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Componentwise error bounds for linear complementarity problems are presented. For the problem with

an H-matrix, the error bound can be computed by solving a system of linear equations. It is proved that

our error bound is more accurate than that obtained recently by Chen and Xiang [Math. Prog., Ser. A

106, 513-525 (2006)]. Numerical results show that the new bound is often much better than previous

ones.
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1. Introduction

Let M ∈ℜn×n and q∈ℜn be given. The linear complementarity problem (LCP), denoted by LCP(M,q),
is to find a vector x∗ ∈ ℜn such that

x∗ > 0, Mx∗+q > 0, (x∗)T (Mx∗+q) = 0,

or to show that no such x∗ exists. Here the inequalities are meant componentwise. LCPs have many
important real world applications, for example, see Cottle, Pang & Stone (1992) and Ferris & Pang
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(1997).

Let x̂ ∈ ℜn
+ be an arbitrary but fixed vector. Estimation of the error x̂− x∗ plays an important role in

both numerical solution and theoretical analysis. Norm error estimation for LCPs has been extensively
studied so far, for example, see Chen & Xiang (2006), Mangasarian & Ren (1994), Mathias & Pang
(1990) and Pang (1997).

We present in this paper new componentwise error bounds. That is, we give r ∈ ℜn
+ such that

|x̂− x∗| 6 r ,

where notation |y| means the vector whose i−th component is |yi|. Such an r can be computed in
general by finding a feasible solution of a convex quadratic programming problem, for which a very
mild computational cost is expected. The solution of the convex quadratic programming delivers a tight
error bound.

For the case that M is an H-matrix, that is, the comparison matrix M̄ = (m̄i j) ∈ ℜn×n has a nonneg-
ative inverse, where

m̄i j =

 |mii| if i = j,

−|mi j| if i 6= j,

we present a tight error bound ϕH(x̂), which can be computed by solving a system of linear equations.
For LCP with H-matrix, the error bound

‖x̂− x∗‖p 6 ‖M̄−1 max(D, I)‖p‖min(x̂,Mx̂+q)‖p =: φp(x̂) (1.1)

was given by Chen & Xiang (2006), where p ∈ [1,+∞], D is the diagonal part of M, I is the identity
matrix, “max” and “min” are taken componentwise. The error bound φp(x̂) was proved more accurate
than the well known bound given by Mathias & Pang (1990). We will prove that our error bound ϕH(x̂)
is more accurate than the error bound φp(x̂) given in (1.1) in the sense that

‖ϕH(x̂)‖p 6 φp(x̂).

The numerical results illustrate that this inequality holds strictly, and in different order of magnitude for
our model problem.

To conclude this section we give some notations. The set

FEA(M,q) := {x ∈ ℜ
n : x > 0, Mx+q > 0} (1.2)

is called the feasible set of the linear complementarity problem LCP(M,q). An element of FEA(M,q)
is called a feasible vector of the problem LCP(M,q). This feasible vector is also known as a feasible
solution.

For x = (xi) and y = (yi) ∈ ℜn, x 6 y stands for xi 6 yi, i = 1, . . . ,n. We denote by max(x,y) and by
min(x,y) the componentwise maximum and minimum of x and y, respectively. Let a = (ai) ∈ ℜn and
a = (ai) ∈ ℜn be given with a 6 a. We define an n-dimensional interval vector as the set of vectors

[a] = [a,a] := {x ∈ ℜ
n : a 6 x 6 a}.

For an interval vector [a] = [a,a], we define the operation

max(0, [a]) := [max(0,a),max(0,a)].

For simplicity, we write [a,a] = a for a ∈ ℜn. The operations +, −, and × can be defined for intervals.
We refer to Neumaier (1990) for details.
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2. Error Bound

We begin our study with an existence theorem. It gives a sufficient condition for guaranteeing that an
interval vector contains a solution of an LCP.

THEOREM 2.1 Let M ∈ ℜn×n and q ∈ ℜn be given. Let [x] be an n-dimensional interval vector, and
x̂ ∈ [x] be an arbitrary but fixed vector. Let a diagonal matrix ∆ = diag(δi) ∈ℜn×n be given with δi > 0,
i = 1, . . . ,n. If

Γ (x̂, [x],∆) := max(0, x̂−∆(Mx̂+q)+(I−∆M)([x]− x̂)) ⊆ [x], (2.1)

then LCP(M,q) has a solution x∗ ∈ Γ (x̂, [x],∆).

Proof. See Alefeld, Wang & Shen (2004).

Now we find a vector r ∈ ℜn
+ such that the condition (2.1) holds for the interval vector [x̂− r, x̂+ r].

Consequently, it follows from Theorem 2.1 that LCP(M,q) has a solution x∗ ∈ [x̂− r, x̂ + r], which
implies the componentwise error bound

|x̂− x∗|6 r.

Given a vector x̂ ∈ ℜn
+, we define

α := {i : x̂i 6 (Mx̂+q)i}, (2.2)

x̃ := (x̃i) with x̃i =

 x̂i if i ∈ α,

0 if i /∈ α,
(2.3)

ỹ := (ỹi) with ỹi =

 (Mx̂+q)i if i ∈ α,

−|(Mx̂+q)i| if i /∈ α,
(2.4)

M̃ := D−|B|, (2.5)

q̃ := M̃x̃+ ỹ, (2.6)

where D and −B are the diagonal and the off-diagonal parts of M, respectively.
Using these definitions, we can give our main error estimation result as follows.

THEOREM 2.2 Let M ∈ ℜn×n, q ∈ ℜn and x̂ ∈ ℜn
+ be given. Let M̃ ∈ ℜn×n and q̃ ∈ ℜn be defined by

(2.5) and (2.6), respectively. If u ∈ FEA(M̃, q̃), then LCP(M,q) has a solution x∗ ∈ [x] := [x̂− r, x̂ + r],
where r = x̃+u, x̃ ∈ ℜn is defined by (2.3). As a direct consequence, we have the error bound

|x̂− x∗| 6 r. (2.7)
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Proof. It is sufficient to show that condition (2.1) holds for r = x̃ + u. We define a positive definite
diagonal matrix ∆ = diag(δi) ∈ ℜn×n by setting

δi =

 1 if mii 6 0,

1/mii if mii > 0.

It can be verified that (see Neumaier (1990))

(I−∆M)([x]− x̂) = [−|I−∆M|r, |I−∆M|r].

By the definition of Γ (x̂, [x],∆), we have Γ (x̂, [x],∆) = [Γ (x̂, [x],∆),Γ (x̂, [x],∆)], where

Γ (x̂, [x],∆) = max(0, x̂−∆(Mx̂+q)−|I−∆M|r),

Γ (x̂, [x],∆) = max(0, x̂−∆(Mx̂+q)+ |I−∆M|r).

Firstly, we prove Γ (x̂, [x],∆) 6 x̂+r. Remembering that D and −B are the diagonal and off-diagonal
parts of M respectively, we have

|I−∆M|r = r−∆(D−|B|)r = r−∆M̃r.

The definition (2.4) yields Mx̂+q > ỹ. Note that M̃x̃+ ỹ = q̃, r = x̃+u, and M̃u+ q̃ > 0. Thus, it follows
that

x̂−∆(Mx̂+q)+ |I−∆M|r 6 x̂−∆ ỹ+ r−∆M̃r

6 x̂+ r−∆ ỹ−∆M̃(x̃+u)
= x̂+ r−∆(M̃u+ M̃x̃+ ỹ)
= x̂+ r−∆(M̃u+ q̃)
6 x̂+ r,

which, together with x̂+ r = x̂+ x̃+u > u > 0, yields Γ (x̂, [x],∆) 6 x̂+ r.
Now we prove Γ (x̂, [x],∆) > x̂− r. For any index i ∈ α , we have

[Γ (x̂, [x],∆)]i = 0 > −ui = x̂i− ri.

For any index i /∈α , we note from the definition (2.4) that−(Mx̂+q)i > ỹi. Considering that M̃x̃+ ỹ = q̃,
u ∈ FEA(M̃, q̃) and that r = x̃+u, we have

[Γ (x̂, [x],∆)]i > [x̂−∆(Mx̂+q)−|I−∆M|r]i
> [x̂+∆ ỹ− r +∆M̃r]i
> x̂i− ri +[∆ ỹ+∆M̃(x̃+u)]i
= x̂i− ri +[∆(M̃u+ M̃x̃+ ỹ)]i
= x̂i− ri +[∆(M̃u+ q̃)]i
> x̂i− ri.

Hence, it is shown that condition (2.1) holds for [x] := [x̂− r, x̂+ r] with r = x̃+u. Therefore, it follows
from Theorem 2.1 that LCP(M,q) has a solution x∗ ∈ [x] := [x̂− r, x̂+ r], which in turns implies that the
error bound (2.7) holds. This completes our proof.
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We note that the matrix M̃, defined by (2.5), is a Z-matrix. A Z-matrix is a matrix whose all off-
diagonal entries are non-positive. So, if FEA(M̃, q̃) 6= /0, there is a unique vector u∗ ∈ FEA(M̃, q̃), which
is a solution of LCP(M̃, q̃), such that for any u∈FEA(M̃, q̃) we have u∗ 6 u (Cottle, Pang & Stone, 1992,
p.198–212). This vector u∗ is usually called the least element of the feasible set FEA(M̃, q̃). As u∗ is
also a feasible vector, we obtain the following error estimation result, which is a special case of Theorem
2.2.

COROLLARY 2.1 In the setting of Theorem 2.2, we let u∗ be the least element of FEA(M̃, q̃), which is
unique. Define

ϕ(x̂) := x̃+u∗. (2.8)

Then LCP(M,q) has a solution x∗ ∈ [x] := [x̂−ϕ(x̂), x̂ + ϕ(x̂)]. As a direct consequence, we have the
error estimate

|x̂− x∗|6 ϕ(x̂). (2.9)

Corollary 2.1 indicates that the error bound ϕ(x̂), defined by the least element, is the “sharpest”
comparing with the one defined only by a certain feasible vector of LCP(M̃, q̃). To compute ϕ(x̂), we
need find the least element u∗ of the feasible set FEA(M̃, q̃). It can be cast into the following convex
quadratic programming:

min uT u

s.t. M̃u+ q̃ > 0

u > 0,

(2.10)

which can be solved efficiently by existing software, for example, CVX by Grant, Boyd & Ye (2008).
Of course, sometimes we do not need to solve the problem (2.10) exactly, because any feasible solution
of (2.10) provides an error bound (2.7). In this way, a much smaller computational cost can be expected.

Now, we consider the special case that M is an H-matrix whose all diagonal elements are positive.
An H-matrix is a matrix whose comparison matrix is an M-matrix, while an M-matrix is a matrix whose
all off-diagonal elements are non-positive and whose inverse has no negative elements (see Plemmons
(1977)). In this case, the problem LCP(M,q) has a unique solution for any q ∈ ℜn (see Cottle, Pang &
Stone (1992), p.148–152). LCP with an H-matrix appears frequently in modeling real world problems,
see, e.g., Ferris & Pang (1997) and Rodrigues (1987). The following theorem shows that for such an
LCP, an error bound given by (2.7) can be obtained by solving a system of linear equations.

THEOREM 2.3 Suppose that M is an H-matrix whose diagonal elements are all positive. Let x̃, M̃ and q̃
be defined by (2.3), (2.5) and (2.6), respectively. Then we have the estimate

|x̂− x∗| 6 ϕH(x̂) := x̃+ M̃−1 max(0,−q̃), (2.11)

where x∗ is the unique solution of LCP(M,q).

REMARK 2.1 The estimate (2.11) can be computed by solving a system of linear equations.

Proof. Since M is assumed to be an H-matrix whose all diagonal elements are positive, we have
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M̃−1 > 0, that is, each element of M̃−1 is nonnegative. So

u = M̃−1 max(0,−q̃) > 0

M̃u+ q̃ = M̃M̃−1 max(0,−q̃)+ q̃ = max(0,−q̃)+ q̃ > 0.

It means u = M̄−1 max(0,−q̃) ∈ FEA(q̃,M̃). Therefore, (2.11) follows from (2.7) in Theorem 2.2.

We mentioned in the Introduction that the error bound (1.1) was given by Chen & Xiang (2006) for
the LCP with an H-matrix. This bound was proved to be more accurate than the well known error bound
given by Mathias & Pang (1990). Now, we show that our error bound (2.11) is more accurate than (1.1).

THEOREM 2.4 Let M ∈ ℜn×n be an H-matrix with the positive diagonal part D, let q ∈ ℜn, x̂ ∈ ℜn
+ be

given. Let x̃, M̃ and q̃ be defined by (2.3), (2.5) and (2.6), respectively. Let M̄ be the comparison matrix
of M. (Note that we have M̃ = M̄ since M has the positive diagonal part.) Then we have

‖x̃+ M̃−1 max(0,−q̃)‖p 6 ‖M̄−1 max(D, I)‖p‖min(x̂,Mx̂+q)‖p. (2.12)

Proof. Let ỹ be defined by (2.4). At first, we prove

max(M̃x̃,−ỹ) 6 max(D, I)|min(x̂,Mx̂+q)|.

Consider any index i ∈ α , for which we have x̂i 6 (Mx̂ + q)i. From (2.3) and (2.4), the definitions of x̃
and ỹ, it follows that

(M̃x̃)i = miix̃i−∑
j 6=i
|mi j|x̃ j 6 mii|x̂i| 6 max(mii,1)|x̂i|

and
−ỹi = −(Mx̂+q)i 6 −x̂i 6 max(mii,1)|x̂i|.

So, we have for i ∈ α

max((M̃x̃)i,−ỹi) 6 max(mii,1)|x̂i| = max(mii,1)|min(x̂i,(Mx̂+q)i)|.

Consider any index i /∈ α , for which we have x̂i > (Mx̂ +q)i. From (2.3), the definition of x̃, it follows
that x̃i = 0, and so

(M̃x̃)i = miix̃i−∑
j 6=i
|mi j|x̃ j = −∑

j 6=i
|mi j|x̃ j 6 max(mii,1)|(Mx̂+q)i|.

From (2.4), the definition of ỹ, it follows that

−ỹi = |(Mx̂+q)i| 6 max(mii,1)|(Mx̂+q)i|.

So, we have for i /∈ α

max((M̃x̃)i,−ỹi) 6 max(mii,1)|x̂i| = max(mii,1)|min(x̂i,(Mx̂+q)i)|.

To summarize, we have that

max(M̃x̃,−ỹ) 6 max(D, I)|min(x̂,Mx̂+q)|.
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Since M is an H-matrix whose diagonal elements are all positive, the matrix M̃ has a nonnegative
inverse. Thus, it follows that

M̃−1 max(M̃x̃,−ỹ) 6 M̃−1 max(D, I)|min(x̂,Mx̂+q)|.

This, together with the relation

M̃−1 max(M̃x̃,−ỹ) = M̃−1(M̃x̃+max(0,−M̃x̃− ỹ)) = x̃+ M̃−1 max(0,−q̃)

yields
x̃+ M̃−1 max(0,−q̃) 6 M̃−1 max(D, I)|min(x̂,Mx̂+q)|.

Because the norm ‖ · ‖p is monotone, (2.12) follows from the above inequality. This completes the
proof.

Finally, we show that ϕ(x̂) = ϕH(x̂) = 0 if x̂ is a solution of LCP(M,q). It means that the two error
bounds (2.9) and (2.11) are tight for all points in the solution set.

THEOREM 2.5 If x̂ is a solution of LCP(M,q), then we have ϕ(x̂) = ϕH(x̂) = 0.

Proof. Let x̃ and q̃ be defined for x̂ = x∗ by (2.3) and (2.6), respectively. It is easy to test that x̃ = 0,
q̃ > 0. So we have ϕH(x̂) = x̃+ M̃−1 max(0,−q̃) = 0.

It is clear that u∗ = 0 is the least element of FEA(M̃, q̃), where M̃ is defined by (2.5). Therefore, by
the definition (2.8) we have ϕ(x̂) = x̃+u∗ = 0. This shows that the theorem is true.

3. Numerical Experiment

In this section we perform numerical experiment

• to illustrate the error bound (2.9), and

• to show that the error bound (2.11) is more accurate than (1.1).

EXAMPLE 1 We consider the problem LCP(M,q) with the following M = (mi j) ∈ ℜ2×2 and q ∈ ℜ2:

M =

 0 2

1 1

 , q =

 −1

−1

 .

We choose x̂ = [ 1
4 , 5

4 ]T . By the definition (2.3), (2.5) and (2.6) we have

x̃ =

 1
4

0

 , M̃ =

 0 −2

−1 1

 , q̃ =

 3
2

− 3
4

 .

By simple computation we get the least element u∗ = [0, 3
4 ]T of the feasible set FEA(M̃, q̃), and conclude

from COROLLARY 2.1 that LCP(M,q) has a solution x∗ with

|x̂− x∗| 6 ϕ(x̂) = x̃+u∗ =

 1
4
3
4

 .

Actually, LCP(M,q) has two solutions [0,1]T and [ 1
2 , 1

2 ]T . The former one satisfies our componentwise
error estimation with equality.
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Table 1. Values of κ for Example 2

n = 100 n = 400 n = 900 n = 1600 n = 2500 n = 3600

ε = 1e+1 1.3463e-3 1.3063e-2 7.7890e-3 4.6964e-3 2.3229e-3 2.1577e-3

ε = 1e+0 1.0740e-2 3.2756e-3 4.7064e-3 5.6017e-3 3.2634e-3 3.6529e-3

ε = 1e−1 1.7994e-3 8.8600e-3 6.6397e-3 6.8918e-3 4.6962e-3 4.7909e-3

ε = 1e−2 5.6892e-3 8.2067e-3 4.2431e-3 3.2666e-3 3.3089e-3 4.2454e-3

ε = 1e−3 5.2584e-3 2.7136e-3 7.3654e-3 2.3826e-3 5.7360e-3 3.1293e-3

ε = 1e−4 2.0426e-2 5.9763e-3 3.7591e-3 3.7955e-3 4.7315e-3 4.3478e-3

EXAMPLE 2 We consider the problem LCP(M,q) with M = (mi j) ∈ ℜn×n,

M =


H −I

−I H
. . .

. . . . . . −I

−I H

 ,

where H ∈ ℜk×k, k =
√

n,

H =


4 −1

−1 4
. . .

. . . . . . −1

−1 4

 .

It can be verified that M is an H-matrix. We let x∗ = (x∗i ) ∈ℜn with x∗i = max(0,vi−0.5)×1010(wi−0.5),
q = (qi) ∈ ℜn with

qi =

 −(Mx∗)i x∗i > 0,

−(Mx∗)i +max(0, ṽi−0.5)×1010(w̃i−0.5) x∗i = 0,

and x̂ = (x̂i) ∈ ℜn
+ with x̂i = x∗i + εw̆i, where wi, vi, w̃i, ṽi and w̆i are random numbers in [0,1]. Such an

LCP appears frequently in modeling obstacle problems, see Rodrigues (1987). It is easy to see that x∗

is the solution of LCP(M,q). For different choices of the dimension n and of ε we report in Table 1 the
values of κ:

κ :=
‖x̃+ M̃−1 max(0,−q̃)‖∞

‖M̄−1 max(D, I)‖∞‖min(x̂,Mx̂+q)‖∞

.

The numerical results illustrate that the error bound (2.11) is much smaller than the error bound (1.1).
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4. Final Remarks

In this article we present an approach of computing bound of the error |x̂−x∗|, where x∗ is a solution of
LCP(M,q), x̂ is a given vector. The following are some remarks on the accuracy and the computational
cost of our error bounds.

• For the case that M is an H-matrix, our error bound (2.11) was proved to be more accurate than
the bound (1.1) given by Chen and Xiang. Numerical tests indicate that the new bound is much
sharper.

• For the case of M being a P-matrix, that is a matrix whose all principal minors are positive, the
error bound

‖x̂− x∗‖p 6 max
d∈[0,1]n

‖(I−D+DM)−1‖p‖min(x̂,Mx̂+q)‖p (4.1)

was given in Chen & Xiang (2006), where d = (di)∈ℜn, di ∈ [0,1], i = 1, . . . ,n and D = diag(d).
So far we get no theoretical results on the comparison of the accuracy of the error bounds (2.9)
and (4.1).

Some numerical examples indicate that (2.9) could be more accurate than (4.1). For illustration,
consider the problem LCP(M,q)

M =

 1 −4

5 7

 , q =

 −3

1

 .

It is easy to see that M is a P-matrix and LCP(M,q) has a unique solution x∗ = [3,0]T . This
problem was studied in Chen & Xiang (2006). We choose x̂ = [4,1]T and compute

x̃ =

 0

1

 , M̃ =

 1 −4

−5 7

 , q̃ =

 −7

35

 .

It is easy to verify that u∗ = [7,0]T is the least element of the feasible set FEA(M̃, q̃). So, from
(2.9) we obtain the error bound

|x̂− x∗| 6 ϕ(x̂) = x̃+u∗ =

 7

1

 .

Obviously we have ‖x̂− x∗‖1 6 ‖ϕ(x̂)‖1 = 8 and ‖x̂− x∗‖∞ 6 ‖ϕ(x̂)‖∞ = 7. While the error
bound (4.1) yields

‖x̂− x∗‖1 6 20 and ‖x̂− x∗‖∞ 6 15.

See Chen & Xiang (2006). This indicates that for this special example the bound (2.9) is more
accurate than (4.1).

• Our error bounds can be computed if an element of the feasible set FEA(M̃, q̃) is available, and
such an element can be obtained by solving a convex quadratic programming (2.10) in general
case, and by solving a linear system in the case of H-matrix. The exact solution of the convex
programming (2.10) gives a “sharpest” error bound (2.9), while any feasible solution of (2.10)
delivers an error bound (2.7). For the latter case, one can expect a smaller computational cost.
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• The problem when the feasible set FEA(M̃, q̃) is empty, remains open. However, whenever
FEA(M̃, q̃) 6= /0, our error estimation can work efficiently. It is due to the convex programming
formulation (2.10).

• At last we mention that our error estimation may work in a loose setting, say for the problem
LCP(M,q) studied in EXAMPLE 1, where M is not a P-matrix. Actually M is even not an R0-
matrix. M is called an R0-matrix if LCP(M,0) has a unique solution. It is well known that a
P-matrix is an R0-matrix. Error bound for LCP(M,q), where M is not an R0-matrix, has not been
studied yet.
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