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Abstract In this paper, we consider the positive semi-definite space tensor cone
constrained convex program, its structure and algorithms. We study defining func-
tions, defining sequences and polyhedral outer approximations for this positive semi-
definite space tensor cone, give an error bound for the polyhedral outer approximation
approach, and thus establish convergence of three polyhedral outer approximation
algorithms for solving this problem. We then study some other approaches for solv-
ing this structured convex program. These include the conic linear programming ap-
proach, the nonsmooth convex program approach and the bi-level program approach.
Some numerical examples are presented.
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1 Introduction

Let m be a positive even integer. A symmetric space tensor of order m is a physical
entity in the three-dimensional space. For example, a higher-order diffusion tensor in
higher order diffusion magnetic resonance imaging (MRI) model is such a symmetric
tensor [13]. Let n = 1

2 (m + 1)(m + 2). According to [16], a symmetric space tensor
A of order m under a rectangular co-ordinate system can be represented by an n-
dimensional vector x = (xij ) ∈ �n, where i = 0, · · · ,m, j = 0, · · · ,m − i. Then for
y ∈ �3, we have

Aym = x(y) =
m∑

i=0

m−i∑

j=0

xij y
i
1y

j

2 y
m−i−j

3 . (1)

In the MRI models, the value of Aym = x(y) is related with the apparent diffusion
coefficient of the tensor A at direction y. This value should be nonnegative physically.
The tensor A and the vector x ∈ �n are called positive semi-definite if for all y ∈ �3,
Aym = x(y) � 0. The tensor A and the vector x ∈ �n are called positive definite if
for all y ∈ �3 and y �= 0, Aym = x(y) > 0. In the MRI research, the vector x and the
tensor A are calculated by the least squares method. Let x̄ be the solution of the least
squares problem. Because of noise, it is not guaranteed that the vector x̄ and hence
the tensor A, obtained by the least squares method, are positive semi-definite. MRI
researchers have made efforts to correct this noise effect. Some approaches had been
proposed to preserve positive semi-definiteness of a diffusion tensor of second order
or fourth order [1, 2, 5, 7]. None of them can work for arbitrary high order diffusion
tensors. In [17], a comprehensive model, called PSDT (positive semi-definite tensor),
was proposed to approximate the diffusivity function by a positive semi-definite dif-
fusion tensor of either second or higher order. A nonnegative diffusion orientation
distribution function model was further proposed in [18].

Denote the set of all positive semi-definite vectors in �n as S = S(m) = {x ∈ �n :
x(y) � 0,∀y ∈ �3}. It was proved in [17] that S is a closed convex cone in �n. The
PSDT minimization problem was proposed there:

min
{
P(x) ≡ (x − x̄)�Q(x − x̄) : x ∈ S

}
, (2)

where x̄ is the solution of the original least squares problem mentioned above, Q is
an n × n positive semi-definite matrix.

In this paper, we study algorithms for solving the following structured convex
program:

min
{
f (x) : g(x) � 0, x ∈ S

}
, (3)

where f : �n → � and g : �n → �p are twice continuously differentiable convex
functions. Clearly, the PSDT problem (2) is a special case of (3).

In this paper, we use ‖ · ‖ to denote the 2-norm.
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2 Structure and Polyhedral Outer Approximation Algorithms

2.1 Two Assumptions

We now make two assumptions on problem (3).

Assumption A Problem (3) has an interior point x̂.

This assumption is needed for many algorithms [8, 9]. In the case of (2), it holds
naturally, as by [16], any positive definite vector x in �n is an interior point of S .

Assumption B Problem (3) has an optimal solution x∗ in a simple compact region
R, such as a ball or a cube.

This assumption is also needed for many algorithms [8, 9]. If this assumption
holds, then (3) is equivalent to the bounded convex program

min
{
f (x) : g(x) � 0, x ∈ R ∩ S

}
. (4)

Proposition 1 Suppose that Assumption A holds and that function f is strongly con-
vex, i.e., there is a positive constant c such that for any x, x̃ ∈ �n, we have

f (x) � f (x̃) + ∇f (x̃)�(x − x̃) + c

2
‖x − x̃‖2.

Then Assumption B holds with

R =
{
x ∈ �n : ‖x − x̂‖ � 2

c

∥∥∇f (x̂)
∥∥
}
.

Proof Suppose that x ∈ �n and f (x) � f (x̂). Then

f (x̂) � f (x) � f (x̂) + ∇f (x̂)�(x − x̂) + c

2
‖x − x̂‖2.

This implies that x ∈ R. As R is a compact region, the conclusion follows. �

Note that for problem (2), the objective function is strongly convex if Q is positive
definite.

2.2 Defining Functions

Suppose that φ : �n → � is a concave function and

S = {
x ∈ �n : φ(x) � 0

}
.

Then we call φ a defining function of the cone S and we may rewrite (3) as

min
{
f (x) : g(x) � 0, φ(x) � 0

}
. (5)

Let Ω̄ be a compact convex set in �n and the origin is an interior point of Ω̄ . Let
Ω be the boundary surface of Ω̄ . Then

φΩ̄(x) = min
{
x(y) : y ∈ Ω̄

}
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40 L. Qi et al.

and

φΩ(x) = min
{
x(y) : y ∈ Ω

}

are concave functions as they are defined by minimization problems. Whenever x is
positive semi-definite, φΩ̄(x) = 0. On the other hand, if x is positive definite, then
φΩ(x) > 0; if x is positive semi-definite but not positive definite, then φΩ(x) = 0.
Hence, both φΩ̄ and φΩ are defining functions of S , but φΩ presents more infor-
mation than φΩ̄ . Furthermore, Ω̄ is three-dimensional, while Ω is two-dimensional.
Thus, we only use φΩ in the following discussion. We call Ω a defining surface of S .

Let Ω̄ = B̄ be the unit ball in �3. Then

φB(x) = min
{
x(y) : y2

1 + y2
2 + y2

3 = 1
}

is the smallest Z-eigenvalue function discussed in [14–17].
Let Ω̄ = C̄ be the unit cube in �3. Let C1 = {(1, t1, t2) : −1 � t1, t2,� 1}, C2 =

{(t1,1, t2) : −1 � t1, t2,� 1}, C3 = {(t1, t2,1) : −1 � t1, t2,� 1} and D = C1 ∪ C2 ∪
C3. Let

φD = min
{
x(y) : y ∈ D

}
.

Then we see that φD is also a defining function of S , though D is only about a half of
C, as we have x(−y) = x(y) since m is even. Thus, we also call D a defining surface
of S . Then we have

φD(x) = min
{
φk(x) : k = 1,2,3

}
,

where for k = 1,2,3,

φk(x) = min
{
dk(t) : −1 � t1, t2 � 1

}
, (6)

t ∈ �2, d1(t) = x(1, t1, t2), d2(t) = x(t1,1, t2) and d3(t) = x(t1, t2,1). As the min-
imization problem for defining φk only involves a two-variable vector t in the unit
square, computationally, the defining function φD may be better than the defining
function φB .

The defining functions φB and φD are both nonsmooth. A question is if there exists
a smooth defining function or a set of smooth defining functions of S .

2.3 Polyhedral Outer Approximations

Let F ⊂ �3 be a finite set. Let y ∈ F . By the definition of S , for any x ∈ S , we have

x(y) =
m∑

i=0

m−i∑

j=0

xij y
i
1y

j

2 y
m−i−j

3 � 0.

Note that this is a linear constraint with respect to x. Let

S(F ) = {
x ∈ �n : x(y) � 0, ∀y ∈ F

}
.

Then S(F ) is a polyhedral cone and S ⊂ S(F ). We call S(F ) an polyhedral out ap-
proximation of S , generated by the finite set F . We may use S(F ) to relax the non-
smooth constraints of (3). We have the following twice continuously differentiable
convex program:

min
{
f (x) : g(x) � 0, x ∈ S(F )

}
, (7)
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A Cone Constrained Convex Program: Structure and Algorithms 41

The twice continuously differentiable convex program (7) is a relaxation of the non-
smooth convex program (3). We may solve (7) by a conventional method. Suppose
that xF is a solution of (7). If xF ∈ S , then xF is also an optimal solution of (3).
Otherwise, f (xF ) is a lower bound of (3). Furthermore, we have the following error
bound result.

Proposition 2 Suppose that Assumption A holds and φ is a defining function of S .
Assume that (7) has an optimal solution xF . If φ(xF ) < 0, then we have

0 � f ∗ − f (xF ) � σ
[
f (x̂) − f (xF )

]
,

where

f ∗ = inf
{
f (x) : g(x) � 0, x ∈ S

}
,

σ = −φ(xF )

φ(x̂) − φ(xF )
,

and 0 < σ < 1.

Proof Since (7) is a relaxation of (3), we have 0 � f ∗ − f (xF ). Since x̂ ∈ S and
φ(xF ) < 0, we have 0 < σ < 1. Then

φ
(
(1 − σ)xF + σ x̂

)
� (1 − σ)φ(xF ) + σφ(x̂) = 0.

Thus, (1 − σ)xF + σ x̂ ∈ S . Since g(xF ) � 0 and g(x̂) � 0, we have g((1 − σ)xF +
σ x̂) � 0. This implies that (1 − σ)xF + σ x̂ is a feasible point of (3). We have f ∗ �
f ((1 − σ)xF + σ x̂). Thus, we have

0 � f ∗ − f (xF )

� f
(
(1 − σ)xF + σ x̂

) − f (xF )

� σ
[
f (x̂) − f (xF )

]
.

This proves the proposition. �

This proposition says that if −φ(xF ) is small, then f (xF ) is close to f ∗. In the
next theorem, we will show that if F is denser on a compact defining surface Ω , then
f (xF ) is closer to f ∗. We now need Assumption B. Instead of solving (7), we now
solve

min
{
f (x) : g(x) � 0, x ∈ R ∩ S(F )

}
. (8)

Theorem 1 Suppose that Assumptions A and B hold. Let F ⊂ Ω , where Ω is a
compact defining surface of S . Let φ = φΩ be the defining function associated with
Ω . Then (8) has an optimal solution xF . If φ(xF ) � 0, then xF is an optimal solution
of (4) and (3). If φ(xF ) < 0, then we have

−φ(xF ) � Mρ(F)

and

0 � f
(
x∗) − f (xF ) � σ̄

[
f (x̂) − f (xF )

]
,
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where x∗ is an optimal solution of (4),

σ̄ = Mρ(F)

φ(x̂) + Mρ(F)
,

0 < σ̄ < 1, M is a constant depending on R and Ω only, and

ρ(F ) = max
{
dist(y,F ) : y ∈ Ω

}
.

Proof By Assumptions A and B, (8) has an optimal solution. Denote this optimal
solution as xF . If φ(xF ) � 0, then the conclusions hold obviously. Suppose that
φ(xF ) < 0. Suppose that yF is an optimal solution of

φ(xF ) = min
{
xF (y) : y ∈ Ω

}
.

Then φ(xF ) = xF (yF ). Let ȳ be the closest point in F to yF . Then xF (ȳ) � 0 and

‖yF − ȳ‖ � ρ(F ).

Let M be the Lipschitz constant of the function L(x, y) ≡ x(y) on the compact set
R × Ω . Then

−φ(xF ) = −xF (yF ) � xF (ȳ) − xF (yF ) � Mρ(F).

The remaining conclusions now follow from Proposition 2. �

2.4 The Basic Polyhedral Outer Approximation Algorithm

By Theorem 1, if we let Fk ⊂ Ω such that ρ(Fk) → 0 as k → ∞, and denote
x(k) = xFk

, where xFk
is an optimal solution of (8) with F = Fk , then we have a

polyhedral outer approximation algorithm. To distinguish this algorithm from its im-
proved version in next subsection, we call this algorithm the basic polyhedral outer
approximation algorithm.

Theorem 2 Under Assumptions A and B, we have

lim
k→∞f

(
x(k)

) = f ∗,

where f ∗ is the optimal objective function value of (4), and any accumulation point
of {x(k)} is an optimal solution of (4).

The proof of Theorem 2 follows the proof of Theorem 1. We omit it. We now
discuss possible schemes to construct Fk . Let Ω = D, the closed half surface of the
unit cube. Let F0 be the set of the seven vertices of D. Let Fk be the set of grid points

on D, with the grid length as 1
2k−1 , for k = 0,1, · · ·. Then ρ(Fk) =

√
2

2k . Furthermore,

we have Fk ⊂ Fk+1 and hence f (x(k)) � f (x(k+1)) for all k. Denote Sk = S(Fk) for
k = 0,1, · · ·. Then we have

S0 =
{

x ∈ �n :
m∑

i=0

m−i∑

j=0

xij � 0,

m∑

i=0

m−i∑

j=0

xij (−1)i+j � 0,

m∑

i=0

m−i∑

j=0

xij (−1)j � 0,

m∑

i=0

m−i∑

j=0

xij (−1)i � 0

}
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and

S1 =
{

x ∈ S0 : xm0 � 0, x0m � 0, x00 � 0,

m∑

i=0

xi,m−i � 0,

m∑

i=0

xi,m−i (−1)i � 0,

m∑

i=0

xi0 � 0,

m∑

i=0

xi0(−1)i � 0,

m∑

i=0

x0i � 0,

m∑

i=0

x0i (−1)i � 0

}
.

2.5 Defining Sequences and an Iterative Polyhedral Outer Approximation
Algorithm

In the basic polyhedral outer approximation algorithm, the number of constraints in
(8) is huge when k is big. This is not practical. Furthermore, the sequence {x(k) : k =
0,1, · · ·} is not iterative. The point x(k+1) is obtained without using the knowledge
of x(k). We now explore an improved version of that algorithm. We call a sequence
in �3 a defining sequence of S if for any x ∈ �n, x is positive definite if and only
if x(y) � 0 for any y in that sequence. We see that the sequence consisting of all
points in Fk for all k is such a defining sequence. We now give a general formula for
this sequence. As x(·) is an even function, for grid points y and −y, we only need to
include one of them. Thus, in F0, we only need to include four vertices:

G0 = {
(1,1,1), (1,1,−1), (1,−1,1), (−1,1,1)

}
.

We see that S0 = S(G0). Then for any x ∈ �n, x is positive semi-definite if and only
if x(y) � 0 for any y ∈ Γ ≡ G0 ∪ D1 ∪ D2 ∪ D3, where

D1 = {
(1, t1, t2) : −1 � t1 � 1,−1 < t2 < 1

}
,

D2 = {
(t2,1, t1) : −1 � t1 � 1,−1 < t2 < 1

}
,

D3 = {
(t1, t2,1) : −1 � t1 � 1,−1 < t2 < 1

}
.

We see that G0,D1,D2 and D3 are disjoint each other, and if y ∈ Γ then −y �∈ Γ .
Hence, we may take all the grid points from Γ . Let

Gk = (Fk \ Fk−1) ∩ Γ

for k = 1,2, · · ·. Then the set

G = G0 ∪ G1 ∪ G2 ∪ · · ·
is what we want. We may write out the general formula for points in Gk as: (t1, t2,1),
(t2,1, t1), (t1, t2,1) for t1 = −1 + i

2k−1 and t2 = −1 + 2j−1
2k−1 , for i = 0, · · · ,2k and

j = 1, · · · ,2k−1, and (t1, t2,1), (t2,1, t1), (t1, t2,1) for t1 = −1+ 2i−1
2k−1 and t2 = −1+

j

2k−2 , for i = 1, · · · ,2k−1 and j = 1, · · · ,2k−1 − 1. Then |Gk| = 9 × 22k−2.
We now give an iterative polyhedral outer approximation algorithm. Suppose that

Assumptions A and B hold.

Algorithm 1 (An Iterative Polyhedral Outer Approximation Algorithm)

Step 0 Let k = 0, μ−1 = 1 and F = G0. Let N be a positive integer.
Step 1 Let μk = μk−1. Compute an optimal solution of (8) and denote it as x(k).
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44 L. Qi et al.

Step 2 If μk � N , stop. Otherwise, let Hk = {y ∈ Gμk
: x(k)(y) < 0}.

Step 3 If Hk = ∅, let μk = μk + 1 and go to Step 2. Otherwise, let F = Hk ∪ F and
k = k + 1. Go to Step 1.

Theorem 3 Suppose that Assumptions A and B hold. Then we have f (x(k)) �
f (x(k+1)) � f (x∗) for all k. If N → ∞, then we have a sequence {x(k) : k =
0,1, · · ·} ⊂ R. If x∗∗ is an accumulation point of {x(k)}, then x∗∗ is an optimal solu-
tion of (3).

Proof At the kth iteration, x(k) is an optimal solution of (8). On the other hand, x(k+1)

is an optimal solution of

min
{
f (x) : g(x) � 0, x ∈ R ∩ S(Hk ∪ F)

}
, (9)

which is a restriction of (8). Hence, f (x(k)) � f (x(k+1)). As (8) and (9) are relax-
ations of (4), we have f (x(k)) � f (x(k+1)) � f (x∗) for all k. This proves the first
conclusion.

Suppose that N → ∞ and x(ki ) → x∗∗, where {ki : i = 0,1, · · ·} is a subse-
quence of {0,1, · · ·}. Assume that φ(x∗∗) = −ε < 0. Then there is y∗∗ ∈ D such
that x∗∗(y∗∗) = φ(x∗∗) = −ε < 0. Because of the structure of Gμ, there is K1 > 0
and δ > 0 such that for all μ � K1, there is a yμ ∈ Gμ such that yμ ∈ N(y∗∗; δ) ≡
{y ∈ D : ‖y − y∗∗‖ � δ} and x∗∗(yμ) � − 2

3ε. Since x(ki ) → x∗∗, there is a K2 � K1
such that for all ki � K2 and y ∈ N(y∗∗; δ),

∣∣x(ki )(y) − x∗∗(y)
∣∣ � 1

3
ε. (10)

As μki
� ki , we have yμki

∈ N(y∗∗; δ) such that x∗∗(yμki
) � − 2

3ε. Combining it with
(10), we have

x(ki )(yμki
) � −1

3
ε < 0 (11)

and

x(ki+1)(yμki
) � −1

3
ε < 0. (12)

According to (11), we have yμki
∈ Hk . This implies that yμki

∈ F forever after the
kth iteration. Thus

x(ki+1)(yμki
) � 0,

as x(ki+1) is an optimal solution of (8), with yμki
∈ F now. This contradicts (12).

Hence, we have φ(x∗∗) � 0. This shows that x∗∗ is an optimal solution of (3). The
proof of the theorem is completed. �

2.6 Another Iterative Polyhedral Outer Approximation Algorithm

In Algorithm 1, the set F expands steadily as k increases. Hence, the number of
constraints in (8), though is much less than the number of constraints in (7) in the
basic polyhedral outer approximation algorithm, is still somewhat large when k is big.
We now give another iterative polyhedral outer approximation algorithm to improve
this. Suppose that Assumptions A and B hold.
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Algorithm 2 (Another Iterative Polyhedral Outer Approximation Algorithm)

Step 0 Let k = 0, μ−1 = 1 and F = G0. Let N be a positive integer.
Step 1 Let μk = μk−1. Compute an optimal solution of (8) and denote it as x(k).
Step 2 If μk � N , stop. Otherwise, let Hk = {y ∈ Gμk

: x(k)(y) < 0}.
Step 3 If Hk = ∅, let μk = μk + 1 and go to Step 2. Otherwise, let F̄ = {y ∈ F :

x(k)(y) = 0}. Let F = Hk ∪ F̄ and k = k + 1. Go to Step 1.

Theorem 4 Suppose that Assumptions A and B hold. Then we have f (x(k)) �
f (x(k+1)) � f (x∗) for all k. If N → ∞, then we have a sequence {x(k) : k =
0,1, · · ·} ⊂ R. If furthermore {x(k)} converges to a point x∗∗, then x∗∗ is an opti-
mal solution of (3).

The proof of this theorem is similar to the proof of Theorem 3. We omit it.

Remark We see that the number of constraints in (8) is stable in Algorithm 2. A cost
of this improvement is that the second conclusion of Theorem 4 is a little weaker than
the second conclusion of Theorem 3.

3 The Other Approaches

3.1 The Conic Linear Program Approach

If f is a convex quadratic function and g is an affine function, then (3) can be con-
verted to a conic linear program (CLP) via a second-order cone transformation [16].
Theoretically, CLP problems can be solved by polynomial-time interior point algo-
rithms [11, 12]. In this approach, a self-concordant function needs to be established.
The smallest Z-eigenvalue function φB(x) has some properties of a self-concordant
function. But it is nonsmooth and thus does not satisfy the differentiability require-
ments of a self-concordant function. Further investigation on possible smooth defin-
ing functions of the positive semi-definite space tensor cone S is needed to establish
a self-concordant function.

A closed convex cone is a symmetric cone if it is a self-dual and homogeneous
cone [6]. However, unlike the semi-definite problem (SDP) and the second-order cone
problem (SDCP), where the semi-definite matrix cone and the second-order cone are
self-dual, the positive semi-definite space tensor cone S is not self-dual [16]. We
may check if the positive semi-definite space tensor cone S is a homogeneous cone
or not. A closed convex cone K with nonempty interior is homogeneous if for any
two interior points u and v of K, there exists an invertible linear mapping T such that
T (K) = K and T (u) = v, i.e., the group of automorphisms of K acts transitively on
the interior of K. If the positive semi-definite space tensor cone S is a homogeneous
cone, then we may use the techniques on homogeneous cones [10] to construct inte-
rior point algorithms to solve the CLP with the conic constraint x ∈ S . If the positive
semi-definite space tensor cone S is not a homogeneous cone, then we may further
check if it is a hyperbolic cone [10, 19] or not. Hyperbolic cones contain homoge-
neous cones as a subclass [10, 19]. If the positive semi-definite space tensor cone S
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46 L. Qi et al.

is a hyperbolic cone, then we may use the techniques on hyperbolic cones [10, 19] to
construct interior point algorithms to solve the concerned CLP. Finally, it is possible
that the positive semi-definite space tensor cone S is not a hyperbolic cone. Then we
will analyze the properties of the positive semi-definite space tensor cone further, to
see what kind of interior point algorithms are suitable for solving the concerned CLP.

Therefore, the conic linear program approach for solving this problem is not ready
for practical use at this moment.

3.2 The Nonsmooth Convex Program Approach

We now discuss algorithms for solving the nonsmooth convex program (3). Under
Assumptions A and B, we may covert it to a standard convex feasibility problem
[8, 9]. A convex feasibility problem is to compute a point in a convex set S̄ , where S̄
is contained in a compact set R, and is assumed to contain an interior [8, 9]. Then we
need an oracle which for every point x̄ ∈ R returns either a statement that x̄ is feasible,
or a cutting plane to separate x̄ from the feasible set. With such an oracle, we may
apply the analytic center cutting plane method in [8, 9], and obtain a convergence
estimate in O(n(log 1/ε)2) calls to the oracle. As f and g are twice smooth, it is
easy to handle them. The key part of this oracle is to solve

φD(x) = min
{
x(y) : y ∈ D

}
.

We have the following proposition.

Proposition 3 Given x ∈ �n. Then x ∈ S if and only if the following three conditions
are satisfied:

(i) x ∈ S0;
(ii) for any stationary point s of ψk for −1 � s � 1 and k = 1, · · · ,6, we have

ψk(s) � 0, where ψ1(s) = x(1,1, s),ψ2(s) = x(1,−1, s),ψ3(s) = x(1, s,1),

ψ4(s) = x(1, s,−1),ψ5(s) = x(s,1,1) and ψ6(s) = x(s,1,−1);
(iii) for any stationary point t of dk , where −1 � t1, t2 � 1 and k = 1,2,3, we have

dk(t) � 0.

Proof The “only if” part follows from the definition of positive semi-definiteness of
x. The “if” part follows from (6) and the fact that φD is a defining function of S .
Note that C has 12 edges and D contains 9 edges. Because the fact that x(y) is an
even function for y, we only need to consider six edges in (ii). �

The condition (i) is easy to check. It is not difficult to find stationary points of ψk

for k = 1,2,3. To find stationary points of dk , we need to solve
{

∂
∂t1

dk(t) = 0,

∂
∂t2

dk(t) = 0.

This is a two-variable polynomial system. We may use the Sylvester formula [4] to
solve it.
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3.3 The Bi-level Program Approach

We can write our problem (3) into the following bi-level program problem:

min f (x) (13)

s.t. g(x) � 0, (14)

min
y∈�3

x(y) � 0. (15)

Due to the harmonic property of the function x(y), the above problem is equivalent
to

min f (x) (16)

s.t. g(x) � 0, (17)

φ(x) = min
y∈�3,‖y‖=1

x(y) � 0. (18)

As discussed in Sect. 2.3, φ(x) is a concave function. Thus problem (16)–(18) is
a convex program. The dual problem can be written as

max
τ∈�p,ρ∈� L(τ,ρ) (19)

s.t. τ � 0, ρ � 0, (20)

where

L(τ,ρ) = min
x

{
f (x) + τT g(x) − ρφ(x)

}
. (21)

Thus we can apply a dual algorithm for solving (19)–(20).

Algorithm 3 (Dual Algorithm for Structured Convex Problems)

Step 1 τ0 = 0, ρ0 = 0, k = 0.
Step 2 Compute

z(k) := ∇L(τk, ρk) =
(∇τL(τk, ρk)

∇ρL(τk, ρk)

)
. (22)

Step 3 if z(k) � 0 and

(
z(k)

)T
(

τk

ρk

)
= 0,

then stop.
Carry out a line search, namely computing αk > 0 and let

(
τk+1
ρk+1

)
:=

[(
τk

ρk

)
+ αkz

(k)

]

+
,

k := k + 1, and go to Step 2.
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It is easy to show that the above algorithm is convergent if certain line search
conditions are satisfied. Indeed, the above algorithm is a truncated gradient method
for the dual problem. The analysis of Calamai and Moré [3] can be used. Namely, we
can try

αk = min[2αk−1, γ ]
first, and if necessary, we reduce αk by a fractor of 2 until the line search condition

L(τk+1, ρk+1) � L(τk, ρk) + c1
(∇L(τk, ρk)

)T
(

τk+1 − τk

ρk+1 − ρk

)

is satisfied, where γ > 0 and c1 ∈ (0,0.5) are constants. More details can be found in
Chap. 11 of Sun and Yuan [20].

Now we consider the specific problem (2), which can be rewritten as:

min
x

(x − x̄)T Q(x − x̄) (23)

subject to

λmin(x) � 0. (24)

Define

ψ(y) = {
ψij |ψij = yi

1y
j

2 y
m−i−j

3

}
.

Then we have

λmin(x) = min‖y‖=1
xT ψ(y) = xT ψ

(
y(x)

)
,

for some y(x) satisfying ‖y(x)‖ = 1. It is easy to show that

∇xλmin(x) = ψ
(
y(x)

)
. (25)

The dual problem is now

max
ρ>0

L(ρ), (26)

where

L(ρ) = min
x

{
(x − x̄)T Q(x − x̄) − ρλmin(x)

}

= (
x(ρ) − x̄

)T
Q

(
x(ρ) − x̄

) − ρλmin

(
x(ρ)

)
(27)

with x(ρ) being the solution of

2Q(x − x̄) − ρψ
(
y(x)

) = 0. (28)

Hence, we have that

L′(ρ) = [
Q

(
x(ρ) − x̄

) − ρψ
(
y
(
x(ρ)

))]T
x′(ρ) − λmin

(
x(ρ)

) = −λmin

(
x(ρ)

)
. (29)

The fact that x(ρ) satisfies (28) implies that

2Qx′
ρ(ρ) − ψ

(
y
(
x(ρ)

)) − ρψ ′
ρ

(
y
(
x(ρ)

)) = 0, (30)
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which gives that

x′
ρ(ρ) = 1

2
Q+[

ψ
(
y
(
x(ρ)

)) + ρψ ′
ρ

(
y
(
x(ρ)

))]
. (31)

Therefore it follows from (25), (29) and (31) that

L′′
ρρ(ρ) = − d

dρ

[
λmin

(
x(ρ)

)] = −(
ψ

(
y
(
x(ρ)

)))T
x′
ρ(ρ)

= −1

2

(
ψ

(
y
(
x(ρ)

)))T
Q+[

ψ
(
y
(
x(ρ)

)) + ρψ ′
ρ

(
y
(
x(ρ)

))]

≈ −1

2

(
ψ

(
y
(
x(ρ)

)))T
Q+ψ

(
y
(
x(ρ)

))
. (32)

Thus, it follows (29) and (32) that an approximation to the Newton’s method for the
dual problem is

ρk+1 = ρk − 2λmin(x(ρk))

(ψ(y(x(ρk))))T Q+ψ(y(x(ρk)))
. (33)

Now (28) implies that

2Q
(
x(ρk+1) − x(ρk)

) = ρk+1ψ
(
y
(
x(ρk+1)

)) − ρkψ
(
y
(
x(ρk)

))
.

As y(x(ρk+1)) is not known before xk+1 is computed. Thus, we define the next iterate
xk+1 by

2Q(xk+1 − xk) = (ρk+1 − ρk)ψ
(
y(xk)

)
. (34)

Relations (33) and (34) give that the iterate formula

xk+1 = xk − λmin(xk)

(ψ(y(xk)))T Q+ψ(y(xk))
Q+ψ

(
y(xk)

)
.

Hence we have the following dual algorithm for the special problem (2).

Algorithm 4 (Dual Algorithm)

Step 1 k := 0, x(k) = x̄.
Step 2 Find y(k) = (y

(k)
1 , y

(k)
2 , y

(k)
3 )T such that ‖y(k)‖ = 1 and
(
x(k)

)T
ψ

(
y(k)

) = λmin

(
x(k)

)

ψ = ψ(y(k)).
Step 3 If λmin(x

(k)) � 0 then stop.

Step 4 Let �ρ := −λmin(x(k))

ψT Q+ψ

x(k+1) = x(k) + �ρQ+ψ

k := k + 1, go to Step 2.

For the above algorithm, we can establish the following convergence result.

Lemma 1 If Q is positive definite, and let x(k) be generated by the above algo-
rithm. Then either λmin(x̄) � 0 or any accumulation point x̂ of {x(k)} satisfies that
λmin(x̂) = 0.
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Proof If Q is positive, we have that

x(k+1) = x(k) − (x(k))T ψ(y(k))

(ψ(y(k)))T Q−1ψ(ψ(y(k)))
Q−1ψ

(
y(k)

) =
(

I − Q−1ψkψ
T
k

ψT
k Q−1ψk

)
x(k),

where ψk = ψ(y(k)). Thus we have that

∥∥x(k+1)
∥∥2

Q
= ∥∥x(k)

∥∥2
Q

− (ψT
k x(k))2

‖ψk‖2
Q−1

,

where ‖x‖2
Q = xT Qx. The above relations show that the iterate points {x(k)} gener-

ated by the algorithm are in the bounded set {x|xT Qx � x̄T Qx̄}. Thus ψk are also
bounded. Hence

∞∑

k=1

[
λmin

(
x(k)

)]2 =
∞∑

k=1

[
ψT

k xk

]2
< ∞.

The above relation shows that any accumulation point x̂ of {xk} satisfies λmin(x̂) = 0.
This completes our proof. �

The above result shows that {x(k)} converge to the feasible set {x|λmin(x) � 0},
but it does not imply the sequence {x(k)} convergence to a fix point. Indeed, it does
not even ensure the optimality conditions at an accumulate point.

Thus, we modify the algorithm if
∣∣ψT

k xk

∣∣ < 0.5
∣∣ψT

k x̄
∣∣. (35)

Namely, when (35) holds, we define the next iterate by the following formulae:

xk+1 = d̄ − ψT
k x̄

ψT
k Q+ψk

Q+ψk =
[
I − Q+ψT

k ψk

ψT
k Q+ψk

]
x̄. (36)

Formulae (36) is an SQP step of to problem (23)–(24), thus fast local convergence
is expected.

4 Numerical Experiments

We report some numerical experiments for Algorithms 1, 2 and 4. The experiments
are implemented in Matlab by using the a dual-core 2.4 GHz cpu 2GB RAM personal
computer.

For Algorithms 1 and 2, we take N = 9. When k is equal to N , there are 9 × 216

points in Gk and ρ(Fk) is about 2−8. The problems we test for Algorithms 1 and 2
are:

Example 1

min

{
1

2
(x − x̄)�Q(x − x̄) : Ax � b, x ∈ S

}
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Table 1 Example 1 for Algorithms 1 and 2 in the small order case

dim(x) num(G) m Algorithm 1 Algorithm 2

Time (s) num(Con) λmin(x(k)) Time (s) num(Con) λmin(x(k))

15 9 × 216 4 0.1187 7.4 −1.79 × 10−4 0.1156 7.6 −1.79 × 10−4

45 9 × 216 8 0.947 11.8 −2.75 × 10−4 0.778 7.6 −1.85 × 10−4

91 9 × 216 12 1.861 15.2 −1.36 × 10−3 1.713 12 −6.1 × 10−5

153 9 × 216 16 6.685 31 −1.31 × 10−4 4.77 17.6 −7.57 × 10−5

Table 2 Example 2 for Algorithms 1 and 2 in the small order case

dim(x) num(G) m Algorithm 1 Algorithm 2

Time (s) num(Con) λmin(x(k)) Time (s) num(Con) λmin(x(k))

15 9 × 216 4 0.0844 5.4 −1.46 × 10−4 0.1344 5.8 −2.6 × 10−4

45 9 × 216 8 0.6438 10 −1.69 × 10−4 0.8218 10.2 −3.2 × 10−4

91 9 × 216 12 1.437 14.4 −6.6 × 10−5 2.034 18.6 −1.42 × 10−4

153 9 × 216 16 6.929 17 −1.13 × 10−4 5.809 27 −1.16 × 10−4

Example 2

min

{
1

2
(x − x̄)�Q(x − x̄) : x ∈ S

}

In Examples 1 and 2, Q = PDP � is a positive definite matrix, where the orthog-
onal matrix P and the diagonal matrix D as well as x̄ are all generated randomly. To

make it easy to compare, we set A = (1,1 · · · ,1) ∈ R1× (m+1)(m+1)
2 , b = (m+1)(m+2)

2 .
Example 2 is the PSDT model in [17].

We test 7 different orders for every algorithms, 4 small orders and 3 lager orders:
m = 4; m = 8; m = 12; m = 16; m = 20; m = 30; m = 40, the dimensions of x are
15, 45, 91, 153, 231, 496, 861, respectively.

The num(Con), num(G), λmin(x
(k)) and k in Tables 1–5 mean the number of the

constraints in the relaxation program, the number of points in Gk , the minimum Z-
eigenvalue of x(k) and the number of iteration when Algorithm stops. We use the
method in [17] to calculate all the eigenvalues and eigenvectors of x(k), and take the
least one as λmin(x

(k)). Failure means that the time Algorithm cost is too long or the
data overflows from the Ram. At each order we test 5 examples, and get the averages
of time (s), num(Con) and λmin(x

(k)).
The tested example for Algorithm 4 is

min
{
(x − x̄)�(x − x̄) : x ∈ S

}

where x̄ is generated randomly. It is the projection problem to S .
We test 4 different orders for Algorithm 4: m = 4; m = 6; m = 8; m = 10, and set

the stop rule for Algorithm 4 to be λmin(xk) > −10−5.
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Table 3 Example 1 for
Algorithms 1 and 2 in the lager
order case

dim(x) num(G) m Algorithm 1 Algorithm 2

Time (s) num(Con) Time (s) num(Con)

231 9 × 216 20 13.2 38.4 13.5 38

496 9 × 216 30 152 64 144.1 34

861 9 × 216 40 Failure Failure

Table 4 Example 2 for
Algorithms 1 and 2 in the lager
order case

dim(x) num(G) m Algorithm 1 Algorithm 2

Time (s) num(Con) Time (s) num(Con)

231 9 × 216 20 13.9 40 14.1 38.4

496 9 × 216 30 136.3 66.2 141.1 33.4

861 9 × 216 40 665.9 81 695.1 129

Table 5 The tested examples
for Algorithm 4 dim(x) m Time (s) λmin(x(k)) iter

15 4 2.8 −1.3 × 10−17 3.2

28 6 9.3 −1.27 × 10−16 4

45 8 21 −8.6 × 10−17 4

66 10 65.2 −2.5 × 10−6 4.8

The λmin(x
(k)) and iter in the following table mean the minimum Z-eigenvalue

and the number of iterations when Algorithm 4 stops. We test 5 examples for each
order and get the average of λmin(x

(k)) and iter.
We see that Algorithms 1 and 2 can be used to solve some large scale problems.

The failure in Table 3 was caused by the storage problem. It is worth improving the
storage use in these two algorithms. On the other hand, Algorithm 1 is efficient for
solving some small order problems for Q = I . We have not tested the analytic center
cutting plane approach discussed in Sect. 3.2.
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