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Abstract. Nonlinear equations and nonlinear least squares problems have

many applications in physics, chemistry, engineering, biology, economics, fi-
nance and many other fields. In this paper, we will review some recent re-

sults on numerical methods for these two special problems, particularly on

Levenberg-Marquardt type methods, quasi-Newton type methods, and trust
region algorithms. Discussions on variable projection methods and subspace

methods are also given. Some theoretical results about local convergence re-

sults of the Levenberg-Marquardt type methods without non-singularity as-
sumption are presented. A few model algorithms based on line searches and

trust regions are also given.

1. Introduction. Nonlinear equations and nonlinear least squares have various ap-
plications in physics, chemistry, biology, engineering, economics, finance, and many
other fields. These two special problems of mathematical optimization have been
studied extensively and there are already many methods for solving them, such
as Newton’s method, quasi-Newton method, Gauss-Newton method, Levenberg
-Marquardt method and trust region method, for example see [41, 42, 39, 10, 24,
38, 29, 30]. In recent years, large scale nonlinear equations and large scale nonlinear
least squares have been attracting more and more attention from researchers, for
example see [56, 19, 20]. Most large scale problems have either sparse property
or special structure, therefore special approaches, such as partial separability and
structure-exploiting, should be and can be applied to such problems [54, 55, 33, 5].
We will also discuss techniques that are useful for large scale problems, such as sub-
space techniques, variable projection methods and sparse quasi-Newton methods.

Nonlinear equations can be stated as:

Fi(x) = 0, i = 1, ...,m, (1.1)

where Fi(x)(i = 1, ...,m) are m differentiable functions in ℜn, and where n and
m are positive integers. A closely related problem is to minimize the sum of the
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squares of all the elements of F (x) = (F1(x), F2(x), ..., Fm(x))T , namely

min
x∈ℜn

∥F (x)∥22 =

m∑
i=1

Fi(x)2 . (1.2)

Of course, (1.2) is an unconstrained optimization problem, which can be solved
by any general methods for unconstrained optimization [14, 38, 53]. But, due to
its special form, numerical methods for (1.2) should be constructed specially by
exploiting its special structure.

If the nonlinear equations (1.1) have solutions, problems (1.1) and (1.2) are
equivalent. Let the Jacobian matrix of F (x) be

J(x) = (∇F (x))T = [∇F1(x), ...,∇Fm(x)]T ∈ ℜm×n. (1.3)

The linearization of equations (1.1) at an iterate point xk is

F (xk) + J(xk)d = 0 , (1.4)

where d = x − xk. When m = n and J(xk) is non-singular, the above linear
equations gives the Newton-Raphson iteration:

xk+1 = xk − J(xk)−1F (xk) . (1.5)

If m ∕= n or J(xk) is singular, (1.4) may have no solutions. Hence, it is natural for
us to replace (1.4) by the linear least squares problem:

min
d∈ℜn

∣∣F (xk) + J(xk)d∣∣22 , (1.6)

which can be viewed as a linearization of (1.2). The least norm solution of the above
subproblem is the Gauss-Newton step

dGNk = −(J(xk))+F (xk) . (1.7)

where (J(xk))+ is the Moore-Penrose generalized inverse of J(xk). If J(xk) is full
column rank, the Gauss-Newton step can be written as

dGNk = −(J(xk)TJ(xk))−1J(xk)TF (xk) . (1.8)

Almost all the numerical methods can be viewed as some kinds of modification to
the Newton-Raphson step or the Gauss-Newton step. This paper reviews recent
advances on some methods for nonlinear equations and nonlinear least squares.
This short review is by no means a complete survey. For example, we will not
discuss interior point methods, which is also a very important class of methods for
nonlinear equations and nonlinear least squares problems.

The paper is organized as follows. We discuss quasi-Newton methods and SQP
methods in the next section, including recent results on sparse updates. Levenberg-
Marquardt type methods and trust region algorithms are reviewed in Section 3,
where we present recent results on the local convergence rates of Levenberg-
Marquardt type methods under the local error bound conditions. In section 4
we discuss variable projection methods and subspace techniques are also briefly
presented in Section 5.
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2. Quasi-Newton and SQP methods. Consider the nonlinear equations prob-
lem (1.1), if we do not calculate the Jacobian matrix J(xk), and want to have an
approximation to the Newton-Raphson step. The obvious approach is to use a quasi-
Newton matrix Bk to replace the Jacobian. Thus, at each iteration a quasi-Newton
direction dk is computed by solving the following linearized system:

F (xk) +Bkd = 0, (2.1)

where Bk ∈ ℜm×n is an approximation to the Jacobian matrix J(xk). Normally we
require the following quasi-Newton condition

Bk+1sk = yk , (2.2)

where

sk = �kdk (2.3)

yk = F (xk+1)− F (xk) , (2.4)

and �k > 0 is computed by some line search techniques. Relation (2.2) is a secant
condition. The quasi-Newton matrices Bk can be updated by different quasi-Newton
update formulae. If we require that the increment Bk+1 − Bk is a rank 1 matrix,
the general formula for Bk+1 can be written as

Bk+1 = Bk +
(yk −Bksk)uTk

sTk uk
, (2.5)

for any vector uk ∈ ℜn as long as uTk sk ∕= 0. The special choice of uk = sk gives
Broyden’s unsymmetric Rank-1 formula:

Bk+1 = Bk +
(yk −Bksk)sTk
∥sk∥22

. (2.6)

When m = n, we can also let uk = yk−Bksk, which gives the Broyden’s symmetric
rank-1 update:

Bk+1 = Bk +
(yk −Bksk)(yk −Bksk)T

sTk (yk −Bksk)
. (2.7)

There are many other updates, such as the Powell’s symmetric Broyden, BFGS and
DFP updates [14, 38, 53].

Replacing yk by J(xk+1)sk in (2.5) leads to the following formula:

Bk+1 = Bk +
(J(xk+1)−Bk)sku

T
k

sTk uk
(2.8)

Of course, we do not assume that we have the full Jacobian matrix J(xk+1) as
otherwise we can simple set Bk+1 = J(xk+1). The formula (2.8) is useful in the
case when we can compute the vector J(xk+1)sk by automatic differentiation are
used, for example, see [21]. Similarly, we can apply the formula (2.8) to the BTk+1.
Namely if we impose the adjoint tangent condition [22, 47]:

wTk Bk+1 = wTk J(xk+1) , (2.9)

we have the following update formula

Bk+1 = Bk +
vkw

T
k (J(xk+1)−Bk)

vTk wk
(2.10)
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for any two vectors vk and wk in ℜm. If vk = wk, update (2.10) reduces to the
adjoint Broyden update:

Bk+1 = Bk +
vkv

T
k (J(xk+1)−Bk)

vTk vk
. (2.11)

Particular choices of vk are given by [47]:

vk = [J(xk+1)−Bk]sk (2.12)

vk = [F (xk+1)− F (xk)]−Bksk (2.13)

vk = F (xk+1) . (2.14)

When vk is given by (2.12)-(2.14), the quasi-Newton update (2.11) is called as ad-
joint Broyden tangent update, adjoint Broyden secant update and adjoint Broyden
residual update respectively. Substituting (2.12) into (2.10), we obtain the two
sided rank-1 update formula (see, [22, 47]):

Bk+1 = Bk +
(J(xk+1)−Bk)skw

T
k (J(xk+1)−Bk)

wTk (J(xk+1)−Bk)sk
, (2.15)

which can also be derived from (2.5) by setting uk = (J(xk+1)−Bk)Twk.
One good property of quasi-Newton updates for nonlinear equations is that they

can also preserve the sparse structure of the original Jacobian matrices. Pioneer
researches on sparse quasi-Newton methods were carried out by Schubert [50] and
Toint [54, 55, 56].

Let the Jacobian matrix J(x) has the following sparse property

(J(x))i,j = 0, if(i, j) ∈ ℐ (2.16)

where ℐ is a subset of { (i, j) ∣ i = 1, ...,m, j = 1, ..., n.}. For i = 1, 2, ...,m, define

the vectors s
(i)
k as follows:(

s
(i)
k

)
j

=

{
0, if (i, j) ∈ ℐ;

(sk)j , otherwise.
(2.17)

Schubert’s sparse Broyden Rank-1 update is

Bk+1 = Bk +

m∑
i=1

eie
T
i

(yk −Bksk)(s
(i)
k )T

sTk s
(i)
k

, (2.18)

where ei is the i−th unit vector in ℜm, namely (ei)i = 1 and (ei)j = 0 for j ∕= i. It
is easy to verify that the update formula (2.18) satisfies the quasi-Newton condition
(2.2) and has the sparsity property (Bk+1)i,j = 0 for (i, j) ∈ ℐ provided that Bk
has this sparsity property as well.

Schubert’s sparse formula can be expressed more clearly by using orthogonal
projections. Let the sparse structure of each row of the Jacobian matrix J(x) be
presented as a subspace in ℜn:

Vi = {x ∈ ℜn ∣ xj = 0, if (i, j) ∈ ℐ} . (2.19)

And we denote the projection for ℜn to Vi by PVi
, namely PVi

is a diagonal matrix
in ℜn×n whose diagonal elements are given by

(PVi
)j,j =

{
0, if (i, j) ∈ ℐ;

1, otherwise.
(2.20)
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With these notations, Schubert’s sparse Broyden update can be expressed as

Bk+1 = Bk +

m∑
i=1

eie
T
i

(yk −Bksk)sTk PVi

sTk PVi
sk

, (2.21)

which can be viewed as the modification of the following row-by-row version of the
Broyden formula:

Bk+1 = Bk +

m∑
i=1

eie
T
i

(yk −Bksk)sTk
sTk sk

. (2.22)

In fact, similar to the extension from (2.6) to (2.5), the above update formula can
also be extended to

Bk+1 = Bk +

m∑
i=1

eie
T
i

(yk −Bksk)
(
u

(i)
k

)T
sTk u

(i)
k

, (2.23)

where u
(i)
k (i = 1, 2, ...,m) are vectors in ℜn. Now, it is easy to see that Schubert’s

update (2.21) is just a special case of (2.23) with u
(i)
k = PVi

sk. Similarly, if we
impose the quasi-Newton condition on the transpose:

wTk Bk+1 = zTk , (2.24)

we can have the following generalized update formula

Bk+1 = Bk +

n∑
j=1

v
(j)
k

(zTk − wTk Bk)

wTk v
(j)
k

eje
T
j , (2.25)

where v
(j)
k ∈ ℜm (j = 1, 2, ..., n) are vectors such that wTk v

(j)
k ∕= 0. From the

updates (2.23) and (2.25), we can obtain two new general sparse update formulae:
the general sparse row-wise Broyden update

Bk+1 = Bk +

m∑
i=1

eie
T
i

(yk −Bksk)
(
u

(i)
k

)T
PVi

sTk PVi
u

(i)
k

, (2.26)

and the general sparse column-wise Broyden update

Bk+1 = Bk +

n∑
j=1

PV̄j
v

(j)
k

(zTk − wTk Bk)

wTk PV̄j
v

(j)
k

eje
T
j (2.27)

where PV̄j
is a diagonal matrix in ℜm×m whose diagonal entries are(

PV̄j

)
i,i

=

{
0, if (i, j) ∈ ℐ;

1, otherwise.
. (2.28)

Special cases of the above two updates (2.26) and (2.27) include

Bk+1 = Bk +

m∑
i=1

eie
T
i

(J(xk+1)−Bk)skw
T
k (J(xk+1)−Bk)PVi

wTk (J(xk+1)−Bk)PVisk
(2.29)

Bk+1 = Bk +

n∑
j=1

PV̄j

(J(xk+1)−Bk)skw
T
k (J(xk+1)−Bk)

wTk PV̄j
(J(xk+1)−Bk)sk

eje
T
j (2.30)

where were derived by Dai and Cheng [7]. Numerical results on these updates are
studied in Cheng [6].
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The sparsity condition (2.16) can be easily extended to structure condition:

(J(x))i,j = Ji,j , if (i, j) ∈ ℐ, (2.31)

namely some elements of the Jacobian are constants, which is quite common in
mixed linear and nonlinear systems and separable/structured problems. In this
case, we can also use (2.21) to update Bk as long as the initial matrix B1 satisfies
(B1)i,j = Ji,j for all (i, j) ∈ ℐ.

Sparse or structured quasi-Newton matrices can also be used for problems with-
out sparsity structures. For example, we can still use (2.21) even the Jacobian
matrix J(x) does not have any sparsity property. In this case, the quasi-Newton
matrix remains unchanged for those elements whose indices are in ℐ. Specifically, if
we let ℐ to be all the indices except one column, it gives a one column per iteration
quasi-Newton formula, which was first studied by Martinez [32].

Instead of solving the linear system (2.1) exactly, we can also obtain a dk which
satisfies (2.1) inexactly. This leads to inexact quasi-Newton methods for nonlinear
equations, which use search direction dk that satisfy

∣∣Bkd+ F (xk)∣∣ ≤ �∣∣F (xk)∣∣ (2.32)

where � ∈ [0, 1) is a given constant. For example, see [3, 4].
In optimization, the gradient method corresponds to using a scale quasi-Newton

matrix. Due to the successful Barzilai and Borwein stepsizes for the gradient meth-
ods [1], scale quasi-Newton matrices have also been applied to nonlinear equations
or nonlinear least squares [27, 28]. Consider the case m = n. We can let Bk = �kI
in (2.1), and use the week quasi-Newton condition

(xk+1 − xk)TBk(xk+1 − xk) = (xk+1 − xk)T [F (xk+1)− F (xk)] (2.33)

to obtain the parameter �k.
Quasi-Newton methods can also be given by trying to approximate the inverse

of the Jacobian instead of the Jacobian itself. Such quasi-Newton methods define
the search direction dk by

dk = −HkF (xk) , (2.34)

where Hk is an approximation to J(xk)+, and satisfies the following quasi-Newton
condition

Hk+1yk = sk . (2.35)

When m = n and Bk is nonsingular, (2.1)-(2.2) is equivalent to (2.34)-(2.35).
Due to the classic Dennis and More theorem [9], quasi-Newton methods for non-

linear equations will convergence locally q-superlinearly if J(x∗) is non-singular and

lim
k→∞

∣∣(Bk − J(x∗))sk∣∣
∣∣sk∣∣

= 0 . (2.36)

Now we discuss quasi-Newton methods for nonlinear least squares. Consider the
quadratic approximation to each of the nonlinear function Fi(x) at xk :

Fi(xk + d) ≈ Fi(xk) + dTFi(xk) +
1

2
dTBk,id, (2.37)

where Bk,i is an approximation to ∇2Fi(xk). Thus, we get the following problem

min
d∈ℜn

m∑
i=1

[
Fi(xk) + dTFi(xk) +

1

2
dTBk,id

]2

, (2.38)
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which, if we ignore the higher order terms, leads to

min
d∈ℜn

∣∣F (xk) + J(xk)d∣∣22 +
1

2
dTBkd, (2.39)

where Bk should be an approximation to W (xk) and W (x) is defined by

W (x) =

m∑
i=1

Fi(x)∇2Fi(x) . (2.40)

Thus, a general SQP for nonlinear least squares uses the following search direction

dk = −(J(xk)TJ(xk) +Bk)−1J(xk)TF (xk) . (2.41)

A good property of the above SQP step is that it is always a descent direction of
∣∣F (x)∣∣22 if Bk is positive definite, unless xk is a stationary point of (1.2).

Another way to derive the SQP method is by first converting the nonlinear least
squares problem into a standard constraint optimization problem and then applying
a general purpose SQP method nonlinear optimization [48, 49]. The nonlinear least
squares problem (1.2) can be reformulated as

min
(x,y)∈ℜn+m

1

2
yT y (2.42)

s. t. F (x)− y = 0 . (2.43)

The QP subproblem for the above equality constrained optimization problem is

min
(dx,dy)∈ℜn+m

yTk dy +
1

2
(dTx , d

T
y )B̄k

(
dx
dy

)
(2.44)

s. t. F (xk)− yk + J(xk)dx − dy = 0 , (2.45)

where B̄k ∈ ℜ(n+m)×(n+m) should be an approximation to the Hessian of the La-
grange function of problem (2.42)-(2.43), which is( ∑n

i=1yi∇2Fi(x) 0
0 I

)
. (2.46)

It can be seen that the QP subproblem (2.44)-(2.45) is equivalent to (2.39) if

B̄k =

(
Bk 0
0 I

)
. (2.47)

Let x∗ be a local minimizer of (1.2), and assume the second order sufficient
condition holds at x∗, namely W (x∗) + J(x∗)J(x∗)T is positive definite. Then, the
superlinearly convergence condition for SQP step dk obtained from (2.39) is

lim
k→∞

∥(Bk −W (x∗))dk∥
∣∣dk∣∣

= 0 . (2.48)

Bk can be updated by the BFGS formula

Bk+1 = Bk −
Bksks

T
kBk

sTkBksk
+
yky

T
k

sTk yk
(2.49)

with sk = xk+1 − xk and

yk = (J(xk+1)− J(xk))TF (xk+1) (2.50)

or

yk = J(xk+1))TF (xk+1)− J(xk)TF (xk)− J(xk+1)TJ(xk+1)sk . (2.51)
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But neither of these two choices of yk can always ensure sTk yk > 0, a condition
required by the BFGS update formula to maintain the positive definiteness of the
quasi-Newton matrices. Hence Powell’s technique [43] should be applied, namely
yk should be replaced by the following vector:

ȳk =

{
yk, if sTk yk ≥ 0.2sTkBksk;

�kyk + (1− �k)Bksk, otherwise,
(2.52)

where �k = 0.8sTkBksk/[s
T
kBksk − sTk yk].

Gauss-Newton method also be viewed as a special quasi-Newton method with
Bk = 0 for all k. The special choice of Bk = 0 indicate that the computation cost
of Gauss-Newton method per iteration is less than that of a general quasi-Newton
method. For zero-residual problems, as W (x) is a zero matrix at the solution, it
seems that Gauss-Newton method will be as efficient as a quasi-Newton method.
However, for nonzero residual problems, Gauss-Newton method may converge much
slower than a quasi-Newton method. Hence, it is helpful to use some hybrid tech-
niques [15]

The SQP method can be easily extended to nonlinear least squares problems
with nonlinear constraints:

min
x∈ℜn

∣∣F (x)∣∣22 (2.53)

s. t. ci(x) = 0, i = 1, 2, ...,me; (2.54)

ci(x) ≥ 0, i = me + 1, ...,me +mi (2.55)

where me and mi are the numbers of equality constraints and inequality constraints
respectively. The QP subproblem for this constrained nonlinear least squares prob-
lem can be as follows.

min
d∈ℜn

∣∣F (xk) + J(xk)d∣∣22 +
1

2
dTBkd (2.56)

s. t. ci(xk) + dT∇ci(xk) = 0, i = 1, 2, ...,me; (2.57)

ci(xk) + dT∇ci(xk) ≥ 0, i = me + 1, ...,me +mi . (2.58)

Here, Bk should approximate to

n∑
i=1

Fi(x)∇2Fi(x)−
me+mi∑
i=1

�i∇2ci(x) , (2.59)

where �i (i = 1, ...,me + mi) are the estimations to the lagrange multipliers of
(2.53)-(2.55). For example, it can be obtained by solving the following constrained
linear least squares problem:

min

∥∥∥∥∥J(xk)TF (xk)−
me+mi∑
i=1

�i∇ci(xk)

∥∥∥∥∥
2

2

(2.60)

s. t. �i ≥ 0, i = me + 1, ...,me +mi . (2.61)

3. Levenberg-Marquardt and trust region methods. Levenberg-Marquardt
method is a modification of the Gauss-Newton method, in which the search direction
is defined by

dLMk = −(J(xk)TJ(xk) + �kI)−1J(xk)TF (xk) , (3.1)
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where �k > 0 is a parameter. For any fixed xk, it can be easily shown that

lim
�k→0+

dLMk = dGNk .

Classically, the parameter �k is updated based on the performance of the iterations.
The general rule is that �k should be increased if the L-M step is not a good step,
and reduced otherwise.

Nowadays it is more often to choose �k depending on F (xk) directly. For exam-
ple,

�k = �∣∣F (xk)∣∣�2
Assumption 3.1. (a) The solution set of (1.1) is nonempty and denote it by X∗.

(b) F (x) is continuously differentiable, and the Jacobi J(x) is Lipschitz con-
tinuous on some neighbourhood of x∗ ∈ X∗, i. e., there exist positive constants L1

and b1 < 1 such that

∥J(y)− J(x)∥ ≤ L1∥y − x∥, ∀x, y ∈ N(x∗, b1) = {x ∣ ∥x− x∗∥ ≤ b1} . (3.2)

(c) ∥F (x)∥ provides a local error bound on N(x∗, b1) for the system (1.1), i.e.,
there exists a constant c1 > 0 such that

∥F (x)∥ ≥ c1dist(x,X∗), ∀x ∈ N(x∗, b1) . (3.3)

Yamashita and Fukushima [58] established the following local convergence result.

Theorem 3.1. Under the conditions of Assumption 3.1, if x1 is chosen sufficiently
close to x∗ and �k = ∣∣F (xk)∣∣2, then xk+1 = xk + dLMk converges to some the
solution set X∗ quadratically in the sense that

dist(xk+1, X
∗) = O((dist(xk, X

∗)2). (3.4)

Fan and Yuan [11] improved the above result by allowing a wider range of
the Levenberg-Marquardt parameter and strengthening the convergence to a fixed
point.

Theorem 3.2. Under the conditions of Assumption 3.1, if x1 is chosen sufficiently
close to X∗ and �k = ∣∣F (xk)∣∣� with � ∈ [1, 2], then xk+1 = xk + dLMk converges to
some solution x̄ of (1.1) quadratically, namely there exists x̄ ∈ X∗ such that

∥xk+1 − x̄∥ = O(∥xk − x̄∥2). (3.5)

Globalization of the Levenberg-Marquardt method can be made by either line
searches or trust regions. The following is a line search version of the Levenberg-
Marquardt method.

Algorithm 3.1. (A Levenberg-Marquardt method with line search)

Step 1 Given x0 ∈ Rn, � ∈ [1, 2], � ∈ (0, 1), " > 0, k := 0.
Step 2 If ∥JTk Fk∥ ≤ " then stop; Set �k := ∥Fk∥�; Compute dk by (3.1).
Step 3 If dk satisfies

∥F (xk + dk)∥ ≤ �∥F (xk)∥,

then xk+1 = xk+dk otherwise xk+1 = xk+�kdk where �k is obtained
by Wolfe or Armijo line search.

Step 4 k := k + 1; go to Step 2.
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Theorem 3.3. Assume that F (x) is continuously differentiable. Let the sequence
{xk} be generated by Algorithm 3.1. Then any accumulation point of {xk} is a
stationary point of (1.2). Moreover, if an accumulation point x∗ is a solution of
nonlinear equation (1.1) and if Assumption 3.1 holds, then {xk} converges to x∗

quadratically.

The Levenberg-Marquardt method can also be regarded as a special SQP method
with Bk = �kI, and it can be viewed as a penalty technique as it is essential
adding a penalty term to restrict the stepsize. This technique can also be applied
to nonlinear equations. Consider the special case when n = m, Newton-Raphson
method (1.5) may not be well-defined as the Jacobian matrix J(xk) can be singular
even for monotone problems. To overcome the difficulty caused by the possible
singularity of J(xk), the regularized Newton method, which can also be called the
Levenberg-Marquardt-Newton method, solves the following linear equations

(J(xk) + �kI)d = −F (xk) (3.6)

to obtain the trial step dk, where the regularization parameter �k > 0 is updated
from iteration to iteration. (3.6) is well-defined for monotone problems, namely
problems where J(x) is positive semi-definite for all x. If the Jacobian is Lipschitz
continuous and nonsingular at the solution and if the initial iterative point is chosen
sufficiently close to the solution, then the trial steps satisfy

∥dk+1∥ ≤ �(∥dk∥2 + �k∥dk∥) (3.7)

for some positive � [25]. Thus, if �k = O(∣∣dk∣∣), the local convergence rate of the
regularized Newton step step (3.6) is quadratic.

However, the Levenberg-Marquardt type step dk computed by (3.6) does not
satisfy the linearized equation:

J(xk)d+ F (xk) = 0 (3.8)

which should be satisfied by d = x∗ − xk when F (x) is a linear function. The
residual of linearized equation (3.8) is −�kdk. Thus it is reasonable to solve the

correction step d̂ by

(J(xk) + �kI)d̂ = �kdk . (3.9)

Let the correction step be denoted by d̂k, and define

sk = dk + d̂k . (3.10)

Fan and Yuan [12] shows the following result:

Theorem 3.4. Suppose that the conditions in Assumptions 3.1 hold and �k =
∣∣F (xk)∣∣. If x1 is chosen sufficiently close to the solution set X∗ and xk+1 = xk+sk,
then {xk} converges to some solution of (1.1) quadratically.

The numerical results given by Fan and Yuan [12] indicate that the corrected
step will improve the regularized Newton step. But we were not able to show
theoretically the correct step will give a faster convergence rate, as one might guess
whether it can lead to cubic convergence, improving the quadratic convergence of
the regularized Newton step. Unfortunately this is not true, a simple example
of m = n = 1 with f(x) = x + 2x2 can be used to show that the Q-order of
convergence of the regularized Newton method with correction step is only 2. A
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cubic convergence can be achieved by an extra function evaluation at the xk + dk.
If we define d̃k by solving

(Jk + �kI)d̃ = −F (xk + dk) , (3.11)

where dk is the regularized Newton step by (3.6), the iterates generated by xk+1 =

xk + dk + d̃k will converge cubically.

Theorem 3.5. Suppose that the conditions in Assumptions 3.1 hold and �k =
∣∣F (xk)∣∣. If x1 is chosen sufficiently close to the solution set X∗ and xk+1 =

xk + dk + d̃k, then {xk} converges to some solution of (1.1) cubically.

Proof. (3.6) gives that

F (xk+dk) = F (xk)+J(xk)dk+O(∣∣dk∣∣2) = −dk∣∣F (xk)∣∣+O(∣∣dk∣∣2) = O(∣∣dk∣∣2) .
(3.12)

It follows from the above relation and (J(xk) + �kI)d̃k = −F (xk + dk) that

∣∣d̃k∣∣ = O(∣∣dk∣∣2) . (3.13)

This shows that d̃k is a second order correction step. Moreover, we have that

F (xk + dk + d̃k) = F (xk + dk) + J(xk + dk)d̃k +O(∣∣d̃k∣∣2)

= F (xk + dk) + J(xk)d̃k +O(∣∣dk∣∣∣∣d̃k∣∣)
= −�kd̃k +O(∣∣dk∣∣∣∣d̃k∣∣) = O(∣∣dk∣∣∣∣d̃k∣∣) . (3.14)

This shows that

∣∣F (xk+1)∣∣ = O(∣∣dk∣∣3) . (3.15)

This relation and the fact that ∣∣dk∣∣ = O(∣∣Fk∣∣) imply that ∣∣dk+1∣∣ = O(∣∣dk∣∣3)
which shows that the sequence xk converges cubically.

The Levenberg-Marquardt step (3.1) is the solution of the following subprob-
lem [34, 35]

min
d∈ℜn

∣∣J(xk)d+ F (xk)∣∣22 (3.16)

s. t. ∣∣d∣∣2 ≤ ∣∣dLMk ∣∣2 . (3.17)

This constraint in the above subproblem has trust region flavor as it restricts the
step-length. If we replace the linearized least squares objective function in (3.16)
by the more accurate approximate model (2.39), we obtain the standard SQP trust
region subproblem for nonlinear least squares ( [40, 34]):

min
d∈ℜn

∣∣F (xk) + J(xk)d∣∣22 +
1

2
dTBkd, (3.18)

s. t. ∣∣d∣∣2 ≤ Δk , (3.19)

where Δk > 0 is the trust region bound, which is updated from iteration to iteration.
Hence a SQP-trust region algorithm for nonlinear least squares (1.2) can be given
as follows.

Algorithm 3.2. (SQP Trust Region Algorithm for NLS)

Step 1 Given x1 ∈ ℜn, Choose Δ1 > 0, c0 ∈ [0, 1), c1 > 1 > c4 > c3 and
c2 ∈ [c0, 1). and � > 0 sufficiently small, k=1.

Step 2 If ∣∣JTk Fk∣∣ < �, then stop.
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Step 3 Compute sk by (3.18)-(3.19);
Compute the ratio

rk =
∣∣F (xk)∣∣22 − ∣∣F (xk + sk)∣∣22

∣∣F (xk)∣∣22 − ∣∣F (xk) + J(xk)sk∣∣22 − 1
2s
T
kBksk

. (3.20)

Step 4

xk+1 =

{
xk + sk if rk ≥ c0
xk otherwise,

(3.21)

Δk+1 ∈

{
[c3∣∣sk∣∣, c4Δk] if rk < c2

[Δk, c1Δk] otherwise
, (3.22)

Step 5 k := k + 1, goto Step 2.

The quadratic model function in (3.18) can be replaced by other quadratic ap-
proximations to ∣∣F (xk +d)∣∣22. For example, one can use interpolation technique to
obtain derivative-free trust region algorithms[63, 64]

The above algorithm can also used for solving nonlinear equations (1.1). More-
over, for (1.1), we can use other norms such as L1 and L∞ norms [13, 44, 8, 59].
For example, if we use the L1 norm, we can have the following L1 trust region
subproblem

min
d∈ℜn

∣∣F (xk) + J(xk)d∣∣1 +
1

2
dTBkd, (3.23)

s. t. ∣∣d∣∣∞ ≤ Δk , (3.24)

which was given by Fletcher [13].
The Levenberg-Marquardt step (3.1) is the solution of the following subproblem:

min
d∈ℜn

∣∣F (xk) + J(xk)d∣∣22 + �k∣∣d∣∣22 . (3.25)

Thus, an extension of the Levenberg-Marquardt method is to consider the subprob-
lem of the following form:

min
d∈ℜn

√
∣∣F (xk) + J(xk)d∣∣22 + �k∣∣d∣∣22 + �k∣∣d∣∣22 . (3.26)

More details can be found in [37, 2].
The Levenberg-Marquardt and SQP methods discussed in this section can be

easily extended to problems with convex constraints, for example, see Kanzow,
Yamashita and Fukushima [26].

4. Variable projection methods. Consider the special separable nonlinear least
squares problem:

min
a∈Rp,b∈Rq

 (a, b) =
1

2
∣∣ y(b)− Φ(b)a∣∣22, (4.1)

where y : Rq 7→ Rm; Φ : Rq 7→ Rm×p, with (Φ(b))ij = �j(b, ti), i = 1, 2, ...,m,
j = 1, 2, ...p.

Golub and Pereyra [16] proposed the variable projection method for (4.1) when
y(b) = y0. The main idea of their variable projection method is eliminating the
variable a to obtain a nonlinear least squares problem only depending on variable
b, and applying standard nonlinear least squares methods such as Gauss-Newton
method for the reduced problem.
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For any fixed b ∈ Rq, (4.1) reduces to a linear least squares problem and it can
be solved by choosing a to be the least-norm solution

â(b) = Φ+(b)y(b) . (4.2)

Substituting (4.2) into (4.1), we obtain

min
a∈Rp,b∈Rq

 (a, b) = min
b∈Rq

1

2
∣∣ y(b)− Φ(b)Φ+(b)y(b)∣∣22 = min

b∈Rq

1

2
∣∣P⊥Φ(b)y(b)∣∣22 . (4.3)

Here, P⊥Φ(b) is the orthogonal projector from Rm to the null space of Φ(b)T . Thus,

the Guass-Newton method for (4.3) is

bk+1 = bk − [(∇(P⊥Φ(b)y(b))T ]+P⊥Φ(b)y(b) . (4.4)

Golub and Pereyra [16] develops techniques to compute the Fréchet derivative of
the orthogonal projector and its general inverse, so that the corresponding Gauss-
Newton step can be computed. The Levenberg-Marquardt technique is also used in
their algorithm. Thus, the iterate formula of the Golub and Pereyra method [16, 17]
is

bk+1 = bk − (P⊥Φ(bk)[y
′(bk)− Φ′(bk)â(bk)] + PΦ(bk)Φ

+(bk)Φ′(bk)'k))+'k , (4.5)

where â(b) is defined by (4.2) and 'k = P⊥Φ(bk)y(bk). Kaufman[23] simplified the

Jacobian formula of the orthogonal projector, and obtains

bk+1 = bk − (P⊥Φ(bk)[y
′(bk)− Φ′(bk)â(bk)])+'k . (4.6)

Later, Ruhe and Wedin [45] extended the variable projection idea to the general
nonlinear case. They considered and developed the implicit reduction methods for
the separable nonlinear least squares problem (4.1) by adopting alternate iteration
between the two sets of the variables.

Liu and Yuan [31] proposed an inexact Newton method for the separable problem.
Their approach is to update the two set of variables at the same time instead of
alternately updating a and b as in the Ruhe and Wedin’s approach. The motivation
of their technique is to exploit the special structure of the separable problem in order
to obtain a method which is as close as possible to the Newton’s method without
computing any second order derivatives. Another motivation of their approach is
that it seems more efficient to update both sets of variables a and b together than
to update them alternately.

Define

'(a, b) = y(b)− Φ(b)a. (4.7)

Direct calculations show that

'a(a, b) = Φ(b), 'b(a, b) = y′(b)− Φ′(b)a, (4.8)

and

'ab(a, b) = Φ′(b)T , 'ba(a, b) = Φ′(b), 'aa(a, b) = 0. (4.9)

Hence, without computing any second order derivatives of the original functions,
the second order derivatives of '(a, b) is known except the term 'bb(a, b). This
is very helpful for us to give an inexact Newton method for (4.1). The Newton’s
method for (4.1) is(

ak+1

bk+1

)
=

(
ak
bk

)
− [∇2 (ak, bk)]−1∇ (ak, bk) . (4.10)
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The gradient is easy to compute,

∇ (ak, bk) =

(
'Ta'
'Tb '

)
. (4.11)

For the second order derivatives, we have that, due to (4.9),

∇2 =

(
'Ta'a 'Ta'b + Φ′(b)'

'Tb 'a + (Φ′(b)')T 'Tb 'b + 'Tbb'

)
. (4.12)

Now consider any iterate method having the following form:

xk+1 = xk −B−1
k ∇ (ak, bk) , (4.13)

where Bk is an n × n matrix. Because Newton’s method converges quadratically,
intuitively, a condition for an efficient method for (4.1) in the form of (4.13) should
be that Bk is a good approximation to the Hessian matrix (4.12). Under the general
unseparated scheme, the Gauss-Newton method approximates the Hessian by the
first order term of ' as

BGN =

(
'Ta'a 'Ta'b
'Tb 'a 'Tb 'b

)
. (4.14)

By comparing (4.14) and (4.12) we can easily find that there is a term Φ′(b)',
neglected by (4.14), which can be obtained without computing any second order
derivatives. Therefore, it seems that it is more reasonable to use

B(0) =

(
'Ta'a 'Ta'b + Φ′(b)'

'Tb 'a + (Φ′(b)')T 'Tb 'b

)
, (4.15)

to approximate the Hessian matrix (4.12). Unfortunately, it is not a good idea,
because B(0) may not be positive semi-definite, even when the real Hessian ∇2 is
positive definite. Theoretical analysis given by Liu and Yuan [31] show that B(0)

based scheme is not as good as Gauss-Newton method in most cases.
Now we try to modify (4.15) so that the positive definite condition is satisfied.

First, we define 'C = ('+
a )TΦ′(b)' and replace 'Ta'b + Φ′(b)' by 'Ta ('b + 'C).

Furthermore, if the lower right block term 'Tb 'b is replaced by ('b+'c)
T ('b+'c),

we would have the following approximation formular:

B(1) =

(
'Ta'a 'Ta ('b + 'c)

('b + 'c)
T'a ('b + 'C)T ('b + 'C)

)
. (4.16)

Now, we can see B(1) is always positive semi-definite and has more second-order
information than BGN . If Φ(b) has rank p, we can show that

'Ta'b + Φ′(b)' = 'Ta ('b + 'C). (4.17)

In this case, we have

B(1) = ∇2 +

(
0 0
0 'Tb 'C + 'TC'b + 'TC'C − 'Tbb'

)
. (4.18)

Hence the error matrix B(1)−∇2 is a rank q matrix. Results in Liu and Yuan [31]
indicate that (4.16) is a better approximation to ∇2 than BGN . Adding 'TC'C to
the bottom-right part of (4.16), we get

B(2) =

(
'Ta'a 'Ta ('b + 'c)

('b + 'c)
T'a ('b + 'C)T ('b + 'C) + 'TC'C

)
, (4.19)
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which is another better approximation to ∇2 . Methods based on approximate
Hessian (4.16) or (4.19) for separable nonlinear least squares problem (4.1) are
given by Liu and Yuan [31], and one of them is listed as follows.

Algorithm 4.1. (Structured Unseparated Method: Trust Region Version)

Step 1 Given x1 = (a1, b1) ∈ ℜn, Δ1 > 0, c1 > 1, c2 > 1, 0 < p1 < p2 < 1; and
� > 0 sufficiently small, k=1.

Step 2 If ∣∣∇ (xk)∣∣ < �, then stop.
Step 3 Compute Bk by either (4.16) or (4.19), solve

min
d∈ℜn

mk(d) = ∇ (xk)T d+
1

2
dTBkd, (4.20)

s.t. ∣∣d∣∣2 ≤ Δk, (4.21)

obtaining dk.
Step 4 Compute the ratio

rk =
 (xk)−  (xk + dk)

m(0)−m(dk)
, (4.22)

Generate Δk+1 and xk+1:

Δk+1 =

⎧⎨⎩
1
c1
∥dk∥2 if rk ≤ p1,

max[c2∥dk∥2, Δk] if rk ≥ p2,
Δk otherwise;

(4.23)

xk+1 =

{
xk + dk if rk > 0,
xk otherwise.

(4.24)

Step 5 k := k + 1, goto Step 2.

In Step 3 of the above algorithm, dk can be either an exact solution[36] or an
approximation solution of subproblem (4.20)-(4.21) obtained by the truncated con-
jugate gradient method [55, 51]. The step dk computed by the truncated conjugate
gradient method has the nice property that it reduces the objective function by at
least half of the reduction of the exact solution[60].

5. Subspace methods. Subspace technique has been used well in numerical linear
algebra [18, 46]. It can also be used to construct numerical methods for optimiza-
tion [52, 57, 61, 62]. In this section, we briefly discuss subspace techniques for
nonlinear equations and nonlinear least squares problems.

First, we consider subspace techniques for nonlinear equations (1.1). At the k−th
iteration, instead of solving (2.1), we let dk = Qkzk by solving zk from

PTk [ F (xk) + JkQkz ] = 0, (5.1)

where

Pk = [ p
(k)
1 , p

(k)
2 , ..., p

(k)
ik

] (5.2)

Qk = [ q
(k)
1 , q

(k)
2 , ..., q

(k)
ik

] (5.3)

are two full column rank matrices and where ik ∈ [1, n] is an integer. Normally, ik
is chosen as ik−1 or ik−1 + 1, and it is generally the case that ik is much less than
n, particularly for large scale problems.

The reduced linear system (5.1) defines a step dk in the subspace

Sk = Span{q(k)
1 , q

(k)
2 , ..., q

(k)
ik
} , (5.4)
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with the property that the residual of the original linear system (1.4) orthogonal to
the subspace spanned by pj(j = 1, ..., ik).

Thus, we do not require the full Jacobian matrix Jk for obtaining a search direc-
tion in the subspace Sk. Instead, we only need Mk to be an approximation to the
reduced Jacobian PTk JkQk, which is a square matrix in ℜik×ik , and which normally
has much fewer elements than the full Jacobian matrix Jk. A general subspace
method for nonlinear equations can be described as follows.

Algorithm 5.1. (A general subspace algorithm for nonlinear equations)

Step 1 Given x1, � > 0, k := 1.
Step 2 Generate Pk, Qk and Mk ≈ PTk J(xk)Qk;

Compute the vector zk by solving:

PTk F (xk) +Mkz = 0, (5.5)

Set dk = Qkzk. If ∥dk∥ ≤ � then stop.
Step 3 Carry out a line search, obtaining a stepsize �k and set

xk+1 = xk + �kdk. (5.6)

Step 4 k := k + 1, Go to Step 2.

Of course, we can also use the quasi-Newton techniques discussed in Section
2 to generate Mk. If Sk+1 = Sk, we assume that Qk+1 = Qk and Pk+1 = Pk.
Consequently, the corresponding quasi-Newton condition is

Mk+1zk = PTk yk . (5.7)

For example, Broyden’s unsymmetric rank-1 formula has the following subspace
version:

Mk+1 = Mk +
(PTk yk −Mkzk)zTk

∣∣zk∣∣22
. (5.8)

In the case ik+1 = ik + 1, it is normally that Sk+1 = Span{Sk, q̄k} for some vector

q̄k. Let us assume that q
(k+1)
j = q

(k)
j and p

(k+1)
j = p

(k)
j for j = 1, 2, ..., ik and q

(k+1)
ik+1

is orthogonal to Sk. Thus, again taking Broyden’s unsymmetric rank-1 for example,
Mk+1 can be defined by

Mk+1 =

(
M̄k 0
0 �k

)
with

M̄k = Mk +
(PTk yk −Mkzk)zTk

∣∣zk∣∣22
, (5.9)

and where �k is an estimation to (p
(k+1)
ik+1

)TJ(xk+1)q
(k+1)
ik+1

.

A merit function have to be used for the line search in Step 3 of the above
algorithm. In general, it should be some norm of the vector F (x), such as ∣∣F (x)∣∣2,
∣∣F (x)∣∣1 and ∣∣F (x)∣∣∞. For a given merit function, Pk and Qk should be chosen
accordingly so that the search direction obtained from (5.5) is a descent direction
of the corresponding merit function.

Now, we consider subspace techniques for the nonlinear least square problems
(1.2). It is natural to consider the following subspace subproblem:

Q̄k(z) = ∥F (xk) + JkQkz∥22 + zTBkz, (5.10)
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where Bk ∈ ℜik×ik approximates the reduced matrix

QTkWkQk =

m∑
i=1

Fi(xk)QTk∇2Fi(xk)Qk. (5.11)

We can give a subspace algorithm for nonlinear least squares as follows.

Algorithm 5.2. (A subspace trust region algorithm for nonlinear least squares)

Step 1 Given x1 ∈ ℜn, Δ1 > 0, Choose matrices Q1 and B1 , Given � > 0, k := 1.
Step 2 Solve the subspace subproblem:

min
z∈ℜ∣ik∣

Q̄k(z) = ∥F (xk) + JkQkz∥22 + zTBkz (5.12)

s. t. ∥z∥2 ≤ Δk, (5.13)

obtaining zk, set sk = Qkzk. If ∥sk∥ ≤ � then stop.
Step 3 Define

rk =
∥F (xk)∥22 − ∥F (xk + sk)∥22

Q̄k(0)− Q̄k(zk)
. (5.14)

Set

xk+1 =

{
xk + sk if f(xk + sk) < f(xk);

xk otherwise.
(5.15)

Δk+1 =

⎧⎨⎩
1
2∥zk∥2 if rk < 0.1;

2Δk if rk > 0.9 and 2∥zk∥ > Δk ;

Δk otherwise.

(5.16)

Step 4 Generate Qk+1 and Bk+1.
Step 5 k := k + 1, Go to Step 2.

Unless the gradient vector JTk Fk is orthogonal to the subspace Sk, the trust
region subproblem (5.12)-(5.13) will also give a non-zero trial step sk = Qkzk, and
furthermore, sk is always a descent direction of ∥F (x)∥22 at xk.

Instead of imposing the trust region constraint to zk, we can also directly require
the trial step in the original space to satisfy the trust region condition. Namely we
can modify the statements of Algorithm 4 slightly so that sk is the solution of

min
s∈Sk

Q̂k(s) = ∥F (xk) + Jks∥22 + sT B̂ks, (5.17)

s. t. ∥s∥2 ≤ Δk. (5.18)

Thus any orthogonal basis of Sk consists of a matrix Qk. We can choose the Qk
properly so that the subproblem (5.17)-(5.18) is easy to solve and the approximate

matrix Bk = QTk B̂kQk is easy to obtain.
For both nonlinear equations and nonlinear least squares problems, the essential

part of a subspace method is the choice of the subspace Sk. Subspace techniques
for unconstrained optimization can be borrowed here. For example, possible choices
are as follows:

Sk = Span{F1, F2, ..., Fk−1, Fk} (5.19)

Sk = Span{J+
k F (xk), sk−1, sk−2, ..., s2, s1} (5.20)

Sk = Span{JTk Fk, JTk−1Fk−1, ..., J
T
2 F2, J

T
1 F1} . (5.21)
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In order to prevent the dimension of the subspace getting larger and larger, we can
also use

Sk = Span{Fk−M , F2, ..., Fk−1, Fk} (5.22)

Sk = Span{J+
k F (xk), sk−1, sk−2, ..., sk−M+1, sk−M} (5.23)

Sk = Span{JTk Fk, JTk−1Fk−1, ..., J
T
k−M+1Fk−M+1, J

T
k−MFk−M} (5.24)

for some fixed positive integer M when k > M , Other choices of Sk are also possible,
for example we can replace −J+

k F (xk) in (5.20) by a randomly generated unite
vector or any descent coordinate direction.
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