including the determined ones. Most importantly, these coordinates do not depend com-
pletely on the results from previous calculations. Rather, they are determined by using the
provided distances among the atoms (determined and undetermined) as much as possible,
thereby reducing the risk of large error propagation and accumulation. In this sense, the
method should be more stable numerically than the one described in the previous section.

Of course, the calculations of the coordinates are conducted in an independent refer-
ence system with its origin at the position of the atom to be determined. In order to recover
the coordinates of the atoms in their original structure, we need to make a proper transla-
tion and rotation for the coordinates just like we need to do in the updating scheme for the
general geometric buildup algorithm. More specifically, let Y be an l × 3 matrix having
the original coordinates of the l determined atoms. Let X be an l×3 matrix with the recal-
culated coordinates of the determined atoms. First, we translate X to Y with a translation
vector yc − xc , where xc and yc are the geometric centers of X and Y , respectively. Then
we can rotate the coordinates of all the atoms by using a rotation matrix Q = UV T , where
U and V are obtained from the singular value decomposition, XT Y = UΣV T . That is, if
xi is the coordinate vector of atom i, i = 1, . . . , l + 1, then we set xi to Qxi .

Geometric Buildup with Nonlinear Least-Squares

1. Find four atoms that are not in the same plane.
2. Determine the coordinates of the atoms with the distances among them.
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3. Repeat: For each of the undetermined atoms,
If the atom has l distances to l determined atoms that are not in the same plane,

Determine the l + 1 atoms with the distances among them.
Put the atoms back to their original positions by proper translation and rotation

End
End

4. If no atom can be determined in the loop, stop.
5. All atoms are determined.

6. Test results

In this section, we present the test results from applying the new geometric buildup algo-
rithm to the determination of a set of protein structures with varying degrees of availability
and accuracy of the distances. We first downloaded eleven protein structures from the PDB
databank with the number of atoms ranging from 402 to 7398. With each of these struc-
tures, we generated four sets of distance data with the cutoff distances correspondingly
equal to 5, 6, 7, and 8 Å. For each generated distance set, we applied the new algorithm to
obtain a structure. The obtained structure was then evaluated with the coordinate RMSD
against its original structure.

We have implemented the new algorithm with both linear and nonlinear least-squares
buildup strategies as described in Sections 4 and 5, respectively. The programs were writ-
ten in MATLAB and run on a standard desktop workstation. Table 1 contains information
for the distance data generated from each of the downloaded structures including the num-
ber of atoms in the structure, the total number of distances between all pairs of atoms, and
the numbers of distances generated under specified cutoff distances. From this table, we
can see that for each of the structures, a very sparse set of distances (ranging from 0.32%
to 17.40%) was generated with specified cutoff distances. The distances became denser
when a larger cutoff distance was used (as can be observed from each row of the table).
However, as the number of atoms in the structure increases, the sparsity of the generated

Table 1 Available distances for different cutoff values*

ID TA TD ≤5 Å ≤6 Å ≤7 Å ≤8 Å
AD AD/TD AD AD/TD AD AD/TD AD AD/TD

1PTQ 402 80601 4399 5.46% 7088 8.79% 10302 12.78% 14023 17.40%
1HOE 558 155403 6299 4.05% 10178 6.55% 14936 9.63% 20423 13.14%
1LFB 641 205120 6974 3.40% 11435 5.57% 16602 8.09% 22519 10.98%
1PHT 814 330891 11033 3.33% 17695 5.35% 26299 7.95% 36077 10.90%
1POA 914 417241 10468 2.51% 16983 4.07% 24984 5.99% 34485 8.27%
1AX8 1003 502503 11542 2.30% 18795 3.74% 27286 5.43% 37130 7.39%
4MBA 1086 589155 12761 2.17% 20905 3.55% 30706 5.21% 42151 7.15%
1F39 1534 1175811 17300 1.47% 28532 2.43% 42678 3.63% 59551 5.06%
1RGS 2015 2029105 22784 1.12% 38020 1.87% 56298 2.77% 77513 3.82%
1BPM 3672 6739956 44789 0.66% 75152 1.12% 112940 1.68% 159303 2.36%
1HMV 7398 27361503 86288 0.32% 143196 0.52% 214498 0.78% 299939 1.10%

*ID—protein ID, TA—total number of atoms, TD—total number of distances, AD—available distances
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Table 2 RMSD values of structures computed with linear least-squares

ID TA ≤5 Å ≤6 Å ≤7 Å ≤8 Å
DA RMSD DA RMSD DA RMSD DA RMSD

1PTQ 402 402 1.4E+00 402 2.6E−09 402 1.7E−13 402 1.3E−13
1HOE 558 558 5.8E−02 558 3.1E−09 558 1.6E−13 558 1.8E−13
1LFB 641 641 2.0E−02 641 2.1E−10 641 6.7E−13 641 1.3E−13
1PHT 814 809 1.2E+01 814 8.2E−09 814 3.1E−13 814 1.8E−13
1POA 914 914 6.6E+00 914 1.9E−09 914 5.3E−13 914 4.9E−13
1AX8 1003 1003 5.2E+00 1003 1.8E−05 1003 6.7E−12 1003 7.7E−13
4MBA 1086 1083 4.9E+00 1086 3.8E−06 1086 1.1E−10 1086 3.7E−12
1F39 1534 1534 1.4E+01 1534 6.3E−08 1534 4.6E−11 1534 1.6E−10
1RGS 2015 2010 2.0E+01 2015 1.1E−01 2015 5.5E−10 2015 1.7E−12
1BPM 3672 3669 6.4E+04 3672 3.6E−02 3672 3.4E−09 3672 5.5E−12
1HMV 7398 7389 1.2E+03 7398 3.5E+01 7398 1.1E−04 7398 5.5E−10

ID—protein ID, TA—total number of atoms, DA—total number of determined atoms, RMSD—RMSD
values of the computed structure against the original structures

distances also increases for a fixed cutoff distance (as can be observed from each col-
umn of the table). The purpose of using different cutoff distances was to obtain different
sets of distance data with different sparsities so we can test the algorithm for problems
with varying degrees of availability of the distances. As we have discussed in the previ-
ous section, the problem becomes usually unrealistic for practical cases when the number
of available distances is large. For realistic cases, for instance in NMR experiments, the
number of available distances is always small since the distance cutoff is about 5 or 6 Å.
In our work, we also considered the cases of larger cutoffs like 7 and 8 Å for the purpose
of numerical study. These results are listed for purely mathematical and numerical pur-
poses, and they will not affect practicality of the algorithm because it behaves very well
for sparse distance data.

Table 2 contains the RMSD (root-mean-square deviation) values of the structures
(compared with their original structures) obtained by using the new buildup algorithm
with linear least-squares on the data sets listed in Table 1. The RMSD values show that
the algorithm solved almost all the problems with cutoff distances equal to 6, 7, and 8 Å,
but failed for those with cutoff distance equal to 5 Å. The last cutoff value is critical be-
cause in NMR modeling, usually only less than or equal 5 Å distances can be estimated.
In any case, the results show that with linear least-squares, the new buildup algorithm
performed well in general if the distance data was not too sparse. The reason that it did
not work well for very sparse data was that a long sequence of buildup steps had to be
carried out and a large amount of rounding errors was accumulated.

Table 3 contains the RMSD (root-mean-square deviation) values of the structures
(compared with their original structures) obtained by using the new buildup algorithm
with nonlinear least-squares on the data sets listed in Table 1. The RMSD values show
that the algorithm solved almost all the problems with cutoff distances equal to 5, 6, and
7 Å, but failed for those with cutoff distance equal to 8 Å. The large cutoff values are in
fact not so important because in practice, usually only shorter distances can be estimated.
Therefore, the results indicated that with nonlinear least-squares, the new buildup algo-
rithm performed well in general. The reason it worked well for very sparse data was that
it calculated the coordinates of the undetermined as well as determined atoms in every
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Table 3 RMSD values of structures computed with nonlinear least-squares

ID TA ≤5 Å ≤6 Å ≤7 Å ≤8 Å
DA RMSD DA RMSD DA RMSD DA RMSD

1PTQ 402 402 5.5E−14 402 5.0E−14 402 2.5E−12 402 5.6E−11
1HOE 558 558 1.6E−13 558 2.7E−13 558 9.2E−13 558 3.6E−07
1LFB 641 641 9.5E−14 641 5.5E−14 641 2.5E−13 641 3.1E−09
1PHT 814 809 1.1E−13 814 1.8E−13 814 2.2E−08 814 3.0E+08
1POA 914 914 3.2E−13 914 1.5E−13 914 2.5E−10 914 8.3E−03
1AX8 1003 1003 4.0E−13 1003 4.6E−12 1003 2.2E−08 1003 8.7E+10
4MBA 1086 1083 1.8E−13 1086 2.6E−13 1086 3.3E−10 1086 7.1E+02
1F39 1534 1534 7.9E−13 1534 1.9E−13 1534 8.2E−08 1534 1.0E+34
1RGS 2015 2010 8.3E−12 2015 2.4E−12 2015 5.3E−07 2015 4.6E+28
1BPM 3672 3669 8.1E−11 3672 1.0E−11 3672 7.0E+26 – –
1HMV 7398 7389 1.1E−08 7398 5.5E−07 – – – –

ID—protein ID, TA—total number of atoms, DA—total number of determined atoms, RMSD—RMSD
values of the computed structure against the original structures

Table 4 Total CPU times elapsed during structure determination (in seconds)

ID ≤5 Å ≤6 Å ≤7 Å ≤8 Å
LNLS NLLS LNLS NLLS LNLS NLLS LNLS NLLS

1PTQ 0.312 0.390 0.484 0.920 0.437 1.201 0.499 2.137
1HOE 0.577 0.889 0.593 1.295 0.749 2.075 0.608 3.370
1LFB 0.733 1.014 0.718 1.295 0.780 2.028 0.733 3.526
1PHT 1.092 1.716 1.154 2.309 1.076 3.806 1.310 7.769
1POA 1.326 1.576 1.217 2.278 1.217 3.494 1.498 5.912
1AX8 1.420 1.981 1.544 2.480 1.404 3.853 1.778 6.193
4MBA 1.685 2.090 1.778 2.761 1.669 4.337 1.950 7.316
1F39 2.933 3.604 3.104 4.758 3.104 7.192 3.120 11.809
1RGS 4.976 5.741 4.820 7.457 4.914 10.312 5.320 16.630
1BPM 15.038 16.848 15.179 20.327 15.600 26.863 15.975 –
1HMV 61.464 64.772 61.464 69.280 61.402 – 62.900 –

ID—protein ID, LNLS—total CPU time elapsed during structure determination using the linear least-
squares method, NLLS—total CPU time elapsed during structure determination using the nonlinear least-
squares method

buildup step using the distances among them (most presumably given in the original dis-
tance data) and therefore, stopped the propagation of the rounding errors. It did not work
well for larger cutoff distances because in those cases, most of the distances among a
group of atoms to be determined were probably calculated instead of given and, there-
fore, the recalculated coordinates of the atoms would still inherit the errors produced in
previous calculations through these distances.

Table 4 presents the performance results for the same test cases as shown in Tables 2, 3,
with the times required by both algorithms, linear least-squares (LNLS) and nonlinear
least-squares (NLLS). The programs were run in Matlab R2008b version 7.7 on a Dell
Laptop, with 1.86 GHz CPU and 2.00 GB memory. From the table, we can see that the
computing times of both algorithms were comparable, with the nonlinear one requiring
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slightly longer time. However, both turned out to be very efficient, and were able to finish
the calculations in only a few seconds to a few minutes for almost all the test cases.

Tables 5 and 6 further demonstrate the behaviors of the new algorithm for distances
with some small magnitudes of errors. In order to obtain these results, we have first used
the distances generated for the proteins with the cutoff distance equal to 5 and 6 Å and
perturbed them with some small random errors. More specifically, we perturbed every
generated distance d by using an update formula d � d + 2 ∗ RE ∗ (0.5 − rand)∗ d , where
RE are the maximum relative errors and RE = 1.0E−08, 1.0E−07, 1.0E−06, 1.0E−05,
and 1.0E−04, and rand is a function which returns a random number in [0, 1]. We have
then obtained a new set of distance data for each protein, with the cutoff distance equal
to 5 or 6 Å. The distances have errors and can be inconsistent. For each of these data
sets, we applied the new algorithm again to obtain a structure for the corresponding pro-
tein and also calculated the RMSD value of the structure against its original structure.
Table V shows that for very sparse distances with cutoff distance equal to 5 Å, the algo-
rithm with a nonlinear least-squares buildup procedure was able to obtain a good approx-
imated structure for almost all the tested proteins, after the distances were perturbed with
RE = 1.0E−08, 1.0E−07, 1.0E−06, 1.0E−05 and 1.0E−04. The algorithm with a linear
least-squares buildup procedure did not work well because of an obvious reason of round-
ing error accumulation. However, when the distances were increased, the latter was able
to produce reasonable results as well, while the nonlinear least-squares buildup started
having problems for larger test cases with larger distance errors (as can be observed in
Table 6). The proposed algorithms failed to produce accurate structures for some of the
test cases when the problem sizes are large or the distances are relatively dense (with
large distance cutoff values) and, therefore, the accumulated rounding errors or the dis-
tance errors are still too large. However, in either case, we observed that the algorithm
using nonlinear least-squares always outperformed the one using linear least-squares.

For most of the problems we generated in this work, the previous geometric buildup
methods will not work since they do not tolerate any error in the distance data. They do
not work either, even for some of the cases with exact distance data. However, in the
new algorithm, we include both exact and inexact distance data. Different from previous
works done on geometric buildup, our method can also be applied to the problems with
distance errors. In order to suppress the test results, we refer the reader to Dong and Wu
(2002, 2003), and Wu and Wu (2007), and we will not include test results from previous
geometric buildup approaches.

7. Concluding remarks

In this paper, we have described a new extension of the general geometric buildup algo-
rithm to determining protein structures with sparse and possibly inconsistent distances.
The general geometric buildup algorithm can be sensitive to the numerical errors, for the
coordinates of the atoms are determined using the coordinates of previously determined
atoms and the rounding errors in the previously determined atoms can be passed to and
accumulated in later determined atoms, resulting in incorrect structural results. The gen-
eral geometric buildup algorithm cannot tolerate errors in given distances either, for the
distances then may not be consistent and the systems of distance equations may not be
solvable. However, in practice, the distances must have errors because they come from
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either experimental measures or theoretical estimates. In order for the algorithm to handle
inexact distances (distances with errors), the general buildup procedure has to be mod-
ified. First, in every buildup step, if l distances are found from an undetermined atom
to l determined atoms, l ≥ 4, all l distances should be used for the determination of the
unknown atom. The reason is that if the distances have errors, they can be inconsistent.
Then the atom satisfying four of the distances may not necessarily satisfy the rest of the
distances and, therefore, it should be determined with all its distance constraints. Sec-
ond, if l ≥ 4, an over-determined system of equations is obtained for the determination
of the position of the unknown atom. If the distances have errors, the system may not be
consistent. Therefore, we can only solve the system approximately by using for example
a least-squares method. Third, a new updating scheme may be necessary to prevent the
accumulation of the rounding errors. The previously developed updating scheme may not
be practical any more for l � 4 because it requires all the distances available among l

determined atoms.
We have developed a new geometric buildup algorithm which can prevent the accu-

mulation of the rounding errors in the buildup calculations successfully and also tolerate
small errors in the given distances. In this algorithm, we use all (instead of a subset of)
the distances available for the determination of each unknown atom and obtain the po-
sition of the atom by using a least-squares approximation (instead of solving a system
of equations exactly). The least-squares approximation can be implemented with either a
linear or nonlinear formulation. The linear formulation can be obtained from the reduced
linear system of equations for the determination of the coordinates of the unknown atom.
The nonlinear formulation can be defined directly with the original system of distance
equations. The linear least-squares problem can be solved using a standard method. The
nonlinear least-squares problem may not be solved easily if an iterative method is used.
However, we have shown that it could actually be solved by using a special singular value
decomposition method, which could not only provide a good solution to the problem, but
also prevent the accumulation of the rounding errors in the buildup procedure effectively.
We have described these least-squares formulations and their solution methods. We have
presented the test results from applying the new algorithm to the determination of a set of
protein structures with varying degrees of availability and accuracy of the distances and
showed that the new development increases the modeling ability of the geometric buildup
approach significantly from both theoretical and practical point of views.

As we have discussed in the paper, a further complicated yet practical case of the
distance geometry problem is when the distances are given with only their lower and
upper bounds. The problem then becomes to find the coordinates x1, . . . , xn for the atoms
for a given set of lower and upper bounds, li,j and ui,j , of the distances di,j such that

li,j ≤ ‖xi − xj‖ ≤ ui,j , (i, j) ∈ S.

The algorithm presented in this paper may not be applied directly to these kinds of prob-
lems. However, its general procedure can still be adopted for the solution of such a prob-
lem. The only difference is that in every buildup step, an atom will be determined by
satisfying a set of distance bounds instead of exact distances. The computation will cer-
tainly be more involved and subject to even more arbitrary errors. The solution to the
problem will not be unique, either. In fact, there can be an ensemble of solutions all satis-
fying the given distance inequalities. On the other hand, in practice, it is actually preferred
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to obtain the entire ensemble of solutions instead of a few samples. How to implement a
buildup algorithm for the solution of such a problem can be challenging and will be the
topic of our next step of investigation.
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