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1. Introduction

Consider the Abel equation∫ t

0
(t − s)−αy(s)ds = g(t), t ∈ I := [0, T], (1.1)

with g(0) = 0, and α ∈ [0, 1). Its unique solution y ∈ C(I) is given by

y(t) = 1

γα

∫ t

0
(t − s)α−1g′(s)ds, t ∈ I

with γα := Γ (α)Γ (1 − α). Consider its associated difference equation

a0(c;α)yi+1 +
i−1∑
j=0

ai−j(c;α)yj+1 = bi(c;α), i = 0, 1, . . . , n, (1.2)

where the parameter c lies in (0, 1], and the coefficients are given by

(a) a0(c;α) =
∫ c

0
(c − s)−αds;

(b) ak(c;α) =
∫ 1

0
(c + k − s)−αds, k = 1, 2, . . . , n;

(c) bi(c;α) = hα−1g(ti + ch), i = 0, 1, . . . , n.

(1.3)

Here we define

�∑
j=k

≡ 0 if � < k.

The points ti belong to a uniform mesh Ii = {ti = ih : i = 0, 1, . . . , n + 1; tn+1 = T}.
This is a collocation method with a single collocation point ti+c per sub-interval [ti, ti+1].
Note that the case c = 1 gives rise to the implicit Euler product-integrationmethod (see e.g. Weiss

and Anderssen [14], Eggermont [7]).

In [3] Brunner posed the problem:

Problem 1.1. Given α ∈ [0, 1), for which values of c = c(α) ∈ (0, 1] do the solutions yi+1 of the

difference equation (1.2) remain uniformly bounded as n → ∞, h → 0 with (n + 1)h = T?

By evaluating the integrals in (a) and (b) of (1.3) the totality of the difference equations (1.2) may

be written as

Tny =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

c1−α
O

(1 + c)1−α − c1−α c1−α

(2 + c)1−α − (1 + c)1−α (1 + c)1−α − c1−α c1−α
......

. . .

(n + c)1−α − (n − 1 + c)1−α . . . . . . c1−α

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
y = d, (1.4)

where

y = (y1, . . . , yn+1)
T , d = (d1, . . . , dn+1)

T .
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We note that Tn is a Toeplitz matrix.

Furthermore, in the case of this class of lower triangular Toeplitz matrices Tn we have that

‖Tn‖1 = ‖Tn‖∞,

due to the fact that

max
i

n+1∑
j=1

|tij| = max
j

n+1∑
i=1

|tij|.

It is easy to see that ‖T−1
n ‖1 (= ‖T−1

n ‖∞) being uniformly bounded is a necessary condition for y

to remain uniformly bounded. Notice that if α = 0 in (1.1), then the complete answer to Problem

1.1 is known: the solutions of the difference equation (1.2) remain uniformly bounded if, and only

if, c ≥ 1

2
(cf. Brunner [3–5]). For 0 < α < 1 is a sufficient condition for uniform boundedness is

c ≥ c∗(α) :=
(
1

2

)
[α(1 − α)γα]1/(1−α) (see [3]). For example, c∗(α) 
 0.3084 when α = 1

2
.

The following conjecture suggests the existence of an upper bound on the inverse of a Toeplitz

matrix with a similar, but different structure to that of (1.4).

1.1. GKM conjecture

If Tn ∈ R(n+1)×(n+1) is the lower triangular Toeplitz matrix whose first column is

1√
2
(1,

√
3 − 1,

√
5 − √

3, . . . ,
√

2n + 1 − √
2n − 1)T , (1.5)

then for all n, ‖T−1
n ‖1 < 3.

Recently, Gauthier et al. [8] proved that an algorithm due to Chen andMangasarian [6] for solving a

mixed linear complementarity problem arising from the discretization of a special system of singular

Volterra integral equations would converge if the above conjecture were true.

These and related problems have a long history dating back to the work of Holyhead [10], Weiss

and Anderssen [14] and others; yet they appear to have evaded resolution.

Essentially the problem may be regarded as requiring that the 1-norm of the inverse of the lower

triangular Toeplitzmatrixwith specific constraints on its elements be uniformly boundedwith respect

to its order. Consider the lower triangular (n + 1)× (n + 1) Toeplitz matrix

Tn =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

b0

b1 b0

b2 b1 b0
...

...
. . .

. . .

bn . . . . . . b1 b0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (1.6)

whichmaybe characterized by its first column (b0, b1, . . . , bn)
T where b0 ≥ b1 ≥ · · · ≥ bn ≥ b ≥ 0.

The upper bounds for ‖T−1
n ‖∞ given in [1,12] (see Section 2) are not uniform with respect to n

in the case where limn→∞ bn = b = 0. Therefore, in this paper we shall provide a sharp uniform

upper bound for ‖T−1
n ‖∞ for this case, subject to specified constraints on the elements of Tn. We shall

demonstrate that the GKM conjecture is a special case of this result. Furthermore, sharp necessary

conditions for Brunner’s collocation problem will be provided.
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This paper will be organized as follows. In Section 2, a uniform bound is given for the 1-norm of

the inverse of the lower triangular Toeplitz matrix (1.6) subject to certain constraints on its elements.

Under these restrictions, it is shown that this new bound is sharp. The GKM conjecture is proved

in Section 3. In the last section, Brunner’s one-point collocation problem is also partially answered.

Furthermore, we prove that the 1-norm of Brunner’s associated Tn matrix is not uniformly bounded

when α = 0.

2. Uniform upper bound

Interesting results have already been obtained for matrices of the type defined by (1.6): the main

result is given below.

Theorem ([1,12] See, also the more recent papers [2,13]). An upper bound on ‖T−1
n ‖∞ is given by

‖T−1
n ‖∞ ≤

⎧⎪⎨⎪⎩
2
b

[
1 −

(
1 − b

b0

)[ n
2 ]+1

]
, if b > 0,

2
b0

([
n
2

]
+ 1

)
, if b = 0.

(2.1)

In particular if b > 0,

‖T−1
n ‖∞ ≤ 2

b

independently of n and b0.

Note from (2.1) that the upper bound is dependent on n when b = 0. The GKM conjecture and

Problem 1.1 both involve the case of b = 0. However, numerical tests clearly show that ‖T−1
n ‖∞ is

bounded independently of n. Thus, this paper will deal with obtaining a uniform bound for T−1
n in the

1-norm (or ∞-norm) when b = 0 subject to specified constraints on the elements of Tn.

The following lemma, due to Jurkat [11], is an extension of a result by Hardy [9] on inclusion

theorems for Norlund means. For clarity and completeness we include Jurkat’s concise proof.

Lemma 2.1. If ai and bi satisfy the conditions

bi > 0, i = 0, 1, 2, . . . ,
bi+1

bi
≥ bi

bi−1

, i = 1, 2, . . . (2.2)

and

ai

bi
≥ ai−1

bi−1

, i = 1, 2, . . . , with a0 > 0, (2.3)

then all the coefficients, kn, of the Taylor expansion of

∞∑
i=0

ai x
i

/ ∞∑
i=0

bi x
i (2.4)

are non-negative. Furthermore, these coefficients of the Taylor expansion are all positive if (2.3) holds as a

strict inequality for all i = 1, 2, . . .

Proof. We first note that

n∑
ν=0

kν bn−ν = an for n ≥ 0, (2.5)
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and

k0 = a0/b0 ≥ 0. (2.6)

Assume that k1, . . . , kn−1 ≥ 0. Then we have to show that kn ≥ 0. From (2.5) we have the identity

n−1∑
ν=0

kν

(
bn−ν
bn

− bn−1−ν
bn−1

)
+ kn

b0

bn
= an

bn
− an−1

bn−1

, (2.7)

and from (2.2)

bn−ν
bn

− bn−1−ν
bn−1

⎧⎨⎩= 0, for ν = 0,

≤ 0, for 1 ≤ ν ≤ n − 1.
(2.8)

Substituting (2.8) into (2.7) and using (2.3), it follows that

kn
b0

bn
≥ an

bn
− an−1

bn−1

≥ 0.

In a similar way, we can show that these coefficients are strictly positive if (2.3) holds as a strict

inequality for all i = 1, 2, . . . �

Corollary 2.1. Let bi, i = 0, 1, 2, ..., be a positive sequence such that
bi+1

bi
, i = 0, 1, 2, ...., is non-

decreasing, then all the coefficients of the Taylor expansion of

1∑∞
i=0 bix

i
(2.9)

are non-positive except the constant term. Furthermore, all these coefficients except the constant term are

negative if
bi+1

bi
, i = 0, 1, 2, ...., is strictly increasing for all i = 0, 1, 2, ...

Proof. It is easy to see that

1∑∞
i=0 bix

i
= 1

b0
− x

b0

∑∞
i=0 bi+1x

i∑∞
i=0 bix

i
. (2.10)

This relation and the previous lemma with ai = bi+1 imply that the corollary is true. �

Now we come to a more general case.

Corollary 2.2. Let bi, i = 0, 1, 2, ..., be a positive sequence such that
bi+1

bi
, i = 2, 3, ..., is non-

decreasing and that the relation

b2

b1
<

b1

b0
≤ b3

b2
(2.11)

holds. Then all the coefficients of the Taylor expansion of (2.9) are non-positive except the first and third

terms.
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Proof. Again the following identity holds:

1∑∞
i=0 bix

i
= 1

b0

[
1 − γ1x − γ2x

2 − x3
∑∞

i=0 aix
i∑∞

i=0 bix
i

]
, (2.12)

where

γ1 = b1

b0
, γ2 = γ1

(
b2

b1
− b1

b0

)
, (2.13)

and

ai = bi+3 − γ1bi+2 − γ2bi+1, (2.14)

for all i = 0, 1, 2, ... . Assumption (2.11) implies that γ2 < 0. Consequently, it follows from relation

(2.14) that

ai ≥ bi+3 − γ1bi+2 = bi+2

[
bi+3

bi+2

− b1

b0

]
≥ bi+2

[
b3

b2
− b1

b0

]
≥ 0, (2.15)

for all i = 0, 1, 2, ... . Moreover, we have

ai+1 = bi+4 − γ1bi+3 − γ2bi+2

= bi+3

bi+4

bi+3

− γ1bi+3 − γ2bi+2

≥ bi+3

bi+2

[bi+3 − γ1bi+2] − γ2bi+2

≥ bi+2

bi+1

[bi+3 − γ1bi+2] − γ2bi+2

= bi+2

bi+1

[bi+3 − γ1bi+2 − γ2bi+1]

= bi+2

bi+1

ai

≥ bi+1

bi
ai, (2.16)

for all i = 0, 1, 2, ... . �

We have demonstrated that, in (2.15),

ai ≥ 0, i = 0, 1, 2, . . . (2.17)

and, in (2.16),

ai+1 ≥ bi+1

bi
ai, i = 0, 1, 2, . . . (2.18)

Thus, we may appeal to (2.7) in Lemma 2.1 to show that the coefficients of the Taylor expansion of∑∞
i=0

aix
i∑∞

i=0
bix

i
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in (2.12) are all non-negative, and consequently that the coefficients of the Taylor expansion of (2.9)

are all non-positive.

We may note that a consequence of this corollary is that

bi+3 − γ1 bi+2 − γ2 bi+1 ≥ 0, i = 0, 1, 2, . . . (2.19)

We now impose an additional condition on the sequence {bi} and provide an estimate of the sum of

the coefficients of the Taylor expansion of (2.9).

Lemma 2.2. Suppose that the sequence bi, i = 0, 1, 2, . . ., satisfies the conditions of Corollary 2.2 and

suppose that

bi+1

bi
≤ 1, i = 0, 1, 2, . . . (2.20)

Then,

φ(x) = 1∑∞
i=0 bix

i
= 1

b0
[1 − γ1x − γ2x

2] − x3
∞∑
i=0

θix
i, (2.21)

where γ1 and γ2 are given by (2.13), and θi ≥ 0 for all i = 0, 1, 2, . . . Furthermore, we have that

1

b0
[1 − γ1 − γ2] − β =

∞∑
i=0

θi, (2.22)

where

β =
⎧⎨⎩ 0, if

∑∞
i=0 bi = ∞;

1∑∞
i=0 bi

, otherwise.
(2.23)

Proof. From Corollary 2.2, (2.21) gives the Taylor expansion of φ(x). Due to the assumption (2.20), it

follows that bi ≤ b0 for all i ≥ 0. Thus, for any given δ ∈ (0, 1), the sequence
∑∞

i=0 bix
i is uniformly

convergent on the interval |x| ≤ δ. Hence, we see that the relation (2.21) holds for all |x| < 1. Now

(2.22) follows from (2.21) by letting x → 1−. This completes the proof.

Now, we apply the above results to provide an estimate of the 1-norm of lower triangular Toeplitz

matrices. First, we can write the matrix Tn given in (1.6) in the following form:

Tn = b0 I +
n∑

i=1

biJ
i = b0 I +

∞∑
i=1

biJ
i, (2.24)

where J is the Jordan matrix

J =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 · · · 0 0

1 0 0 · · · 0 0

0 1 0 · · · 0 0

0 0 1 · · · 0 0

...
...
...
. . .

...
...

0 0 0 · · · 1 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
∈ R(n+1)×(n+1) , (2.25)

since Jk = O for all k ≥ n + 1.
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Thus, we have that

T−1
n = φ(J), (2.26)

where φ(x) is defined in (2.21). �

The following result follows directly from Corollary 2.1 and Lemma 2.2.

Theorem 2.1. Suppose that Tn is defined by (1.6) with bi > 0 for i ≥ 0. If bi+1/bi is non-decreasing and

bounded above by 1 for i = 0, 1, 2, . . . , we have the bound:

‖T−1
n ‖1 ≤ 2

b0
− β, (2.27)

whereβ is defined in (2.23). If, on theotherhand, bi, i = 0, 1, 2, . . . , is apositive sequence, bi+1/bi(i ≥ 2)
is non-decreasing and bounded above by 1 and the condition (2.11) holds then

‖T−1
n ‖1 ≤ 2

b0

[
1 − b2

b0
+
(
b1

b0

)2
]

− β. (2.28)

Proof. If bi+1/bi is non-decreasing and bounded above by 1 for i = 0, 1, 2, . . . , then it follows from

Corollary 2.1 that there exists θ̃i ≥ 0 such that

1∑∞
i=0

bix
i
= 1

b0
− x

∞∑
i=0

θ̃ix
i.

Thus, by a similar argument to Lemma 2.2, we have

∞∑
i=0

θ̃i = 1

b0
− β. (2.29)

Therefore,

‖T−1
n ‖1 = 1

b0
+

∞∑
i=0

|θ̃i|

= 1

b0
+
(

1

b0
− β

)
= 2

b0
− β. (2.30)

This proves (2.27). �

Nowwe assume that bi+1/bi(i ≥ 2) is non-decreasing (and bounded above by 1) and, additionally,

that the condition (2.11) is satisfied. In this case, we also have the relation (2.29). The assumptions on

the sequence {bi, i = 0, 1, 2, . . .} and Corollary 2.2 imply that γ1 ≥ 0, γ2 ≤ 0 and θi ≥ 0 for all

i ≥ 0. Therefore, it follows that

‖T−1
n ‖1 = 1

b0
[1 + |γ1| + |γ2|] +

∞∑
i=0

|θi|

= 1

b0
[1 + γ1 + |γ2|] +

∞∑
i=0

θi = 2

b0
(1 + |γ2|)− β. (2.31)

Since it is clear that γ2 < 0, the above equality and (2.13) yield (2.28).
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Note that the bound given in Theorem 2.1 depends on b0, b1, and b2 but not on n. Consequently it

is a uniform bound with respect to n.

3. GKM conjecture

Since the GKM conjecture is relatively straightforward to demonstrate, we shall deal with it first.

Using the results given in the previous section, we can easily prove that this conjecture is true.

Theorem 3.1. Let Tn ∈ R(n+1)×(n+1) be the lower triangular Toeplitz matrix whose first column is given

by (1.5). Then the inequality

‖T−1
n ‖1 ≤ 2

√
2(5 − √

3 − √
5) = 2.91860082 < 3 (3.1)

holds for all n = 1, 2, . . .

Proof. If n = 1, we have that

‖T−1
1 ‖1 =

∥∥∥∥∥∥
√

2

⎛⎝ 1 0

−(√3 − 1) 1

⎞⎠∥∥∥∥∥∥
1

= √
2[(√3 − 1)+ 1] < 2

√
2(5 − √

3 − √
5), (3.2)

which shows that (3.1) holds for n = 1. Similarly, direct calculations then provide

‖T−1
2 ‖1 =

∥∥∥∥∥∥∥∥∥
√

2

⎛⎜⎜⎜⎝
1 0 0

−(√3 − 1) 1 0

4 − √
3 − √

5 −(√3 − 1) 1

⎞⎟⎟⎟⎠
∥∥∥∥∥∥∥∥∥
1

= √
2[1 + (

√
3 − 1)+ (4 − √

3 − √
5)]

= √
2(4 − √

5) < 2
√

2(5 − √
3 − √

5), (3.3)

which demonstrates that (3.1) holds for n = 2 as well.

Now we consider the case when n ≥ 3. Define the sequence bi, i = 0, 1, 2, . . . , as follows:

b0 = 1√
2
, bi =

√
2i + 1 − √

2i − 1√
2

, i = 1, 2, . . . (3.4)

We can easily check that all the conditions for bi given in Lemma 2.2 (and, consequently, those given

in Corollary 2.2) are satisfied. It follows from (2.13) and (3.4) that

γ2 = b2

b0
−
(
b1

b0

)2

= √
5 − √

3 − (
√

3 − 1)2 = √
5 + √

3 − 4. (3.5)

Moreover, (3.4) also gives β = 0. Thus, from Theorem 21, we have that

‖T−1
n ‖1 ≤ 2

√
2(1 + |√5 + √

3 − 4|) = 2
√

2(5 − √
3 − √

5) < 3. (3.6)

This shows that the conjecture is true.
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4. Brunner’s one-point collocation problem

Consider first the lower triangular Toeplitz matrix Tn whose first column is

(1, 21−α − 1, 31−α − 21−α, . . . , (n + 1)1−α − n1−α)T , (4.1)

where α ∈ (0, 1). This corresponds to the case c = 1, which is the case of the implicit Euler product-

integration method applied to the Abel equation. Define the corresponding sequence

b0 = 1, bi = (i + 1)1−α − i1−α, i = 1, 2, . . . (4.2)

It follows from (2.27) of Theorem 2.1 that ‖T−1
n ‖1 ≤ 2. Matlab 7.0 with Laptop Sony Vaio VGN TZ370

was used to test the Abel matrices in this case. The numerical results are displayed in Table 1.

We now turn our attention to Brunner’s problem where the Toeplitz matrix Tn is given in (1.4). We

define Tn = c1−α T̃n so that the elements of T̃n become

b0 = 1, bi =
(
c + i

c

)1−α
−
(
c + i − 1

c

)1−α
, i = 1, 2, . . . (4.3)

First, we consider α ∈ (0, 1). It is clear that bi > 0 for all i ≥ 0. Moreover,

bi+1

bi
=
(
1 + 1

c+i

)1−α − 1

1 −
(
1 − 1

c+i

)1−α , i ≥ 1. (4.4)

Define the function

f (x) = (1 + x)1−α − 1

1 − (1 − x)1−α
. (4.5)

A simple calculation yields

f ′(x) = (1 − α)
(1 − x)α + (1 + x)α − 2

[1 − (1 − x)1−α]2(1 − x2)α
. (4.6)

It is easy to verify that f ′(x) < 0 for allα ∈ (0, 1) and x ∈ (0, 1). Therefore, ifα ∈ (0, 1) and c > 0,we

have that bi+1/bi for i ≥ 2 is monotonically increasing and converges to 1. In order to apply Theorem

2.1, we have to consider two separate cases.

(Case A) b2/b1 ≥ b1/b0. This inequality reduces to

ψ1(α, c) =
(
2 + c

c

)1−α
−
(
1 + c

c

)1−α
−
[(

1 + c

c

)1−α
− 1

]2
≥ 0. (4.7)

It follows from (2.27) of Theorem 2.1 that ‖T̃−1
n ‖1 ≤ 2 so that

‖T−1
n ‖1 ≤ 2

c1−α
. (4.8)

Table 1

1-Norm of the inverse of the Abel matrices when c = 1.

n α = 0 α = 0.4 α = 0.5 α = 0.7

50 2 1.9512 1.9091 1.7331

100 2 1.9682 1.9360 1.7838

1000 2 1.9920 1.9799 1.8912

2000 2 1.9947 1.9858 1.9122

2500 2 1.9954 1.9873 1.9179

3500 2 1.9962 1.9892 1.9258

5000 2 1.9970 1.9910 1.9333
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Graph 1. Case A displaying S1 in the (c, α)-plane for which ‖T−1
n ‖1 is uniformly bounded. (ψ1(c, α) = 0 – solid line.)

(Case B)
b2

b1
<

b1

b0
≤ b3

b2
. Thus, from Theorem 2.1, we have the following bound

‖T−1
n ‖1 ≤ 2

(
1 + b21 − b2

)
cα−1 = 2

c1−α

[
2 +

(
1 + c

c

)2(1−α)

−
(
1 + c

c

)1−α
−
(
2 + c

c

)1−α]
. (4.9)

The inequality (2.11) implies that (4.7) does not hold and b3/b2 ≥ b1/b0. The latter is the following

inequality

(3 + c)1−α − (2 + c)1−α

(2 + c)1−α − (1 + c)1−α
≥ (1 + c)1−α − c1−α

c1−α
. (4.10)

The above inequality may be written as

ψ2(α, c) = (3 + c)1−α − (2 + c)1−α

(2 + c)1−α − (1 + c)1−α
− (1 + c)1−α − c1−α

c1−α
≥ 0. (4.11)

Therefore, from Theorem 2.1, we have the following result.

Theorem 4.2 Let Tn be defined in (1.4). Then we have that

‖T−1
n ‖1 ≤ 2

c1−α
(4.12)
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Graph 2. Case B displaying the (small) region S2 in the (c, α)-plane for which ‖T−1
n ‖1 is uniformly bounded. (ψ1(c, α) = 0 – solid

line; ψ2(c, α) = 0 – dashed line.)

if (4.7) holds. If, however, (4.7) is not satisfied (i.e.ψ1(α, c) < 0), then we have that

‖T−1
n ‖1 ≤ 2

c1−α

[
2 +

(
1 + c

c

)2(1−α)
−
(
1 + c

c

)1−α
−
(
2 + c

c

)1−α]
, (4.13)

provided that α and c satisfy ψ2(α, c) ≥ 0.

Proof. If (4.7) holds, it follows from (2.27) in Theorem 2.1 that (4.12) is satisfied. If, however, (4.7) does

not hold but the inequality (4.11) does, it follows from Theorem 2.1 that (2.28) is satisfied. The bound

(2.28) and the form of the elements (4.3) then imply (4.13).

Thus, by plotting the curves ψi(α, c) = 0, i = 1, 2, we can easily see the region of {(α, c)}
for which ‖T−1

n ‖1 is uniformly bounded. Indeed, ‖T−1
n ‖1 is bounded uniformly for all n, if (α, c) is

contained within the following two regions:

S1 = {(α, c)|ψ1(α, c) ≥ 0, α ∈ (0, 1), c ∈ (0, 1].} (4.14)

S2 = {(α, c)|ψ1(α, c) < 0, ψ2(α, c) ≥ 0, α ∈ (0, 1), c ∈ (0, 1].} (4.15)

Thus, for any point in S1 or S2, ‖T−1
n ‖1 is bounded uniformly with respect to n. �

Three graphs are displayed below. Graph 1 corresponds to case Awhile Graph 2 corresponds to case

B. The region S1 for which ‖T−1
n ‖1 is uniformly bounded is the shaded region in Graph 1. The region

S2 in Graph 2 is extremely small and so a “close-up” (Graph 3) is provided: S2 is the shaded region in

Graph 3.

Finally, we note that in the case α = 0, the matrix does not satisfy the conditions of this paper.
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Graph 3. Case B displaying a “close-up” of the region S2 in the (c, α)-plane for which ‖T−1
n ‖1 is uniformly bounded. (ψ1(c, α) = 0

– solid line, ψ2(c, α) = 0 – dashed line.) S2 is the region defined byψ1(c, α) < 0 andψ2(c, α) > 0.

However, if α = 0, we have that

Tn = cI + J + J2 + · · · + Jn. (4.16)

Direct calculations show that

T−1
n = 1

c

⎡⎣I − 1

c

n∑
i=1

(
1 − 1

c

)i−1

Ji

⎤⎦ . (4.17)

Thus,

‖T−1
n ‖1 = 1

c

⎡⎣1 + 1

c

n∑
i=1

∣∣∣∣∣
(
1 − 1

c

)i−1
∣∣∣∣∣
⎤⎦

=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
2(2n + 1), if c = 1/2;
(
1
c

− 1
)n − 2c

c(1 − 2c)
, 1

2
< c ≤ 1

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
. (4.18)

Thus,wecanconclude thatwith respect ton,‖T−1
n ‖1 isuniformlybounded, if c >

1

2
;andnotuniformly

bounded, when c = 1

2
.
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