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ABSTRACT
A sequential quadratic programming (SQP) method is pro-

posed to solve the distributed beamforming problem in mul-

tiple relay networks. The problem is formulated as the mini-

mization of the total relay transmit power, subject to individ-

ual signal-to-interference-and-noise ratio constraints at each

receiver, which is a nonconvex quadratic constraint quadratic

programming. Rather than solving its semi-definite program-

ming (SDP) relaxation, we apply the SQP method to solve its

tightened form to replace its inequality constraints with equal-

ities. Its global convergence is guaranteed. Simulations show

that it not only runs much faster, but also performs as good as

SDP for calculation results.

Index Terms— relay networks, distributed beamforming,

semi-definite programming, sequential quadratic program-

ming

1. INTRODUCTION

Recently, multiuser cooperation diversity has been used to

overcome the transmission loss due to poor channel condi-

tions or severe signal interference. Such strategy allows users

to act as relays of other users when they are free, thus to im-

prove data rate and capacity with limited resources. There

are several schemes to implement[1], in which amplify-and-

forward (AF) is especially in hot research because of its sim-

plicity.

A lot of work has been done on AF beamforming relay

networks[2-7]. [2] and [3] discussed the problems in one

source-destination pair model and brought in SDP method be-

sides offering some analytical answers. Multiple peer-to-peer

communication models with relays were considered in [5],

[6] and [7]. To solve the proposed power minimization prob-

lem, [5] and [6] transform the quadratic constraint quadratic

programming (QCQP) to an equal SDP, and solve it with pri-

mal and dual relaxation respectively. Based on their work,

[7] proposed a new algorithm to relax the problem to a sec-

ond order cone programming (SOCP) and solved it with low

complexity while its calculation results are usually a few dBs

more than those of SDP.
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Fig.1 Multi-user relay network

In this paper, we construct a fast and efficient algorithm

SQP for distributed peer-to-peer communication model in

multiuser relay networks using AF protocol. Comparing with

[5] and [7], its computational complexity is even smaller than

that of SOCP thus much smaller than SDP. Our simulations

show that its calculation result performs almost as good as

SDP in terms of relay transmit power.

Notation: Lowercase and uppercase boldface represent

for vectors and matrices respectively. We denote the complex

conjugate, transpose and conjugate transpose as (·)∗, (·)T and

(·)H respectively.

2. PROBLEM MODEL

A relay network with K source-destination pairs and R re-

lays(Fig.1) is considered. The kth source is assumed to trans-

mit messages to the kth destination, k = 1, 2, . . . , K. All

nodes are operated in a common frequency band and equipped

with one antenna. No direct link is assumed. Also, we as-

sume that the noise in the network is spatially white and all

the noise and the transmit signals are mutually statistically

independent.

Here we consider a two stage AF protocol. We only

express one transmission process, thus omit the time in-

dex. In the first stage, the kth source transmits
√

Pksk

where Pk is its maximal transmit power and E(|sk|2) = 1.

r =
∑K

k=1 fk
√

Pksk + η is the receive vector of signals of

the R relays, where fk is the channels between the kth source

and the R relays, and ηp ∼ N(0, σ2
2) is the pth relay noise.

In the second stage, relays transmit t = WHr to the des-

tinations while wp is the beamforming scalar of the pth relay,

3304978-1-4577-0539-7/11/$26.00 ©2011 IEEE ICASSP 2011



w = (w1, w2, . . . , wR)T and W = diag(w). The kth destina-

tion gets

yk = gT
k t + zk =

√
PkgT

k WH fk

+
K∑

j=1,j �=k

√
PjgT

k WH fj + (gT
k WHη + zk). (1)

Here zk ∼ N(0, σ2
1) is the kth destination noise, and gk the

channels between relays and the kth destination. The three

parts of (1) represent the desired signal, the interference and

the noise components of the kth destination, and let P k
S , P k

I

and P k
N be their power, respectively.

Our aim is to minimize the relays’ transmit power while

keeping the destinations’ quality of service (QoS) above cer-

tain predefined thresholds. Here we use signal-to-interference-

and-noise ratio (SINR) as a measure of QoS. Thus we propose

the following optimization problem:

min
w∈CR

PT (2)

s.t. SINRk =
P k

S

P k
I + P k

N

≥ γk, k = 1, 2, . . . , K.

The relay transmit power is expressed as PT = E(tH t) =
E(Tr(WHrrHW)) = Tr(WHE(rrH)W). Denote Rs �
E(rrH), then PT = Tr(WHE(rrH)W) = wHDw, where

D = diag([Rs]11, [Rs]22, . . . , [Rs]RR) is a diagonal matrix,

and Rs = E(rrH) =
∑K

k=1 PkEf(fkfHk ) + σ2
2I .

Also we have

P k
S = E(|

√
PkgT

k WH fksk|2) = E(PkgT
k WH fkfHk Wg∗k)

= E(PkwH(gk � fk)(fHk � gH
k )w) = wHLkw,

where lk � gk � fk = (f1kg1k, f2kg2k, . . . , fRkgRk)T

as their Schur product and Lk � Ef,g(PklklHk ).
Similarly, define ljk � gk � fj and

Mk � Ef,g(
K∑

j=1,j �=k

Pj ljk(ljk)H),

in simulations Lk and Mk is calculated directly without ex-

pectation assuming that relays and destinations require all

channel coefficients. Then the interference power at the kth

destination including two stages is given by

P k
I = E(|

K∑
j=1,j �=k

√
PjgT

k WH fjsj |2)

= E(wH(Pj

K∑
j=1,j �=k

(gk � fj)(fHj � gH
k ))w) = wHMkw.

With the assumptions we obtain the noise power

P k
N = E(gT

k WHηηHWg∗k) + σ2
1

= σ2
2tr(WHWE(g∗

kgT
k )) + σ2

1 = wHDkw + σ2
1 ,

where Dk � σ2
2diag([Rk

g ]11, [Rk
g ]22, . . . , [Rk

g ]RR) is a diago-

nal matrix and Rk
g = Eg(gkgH

k ).
Replacing PT , P k

S , P k
I and P k

N by their expression into

(2), we can obtain a quadratic constraint quadratic program-

ming as follows:

min
w∈CR

wHDw (3)

s.t. wHGkw + ck ≤ 0, k = 1, 2, . . . , K,

where Gk = γk(Mk + Dk) − Lk and ck = γkσ2
1 .

Here we consider that the channel obeys the complex

Gaussian distribution. Gk are usually indefinite, so the opti-

mization problem is nonconvex generally. Such problems can

be solved by SDP relaxation for almost optimal solution[5, 6]

or by SOCP for sub-optimal solution[7]. Although SOCP

technique overcomes the disadvantage of SDP of high com-

putational complexity, it suffers from a few dBs higher

calculation results than SDP. To reduce the computational

complexity and achieve good performances, we propose the

following sequential quadratic programming algorithm.

3. SEQUENTIAL QUADRATIC PROGRAMMING

3.1. Basic Framework

In the above we have claimed that our problem can be for-

mulated as a QCQP. The basic idea of sequential quadratic

programming is to solve a series of quadratic programming

subproblems to update the iterative point and corresponding

Lagrange multipliers together. As its essential idea is Newton

method, it achieves superlinear convergence rate under cer-

tain conditions. Noticing that the optimal solution is obtained

at the equalities in almost all problems, we tighten the in-

equalities to equalities in constraints to speed up. Thus we try

to solve a transformed QCQP with equalities in real domain:

min
x∈R2R

f(x) =
1
2

xHĜ0x (4)

s.t. Ck(x) =
1
2

xHĜkx + ck = 0, k = 1, 2, . . . , K

where x = (re(wT ), im(wT ))T , Ĝ0 = diag(2D, 2D),

Ĝk =
(

2re(Gk) −2im(Gk)
2im(Gk) 2re(Gk)

)
.

For this type of equality QCQP, we propose a SQP algo-

rithm, which framework is as follows:

SQP algorithm.
Step 1. Given any initial point x0 and Lagrange multiplier

λ0 > 0, i = 0.

Step 2. Record the best point xbest = arg mini
j=0 P (xj , u),

where P (x, u) is the merit function and explained below.

Solve

min
d∈R2R

1
2

dT Bid + g̃T
i d

s.t. C̄i(d) = AT d + C = 0, (5)
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where the objective function is the Lagrange function of (4):

Bi = Ĝ0 +
∑K

k=1 λi
kĜk, g̃i = Ĝ0xi. C̄i

are the linear Taylor

expansions of the constraints in (4). The kth column of A,

Ak = Ĝkxi. And Ck means Ck(xi).
Step 3. Get the search direction di and its corresponding

Lagrange multipliers λ̃ from Step 2. If ‖di‖ ≤ ε, stop and

output xi; else update λi+1 and the merit function parameter

u. If ‖λi+1‖∞ > λ̄ or we have gone for 5 forced steps, stop

and claim infeasibility.

Step 4. If xbest has not been updated in n iterations, let

xi = xbest, find proper stepsize along the corresponding di-

rection di = dbest for a forced step; else find proper stepsize

along di for a common step. i ← i + 1, go back to Step 2.

3.2. Further explanation

In this part we provide some details for SQP algorithm.

3.2.1. Subproblem

Since the subproblem (5) itself may be nonconvex, our aim is

to find a proper iteration direction through it. Suppose A =

H
(

U
0

)
= YU is its QR factorization, where H = (Y, Z)

is a 2R × 2R orthogonal matrix and U is a (2R − K) × 2R
upper triangle matrix. The solution of (5) can be written as

d=Ydy+Zdz. (6)

Together with AT d + C = 0 we have dy = −U−T C. To

solve dz, take (6) into (5) and we get a quadratic programming

without constraints:

min
dz∈R2R−K

1
2

dzT ZT BiZdz + (BiYdy + g̃i)
T Zdz (7)

We can get an analytical solution at which point the func-

tion value of (7) is reduced. Through Schur decomposition

ZT BiZ = QD̃QT , where Q is an orthogonal matrix and D̃
is a diagonal matrix with the eigenvalues of ZT BiZ on the

diagonal, we have dz = (dz1, dz2, . . . , dz2R−K)T , where

dzj =

{
− (QT ZT (BiYdy+g̃i))j

D̃jj
D̃jj > 0

−(QT ZT (BiYdy + g̃i))j D̃jj ≤ 0
j = 1, 2, . . . , 2R − K (8)

So we can take dy and dz into (6) to get the solution di of

subproblem (5). With di, we can solve λ̃ through equations

Bidi + g̃i + Aλ̃ = 0 according to its KKT condition. Com-

putationally we let λ̃ = −U−1YT (Wdi + g̃i), which needs

Schur decomposition of Bi:

Bi =
2R∑
r=1

σrvrvT
r , W =

2R∑
r=1,σr>0

σrvrvT
r .

3.2.2. Merit function

To balance the function value f(x) and constraint violation

‖C(x)‖1, we bring in merit function P (x, u) = f(x) +
u‖C(x)‖1. Here we require u > ‖λ‖∞ for convergence

condition. Also, the value of merit function with linearized

constraints C̄i(d) should be guaranteed to reduce, which

means (f(xi) + u‖C̄i(0)‖1)− (f(xi + di) + u‖C̄i(di)‖1) ≥
1
2u‖C(xi)‖1, that is, u‖C(xi)‖1 ≥ 2(f(xi+di)−f(xi)). The

second condition forces u to be large enough to guarantee the

reduction of constraint violation.

Quite related is to choose stepsize. There are several dif-

ferences between forced and common step. Firstly, forced

step starts back from the best point xbest while the common

step goes from the current iteration point xi. Secondly, we

only try a second order correction step pi in common step to

overcome Maratos effect which requires low computational

complexity[9]. Let ΔP = P (xi+di, u)−P (xi, u), if P (xi+
di + pi, u) < P (xi, u) + ηΔP , we have xi+1 = xi + di + pi

and finish the common step. Thirdly, the two kinds of steps

have different stopping criterion. The forced step requires

P (xbest+αdbest, u) ≤ (1−0.01α)P (xbest)+0.01αf(xbest+
dbest) while the common step just requires P (xi + αdi, u) <
P (xi, u) + αηΔP [9]. The former is used to guarantee con-

vergence while the latter is to speed up the algorithm.

In both forced and common step, the stepsize α is

searched by backtracking to be large enough.

3.2.3. Update strategy for λ

Since the problem we want to solve is actually with inequali-

ties, we expect the corresponding Lagrange multiplier λ ≥ 0
in the iterations. Also, we wish it not to change too fast, which

coincides with the situation when xi approaches the optimal

point x∗. Thus we update λ as below:

Update Strategy (for k = 1, 2, . . . , K)
Step 1. If Ck(xi) > 0, go to step 2, else go to step 3;

Step 2. If Ck(xi + di) − Ck(xi) > f(xi + di) − f(xi),
λi+1

k = min{λ̃k, 2λi
k}, else λi+1

k = max{λ̃k, 1
2λi

k};

Step 3. If f(xi + di) > f(xi), λi+1
k = max{λ̃k, 1

2λi
k},

else λi+1
k = min{λ̃k, 2λi

k}.

3.3. Further Analysis

From above, we can notice that the main computation of

one iteration in SQP focuses on solving the subproblem (5),

which mainly includes two Schur decompositions and one

QR factorization. So the computational complexity is O(R3)
in the hypothesis that R 	 K. This is smaller than SOCP’s

O(R3K1.5) and SDP’s O(R6).
Since we have guaranteed the reduction of merit function

in n(< ∞) steps, we can get the global convergence result of

our SQP algorithm similar to that of classical SQP method[8].

The specific theorem is omitted because of the limited space.
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Although we can only guarantee a KKT point to be solved, in

practice we usually get the optimal or almost optimal solution,

which will be seen in simulations.

4. SIMULATIONS

In our numerical simulations, the transmit signal power is the

same as the noise variation σ2
1 and σ2

2 , both of which are set

to be 0dB. All channel coefficients are supposed to be known

at the relays and destinations. So the beamforming vector

can be obtained optimally. In each simulation, components

of fk and gk are generated as i.i.d complex Gaussian ran-

dom variables with variations σ2
f = σ2

g = 10dB. All des-

tination SINRs are required to be above the same threshold,

γk = γ, k = 1, 2, . . . , K. At each target SINR, channel co-

efficients are randomly generated for 100 times to calculate

the normalized average relay transmit power. We consider

20 relays (R = 20) and compare the performances of SDP

relaxation[5] and SQP at K = 2, 3, 4. Each problem is solved

by both algorithms. In SQP, λ̄ = 104, η = 0.1, n = 10.

Fig.2 shows almost the same performance of SQP com-

pared with SDP. In Fig.3, we compared the average running

time including solving feasible ones and judging infeasibility.

SQP outperforms SDP much when γ is moderate thus almost

100% problems are feasible. However when γ becomes too

large that infeasible ones dominate in 100 examples, SQP is

beaten by SDP. Our algorithm still needs improving for judg-

ing infeasibility.

In conclusion, simulations show that our proposed SQP

algorithm runs much faster than SDP generally and acquire

almost the same results. Thus, SQP algorithm is a better

choice if we have a problem which is likely to be feasible.
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