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In this paper, we propose a regularized Newton method for the system of monotone nonlinear equations.
The regularization parameter is taken as the norm of the residual, and a correction step with little additional
calculations is also computed to compensate for the shorter trial step due to the introduction of the regu-
larization parameter. Under the local error bound condition which is weaker than nonsingularity, we show
that the new regularized Newton method with correction has quadratic convergence. We also apply the
new method to the unconstrained convex optimization problems which may have singular Hessian at the
solutions and develop a globally convergent regularized Newton algorithm by using trust region technique.
Numerical results show that the algorithm is very efficient and robust.

Keywords: monotone nonlinear equations; regularized Newton method; correction technique; local error
bound; unconstrained convex optimization

AMS Subject Classification: 65K05; 90C30

1. Introduction

We consider the problem of solving a system of monotone nonlinear equations, represented by

F(x) = 0, (1)

where F(x) : Rn → Rn is continuously differentiable and monotone, that is,

< F(x) − F(y), x − y >≥ 0 ∀x, y ∈ Rn, (2)

where < ·, · > denotes the inner product in Rn. Monotone nonlinear equations have many real
applications. For example, some monotone nonlinear complementarity problems and variational
inequality problems can be transformed into monotone nonlinear equations [1,3,12,14,19–21],
and the unconstrained convex nonlinear optimization problems with singular solutions can also
be reduced to a special case of monotone nonlinear equations [8]. The purpose of this work is
to propose a regularized Newton method for (1). Due to the nonlinearity of F(x), (1) may have
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2 J. Fan and Y. Yuan

no solutions. Throughout this paper, we assume that the solution set of (1) denoted by X∗ is
nonempty, and in all cases, ‖ · ‖ refers to the 2-norm.

The Newton method is a classical method for nonlinear equations.At every iteration, it computes
the trial step

dN
k = −J−1

k Fk , (3)

where Fk = F(xk) and Jk = F ′(xk) is the Jacobian. It is well known that Newton’s method has
quadratic convergence if the Jacobian is Lipschitz continuous and nonsingular at the solution.

However, the condition of nonsingularity is too strong. Since F(x) is a monotone function, the
Jacobian J(x) is positive semidefinite which implies it may be singular. In this case, we may com-
pute the Moore–Penrose step dMP

k = −J+
k Fk , which is a minimizer of mind ‖Fk + Jkd‖2. However,

the computation of the singular value decomposition to obtain J+
k is sometimes prohibitive. Hence,

computing a direction that is close to dMP
k may be a good idea.

To overcome the difficulty caused by the possible singularity of Jk , the regularized Newton
method solves the following linear equations

(Jk + λkI)d = −Fk (4)

to obtain the trial step dk , where the regularization parameter λk > 0 is updated from iteration to
iteration. If the Jacobian is Lipschitz continuous and nonsingular at the solution and if the initial
iterative point is chosen sufficiently close to the solution, then the trial steps satisfy

‖dk+1‖ ≤ κ(‖dk‖2 + λk‖dk‖) (5)

for some positive κ [6]. The above inequality implies that the convergence rate of the regularized
Newton method is at most quadratic under the condition of nonsingularity.

Since Jk is positive semidefinite, the positive λk makes dk away from dMP
k . If we replace −Fk by

−Fk + λkdMP
k on the right-hand side of (4), then in fact dMP

k is a solution of (4), which is desirable.
Since we do not want to compute dMP

k , we instead replace it with the best approximation we have
available, that is, dk . Thus, it is very likely that the solution sk of the following linear equations

(Jk + λkI)d = −Fk + λkdk (6)

is closer to dMP
k than dk . We call

d̃k = λk(Jk + λkI)−1dk (7)

a correction step. Note that the coefficient matrix of linear equations (6) is the same as that of
(4); therefore, we can make use of the available factorization of Jk + λkI in (4), and only need a
small amount of additional calculations to obtain sk , which is favourable and easily implemented
in real applications.

Now the interesting issue comes how to choose the regularization parameter λk , which will play
an important role not only in theory but also in the efficient implementation of the method. In view
of (5), the smaller the λk , the faster may be the convergence. However, if λk is chosen too small,
it will lose its role. On the other hand, if λk is chosen too large, the trial step will be short and far
away from the Moore–Penrose step, which may also be unsatisfactory. Anyway, the role of λk is
the same as that of the Levenberg–Marquardt parameter [7,9,10]. Yamashita and Fukushima [15]
chose λk = ‖Fk‖2 and showed that the Levenberg–Marquardt method has quadratic convergence
under the local error bound condition which is weaker than nonsingularity. Fan and Yuan took
λk = ‖Fk‖δ with δ ∈ [1, 2] and proved that the Levenberg–Marquardt method preserves the
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Optimization Methods & Software 3

quadratic convergence under the same conditions [2]. Based on the better performance of the
Levenberg–Marquardt method with λk = ‖Fk‖, we will consider the choice of

λk = ‖Fk‖ (8)

in this paper.
We will show that our regularized Newton method with correction for monotone nonlinear

equations could also achieve the quadratic convergence under the local error bound condition.
Furthermore, we will apply the regularized Newton method with correction to solve the uncon-
strained convex nonlinear optimization problems with singular solutions. Some of the results given
in [8] will be improved, in which the regularized Newton method is designed for the unconstrained
convex nonlinear optimization with singular solutions.

The paper is organized as follows. In Section 2, we analyse the regularized Newton method
with correction for monotone nonlinear equations without line search and obtain the quadratic
convergence under the local error bound condition. In Section 3, we present a globally convergent
regularized Newton algorithm with correction for monotone nonlinear equations by using line
search. We resort to a Levenberg–Marquardt step in the case that the trial step fails to decrease
the merit function. In Section 4, we discuss the application of regularization and correction
approaches to the unconstrained convex nonlinear optimization problems with singular solutions
and develop a globally convergent regularized Newton algorithm with correction by using trust
region technique. The quadratic convergence of the algorithm is also proven. In Section 5, we test
the regularized Newton algorithm with correction on the problem given in [8]. We conclude the
paper in Section 6.

2. Local convergence analysis of the regularized Newton method with correction

In this section, we will study the convergence rate of the regularized Newton method with
correction for (1) without line search. That is,

xk+1 := xk + sk , (9)

where sk is computed by (6) with dk being obtained by (4). We assume that x∗ is a solution of (1).
The local convergence theory requires the following assumptions.

Assumption 2.1

(a) F(x) is continuously differentiable and monotone.
(b) The Jacobian J(x) is Lipschitz continuous on N(x∗, b1) with b1 < 1, that is, there exists a

positive constant L1 such that

‖J(y) − J(x)‖ ≤ L1‖y − x‖ ∀x, y ∈ N(x∗, b1). (10)

ByAssumption 2.1(a), we know that the Jacobian J(x) is positive semidefinite, that is, J(x) 
 0,
and therefore

dTJ(x)d ≥ 0 ∀d, x ∈ Rn. (11)

Note that J(x) is not necessarily symmetric or nonsingular. For example, the matrix
(

2 1 0
0 1 0
0 0 0

)
is

semidefinite, but is neither symmetric nor nonsingular.
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4 J. Fan and Y. Yuan

Furthermore, it follows from Assumption 2.1(b) that

‖F(y) − F(x) − J(x)(y − x)‖ ≤ L1‖y − x‖2 ∀x, y ∈ N(x∗, b1), (12)

and there exists a constant L2 > 0 such that

‖F(y) − F(x)‖ ≤ L2‖y − x‖ ∀x, y ∈ N(x∗, b1). (13)

Assumption 2.2 ‖F(x)‖ provides a local error bound on some N(x∗, b1) for (1), that is, there
exists a positive constant c1 > 0 such that

‖F(x)‖ ≥ c1 dist(x, X∗) ∀x ∈ N(x∗, b1) = {x | ‖x − x∗‖ ≤ b1}, (14)

where dist(x, X∗) is defined as the distance from x to the solution set X∗.

Note that if J(x∗) is nonsingular, then x∗ is an isolated solution; hence, ‖F(x)‖ provides a local
error bound on some neighbourhood of x∗. However, the converse is not necessarily true (e.g. see
[13,15]). So, the local error bound condition is weaker than nonsingularity.

In the following, we denote x̄k the vector in the solution set X∗ that satisfies

‖xk − x̄k‖ = dist(xk , X∗).

To analyse the convergence rate of {xk}, we need to investigate the properties of the positive
semidefinite matrix Jk . Though Jk is not necessarily symmetric, it still has some desirable prop-
erties similar to symmetric positive semidefinite matrix. The first lemma given below shows the
relationship between the positive semidefinite matrix and symmetric positive semidefinite matrix;
the second one gives the bounds of a positive definite matrix and its inverse.

Lemma 2.3 A real-valued matrix A is positive semidefinite if and only if (A + AT)/2 is positive
semidefinite.

Lemma 2.4 Suppose A is positive semidefinite. Then, ‖A + αI‖ ≥ α and ‖(A + αI)−1‖ ≤ α−1

hold for any α > 0.

Proof It follows from Lemma 2.3 and the definition of the 2-norm that

‖A + αI‖ =
√

λmax((A + αI)T(A + αI))

=
√

λmax(ATA + α(AT + A) + α2I)

≥
√

λmax(α2I)

= α,

where λmax((A + αI)T(A + αI)) means the largest eigenvalue of (A + αI)T(A + αI). Similarly,
we have

‖(A + αI)−1‖ =
√

λmax((A + αI)−T (A + αI)−1)

=
√

λmax(((A + αI)(A + αI)T)−1)

=
√

1

λmin(AAT + α(A + AT) + α2I)

≤ α−1.

The proof is completed. �
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Optimization Methods & Software 5

Lemma 2.5 Suppose Assumptions 2.1 and 2.2 hold. If xk ∈ N(x∗, b1/2), then there exists a
constant c2 > 0 such that

‖sk‖ ≤ c2 dist(xk , X∗). (15)

Proof Since xk ∈ N(x∗, b1/2), we have

‖x̄k − x∗‖ ≤ ‖x̄k − xk‖ + ‖xk − x∗‖ ≤ 2‖xk − x∗‖ ≤ b1,

which means x̄k ∈ N(x∗, b1). Then, it follows from (8) and Assumption 2.2 that the regularization
parameter satisfies

λk = ‖Fk‖ ≥ c1‖x̄k − xk‖. (16)

By the definition of d̃k and Lemma 2.4, we have

‖d̃k‖ = ‖ − λk(Jk + λkI)−1dk‖ ≤ λk‖(Jk + λkI)−1‖‖dk‖ ≤ ‖dk‖. (17)

Moreover, we deduce from (12), (16), Lemma 2.4 and F(x̄k) = 0 that

‖dk − (x̄k − xk)‖ = ‖ − (Jk + λkI)−1Fk − x̄k + xk‖
= ‖(Jk + λkI)−1(Fk + (Jk + λkI)(x̄k − xk))‖
≤ ‖(Jk + λkI)−1‖(‖Fk + Jk(x̄k − xk)‖ + λk‖x̄k − xk‖)
≤ λ−1

k L1‖x̄k − xk‖2 + ‖x̄k − xk‖
≤ (c−1

1 L1 + 1)‖x̄k − xk‖,

which yields

‖dk‖ ≤ (c−1
1 L1 + 2)‖x̄k − xk‖. (18)

Combining (17) and (18), we obtain

‖sk‖ = ‖dk + d̃k‖ ≤ c2‖x̄k − xk‖, (19)

where c2 = 2(c−1
1 L1 + 2) is a positive constant. �

Theorem 2.6 Suppose Assumptions 2.1 and 2.2 hold. If x0 is chosen sufficiently close to the
solution set X∗, then {xk} converges to some solution of (1) quadratically.

Proof First we assume both xk+1 ∈ N(x∗, b1/2) and xk ∈ N(x∗, b1/2). It then follows from (6),
(12)–(14) and (17)–(19) that

‖x̄k+1 − xk+1‖ ≤ c−1
1 ‖F(xk+1)‖

≤ c−1
1 ‖Fk + Jksk‖ + c−1

1 L1‖sk‖2

= c−1
1 ‖λk(dk − sk)‖ + c−1

1 L1‖sk‖2

≤ c3‖x̄k − xk‖2, (20)

where c3 = c−1
1 (c−1

1 L1 + 2)L2 + c−1
1 c2

2L1 is a positive constant.
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6 J. Fan and Y. Yuan

We now show by induction that if x0 is chosen sufficiently close to X∗, then xk ∈ N(x∗, b1/2)

for all k. Let

r = min

{
b1

2(1 + 3c2)
,

1

2c3

}
(21)

and x0 ∈ N(x∗, r). It follows from Lemma 2.5 that

‖x1 − x∗‖ = ‖x0 + s0 − x∗‖ ≤ ‖x0 − x∗‖ + c2‖x0 − x̄0‖ ≤ (1 + c2)r ≤ b1

2
,

which means x1 ∈ N(x∗, b1/2). Suppose xi ∈ N(x∗, b1/2) for i = 2, . . . , k. By Lemma 2.5, (20)
and (21), we obtain that

‖xi − x̄i‖ ≤ c3‖xi−1 − x̄i−1‖2 ≤ · · · ≤ c2i−1
3 ‖x0 − x̄0‖2i ≤ 2

(
1

2

)2i

r.

Furthermore, we have

‖xk+1 − x∗‖ ≤ ‖x1 − x∗‖ +
k∑

i=1

‖sk‖

≤ (1 + c2)r + c2

k∑
i=1

‖xi − x̄i‖

≤ (1 + c2)r + 2c2r
k∑

i=1

(
1

2

)2i

≤ (1 + c2)r + 2c2r
∞∑

i=1

(
1

2

)i

≤ (1 + 3c2)r

≤ b1

2
,

which implies xk+1 ∈ N(x∗, b1/2). So, if x0 is chosen sufficiently close to X∗, then all xk are in
N(x∗, b1/2). Therefore, {xk} converges to the solution set X∗ quadratically due to (20).

Note that since

‖x̄k − xk‖ ≤ ‖x̄k+1 − xk‖ ≤ ‖x̄k+1 − xk+1‖ + ‖sk‖, (22)

we may deduce from (20) that

‖x̄k − xk‖ ≤ 2‖sk‖ (23)

for all sufficiently large k. Combining this inequality with (19) and (20), we obtain that

‖sk+1‖ ≤ O(‖sk‖2), (24)

which indicates that {xk} converges to some solution of (1) quadratically. The proof is
completed. �
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Optimization Methods & Software 7

3. A globally convergent regularized Newton algorithm with correction for monotone
nonlinear equations

We follow the classical approach of minimizing a merit function involving some norm of the
residual [16]. For simplicity, we choose to consider

φ(x) = 1
2‖F(x)‖2. (25)

We call a point x such that φ′(x) = 0 is a stationary point of φ(x).
Since Jk is positive semidefinite, we have

dT
k JT

k Fk = −dT
k JT

k Jkdk − λkdT
k JT

k dk ≤ 0, (26)

sT
k JT

k Fk = −dT
k JT

k Jkdk − 2λkdT
k JT

k dk ≤ 0. (27)

But these two inequalities cannot guarantee dk and sk to be descent directions of φ(x) at xk as
Jk may not be positive definite. So, when sk fails to decrease the merit function, we resort to the
Levenberg–Marquardt step

s̄k = −(JT
k Jk + λkI)−1JT

k Fk , (28)

which is always a decent direction of φ(x) at xk because of

s̄T
k JT

k Fk = −s̄T
k (JT

k Jk + λkI)s̄k < 0. (29)

If the Jacobian is Lipschitz continuous, then the step size αk obtained by Wolfe or Armijo line
search along s̄k satisfies

‖F(xk + αk s̄k)‖2 ≤ ‖F(xk)‖2 − β1β3
(s̄T

k JT
k Fk)

2

‖s̄k‖2
(30)

for some positive constants β1 and β3 [17,18].
The regularized Newton algorithm with correction for monotone nonlinear equations is

presented as follows.

Algorithm 1
Step 1. Given x0 ∈ Rn, η ∈ (0, 1), ε ≥ 0. Set k = 0.
Step 2. If ‖JT

k Fk‖ ≤ ε, stop.
Step 3. Compute λk = ‖Fk‖. Solve

(Jk + λkI)d = −Fk (31)

to obtain dk. Solve

(Jk + λkI)d = −Fk + λkdk (32)

to obtain sk.
Step 4. If sk satisfies

‖F(xk + sk)‖ ≤ η‖F(xk)‖, (33)

set xk+1 = xk + sk; otherwise, solve

(JT
k Jk + λkI)d = −JT

k Fk (34)

to obtain s̄k , compute the step size αk that satisfies (30), and set xk+1 = xk + αk s̄k . Set k := k + 1
and go to Step 2.

D
ow

nl
oa

de
d 

by
 [

A
ca

de
m

y 
of

 M
at

he
m

at
ic

s 
an

d 
Sy

st
em

 S
ci

en
ce

s]
 a

t 0
3:

47
 0

6 
Fe

br
ua

ry
 2

01
3 



8 J. Fan and Y. Yuan

To study the global convergence of the above algorithm, we make the following assumption.

Assumption 3.1 F(x) is continuously differentiable and the Jacobian J(x) is Lipschitz
continuous, that is, there exists a positive constant L1 such that

||J(y) − J(x)|| ≤ L1||y − x|| ∀x, y. (35)

Theorem 3.2 Suppose Assumption 3.1 holds. Then, any accumulation point of the sequence
generated by Algorithm 1 is a stationary point of φ(x).

Proof It is easy to see that ‖Fk‖ is monotonically decreasing and bounded below. If ‖Fk‖
converges to zero, then any accumulation point of {xk} is a solution of (1). Otherwise, suppose
‖F(xk)‖ → γ , where γ is a positive constant. Then, inequality (33) only holds finitely many times
and (30) will be satisfied for all sufficiently large k. So, we have

∞∑
k=1

(s̄T
k JT

k Fk)
2

‖s̄k‖2
< +∞. (36)

By the definition of s̄k and λk = ‖F(xk)‖ ≥ γ , we know that

(s̄T
k JT

k Fk)
2 = (s̄T

k (JT
k Jk + λkI)s̄k)

2 ≥ γ 2‖s̄k‖4. (37)

The above two inequalities imply that

lim
k→∞

‖s̄k‖ = 0. (38)

It then follows from (34) that

lim
k→∞

JT
k Fk = 0, (39)

which means any accumulation point of {xk} is a stationary point of φ(x). �

Fukushima [3] showed that the asymmetric variational inequality problem could be equivalent
to an optimization problem. Moreover, any stationary point of such optimization problem is a
solution of the variational inequality problem under the condition that J(x) is positive definite.
Actually, the result also holds true here. Suppose x̃ is a stationary point of the merit function, that
is, J(x̃)TF(x̃) = 0. Then, F(x̃)TJ(x̃)TF(x̃) = 0. Hence, if J(x) is positive definite, then F(x̃) = 0.
So, we have the following result.

Theorem 3.3 Suppose F(x) is continuously differentiable and the Jacobian J(x) is Lipschitz
continuous and positive definite. Then, any accumulation point of the sequence generated by
Algorithm 1 is a solution of (1). Moreover, if F(x) satisfies the local error bound condition, then
the convergence rate of Algorithm 1 is quadratic.

Proof We now proceed to prove the second part of the theorem. Without loss of generality, we
suppose x∗ is an accumulation point of {xk}. Then, there exists a large k̃ such that ‖Fk̃‖ ≤ ηc2

1/c3L2

and xk ∈ N(x∗, r) for all k ≥ k̃, where c1, c3, L2 and r are defined in Section 2, and η ∈ (0, 1) is a
parameter in Algorithm 1. It now follows from (13), (14) and (20) that

‖F(xk̃+1)‖
‖F(xk̃)‖

≤ L2‖xk̃+1 − x̄k̃+1‖
c1‖xk̃ − x̄k̃‖

≤ L2c3

c1
‖xk̃ − x̄k̃‖ ≤ L2c3‖F(xk̃)‖

c2
1

≤ η.

Furthermore, we have ‖F(xk+1)‖ ≤ η‖F(xk)‖ for all k > k̃, which implies that xk+1 = xk + sk

holds for all sufficiently large k. By Theorem 2.6, we know that the convergence rate is
quadratic. �
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Optimization Methods & Software 9

In Algorithm 1, when sk fails to satisfy (33), we use an alternative step s̄k , because s̄k is a
sufficiently descent direction of the merit function at xk . As a matter of fact, any other sufficient
descent directions could be used instead of s̄k , and the global convergence will be preserved.

4. Application to unconstrained convex optimization problems with singular Hessian at
solutions

In this section, we will consider the unconstrained minimization problem

min
x∈Rn

f (x), (40)

where f : Rn → R is a convex LC2 function, that is, f is twice continuously differentiable and
the Hessian ∇2f is Lipschitz continuous. Suppose the minimizer set S∗ of f (x) is nonempty, and
g(x) = ∇f (x) and H(x) = ∇2f (x). It is well known that f (x) is convex if and only if H(x) is
symmetric positive semidefinite for all x ∈ Rn. Moreover, x∗ ∈ S∗ if and only if x∗ is a solution
of the following nonlinear equations:

g(x) = 0. (41)

Hence, we could get the minimizer of f (x) by solving (41).
Hanger and Zhang presented the proximal point methods for (40) and studied the convergence

properties of the methods under the local error bound condition in [4,5]. Since H(x) is positive
semidefinite, it is natural to apply the regularized Newton method to solve (40). Li et al. [8]
presented the globally convergent inexact regularized Newton algorithms for (40) by line search
and discussed the convergence rate under the local error bound condition. In this section, we will
propose a globally convergent regularized Newton algorithm with correction for (40) by using
trust region technique and show that the algorithm has quadratic convergence.

4.1 Algorithm and global convergence

Due to the symmetry of H(x), some attractive properties of the trial step could be obtained.
Suppose dk is the solution of the linear equations

(Hk + λkI)d = −gk , (42)

where λk = ‖gk‖ and sk is the solution of

(Hk + λkI)d = −gk + λkdk . (43)

Then, we have

sT
k gk = −dT

k Hkdk − 2λkdT
k dk < 0, (44)

which implies that sk is always a descent direction for f (x) at xk . So, when sk fails to satisfy
(33) in Algorithm 1, we can perform line search directly along the available sk instead of the
Levenberg–Marquardt step s̄k , which will be preferable in the implementation.

In the following, we will develop a globally convergent regularized Newton algorithm with
correction for (41) using another kind of globalization approach: the trust region technique.

D
ow

nl
oa

de
d 

by
 [

A
ca

de
m

y 
of

 M
at

he
m

at
ic

s 
an

d 
Sy

st
em

 S
ci

en
ce

s]
 a

t 0
3:

47
 0

6 
Fe

br
ua

ry
 2

01
3 



10 J. Fan and Y. Yuan

We begin with the definitions of the predicted reduction

Predk = −gT
k sk − 1

2 sT
k Hksk ,

and the actual reduction

Aredk = fk − f (xk + sk).

The ratio of the actual reduction to the predicted reduction

rk = Aredk

Predk

plays an important role in deciding whether to accept the trial step sk and how to adjust the
regularization parameter λk .

The regularized Newton algorithm with correction for unconstrained convex optimization
problems is stated as follows.

Algorithm 2
Step 1. Given x0 ∈ Rn, ε ≥ 0, μ0 > m > 0, 0 < p0 ≤ p1 ≤ p2 < 1, 0 < p4 < 1 < p3. Set k =

0.
Step 2. If ‖gk‖ ≤ ε, stop.
Step 3. Compute λk = μk‖gk‖. Solve

(Hk + λkI)d = −gk (45)

to obtain dk. Solve

(Hk + λkI)d = −gk + λkdk (46)

to obtain sk.
Step 4. Compute rk = Aredk/Predk. Set

xk+1 =
{

xk + sk , if rk ≥ p0,

xk , otherwise.
(47)

Step 5. Choose μk+1 as

μk+1 =

⎧⎪⎨
⎪⎩

p3μk , if rk < p1,

μk , if rk ∈ [p1, p2],
max{p4μk , m}, if rk > p2.

(48)

Set k := k + 1 and go to Step 2.

It is easy to see from (45), (46) and Lemma 2.4 that the correction step

d̃k = sk − dk = (Hk + λkI)−1λkdk (49)

satisfies

‖d̃k‖ ≤ ‖dk‖, (50)
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Optimization Methods & Software 11

which gives

‖sk‖ = ‖dk + d̃k‖ ≤ 2‖dk‖. (51)

Note that the regularization step dk is the minimizer of the following unconstrained convex
minimization problem:

min
d∈Rn

gT
k d + 1

2 dT(Hk + λkI)d. (52)

If we let

�k = ‖ − (Hk + λkI)−1gk‖ = ‖dk‖,

then dk is also a solution of the trust region problem

min
d∈Rn

ϕ(d) = gT
k d + 1

2
dTHkd,

s.t. ‖d‖ ≤ �k .
(53)

Hence, by the famous result given by Powell [11], we obtain that

ϕ(0) − ϕ(dk) ≥ 1

2
‖gk‖ min

{
‖dk‖,

‖gk‖
‖Hk‖

}
. (54)

By some simple calculations, we deduce from (49) that

ϕ(dk) − ϕ(sk) = gT
k dk + 1

2 dT
k Hkdk − gT

k sk − 1
2 sT

k Hksk

= −gT
k d̃k − 1

2 d̃T
k Hkd̃k − d̃T

k Hkdk

= λkd̃T
k dk − 1

2 d̃T
k Hkd̃k

= 1
2 d̃T

k Hkd̃k + λkd̃T
k d̃k

≥ 0, (55)

so the predicted reduction satisfies

Predk = ϕ(0) − ϕ(sk) ≥ ϕ(0) − ϕ(dk). (56)

Combining the above inequality with (51) and (54), we have the following lemma.

Lemma 4.1 Let sk be computed by (45) and (46). Then, the predicted reduction satisfies

Predk ≥ 1

2
‖gk‖ min

{‖sk‖
2

,
‖gk‖
‖Hk‖

}
. (57)

Inequality (57) plays an essential role in the global convergence of Algorithm 2. The following
result shows that Algorithm 2 has global convergence under some suitable conditions.

Theorem 4.2 Suppose f (x) is convex, twice continuously differentiable and bounded below, and
H(x) is bounded above. Then, the sequence generated by Algorithm 2 satisfies

lim inf
k→∞

‖gk‖ = 0. (58)
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12 J. Fan and Y. Yuan

Proof Now assume, for the purpose of a contradiction, that there exists a positive K such that

‖gk‖ ≥ τ ∀k ≥ K (59)

for some τ > 0. Let T be the set of all indices at which rk ≥ p1. Since {fk} is monotonically
decreasing, it follows from (51), (56) and (59) that

f1 ≥
∑
k∈T

(fk − fk+1)

≥
∑
k∈T

p1Predk

≥
∑
k∈T

p1

2
‖gk‖ min

{
‖dk‖,

‖gk‖
‖Hk‖

}

≥
∑
k∈T

p1τ

2
min

{‖sk‖
2

,
τ

‖Hk‖
}

. (60)

Then, by the boundedness of f (x) and H(x), we have that∑
k∈T

‖dk‖ < +∞ and
∑
k∈T

‖sk‖ < +∞. (61)

If T is infinite, (61) implies that dk → 0, k ∈ T . It then follows from (45), (59) and the
boundedness of Hk that

1 ≤ ‖Hk‖
‖gk‖ ‖dk‖ + μk‖dk‖ ≤ ‖Hk‖

τ
‖dk‖ + μk‖dk‖. (62)

Hence μk → +∞, k ∈ T . Note that since μk+1 = p3μk for all k /∈ T with p3 > 1, we have μk →
+∞. On the other case that T is finite, we have μk+1 = p3μk for all sufficiently large k, which
also yields μk → +∞. Therefore, (45) gives dk → 0, and hence

lim
k→∞

sk = 0. (63)

It now follows from (59), Lemma 4.1 and the boundedness of Hk that

|rk − 1| =
∣∣∣∣Aredk − Predk

Predk

∣∣∣∣
≤

∣∣∣∣∣ f (xk + sk) − fk − gT
k sk − 1

2 sT
k Hksk

1
2‖gk‖ min {‖sk‖/2, ‖gk‖/‖Hk‖}

∣∣∣∣∣
≤ o(‖sk‖2)

‖sk‖ −→ 0, (64)

which means

rk −→ 1. (65)

So, we deduce from (48) that there exists a positive constant m̄ > m such that μk < m̄ holds
for all sufficiently large k, which yields the desirable contradiction to μk → +∞. Therefore, the
assumption (59) cannot be true, which implies (58) holds true. The proof is completed. �
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Optimization Methods & Software 13

Due to the introduction of the correction step d̃k , we can see from (56) that the predicted
reduction ϕ(0) − ϕ(sk) of our new Algorithm 2 is always larger than the one ϕ(0) − ϕ(dk) which
is usually defined for nonlinear optimization in trust region methods. So, in view of (47), we can
expect that the actual reduction fk − f (xk + sk) may also be larger than the usual one fk − f (xk +
dk), which may accelerate convergence. Hence, it is reasonable to believe that sk should generally
be better than dk .

4.2 Quadratic convergence of Algorithm 2

In the following, we will prove the quadratic convergence of Algorithm 2 under the local error
bound condition. We assume that x∗ is a minimizer of f (x). The required assumptions are similar
to Assumption 2.1.

Assumption 4.3

(a) f (x) is convex and continuously differentiable.
(b) ‖g(x)‖ provides a local error bound on some N(x∗, b̃1) with b̃1 < 1, that is, there exists a

positive constant c̃1 > 0 such that

‖g(x)‖ ≥ c̃1 dist(x, S∗) ∀x ∈ N(x∗, b̃1). (66)

(c) The Hessian H(x) is Lipschitz continuous on N(x∗, b̃1), that is, there exists a positive constant
L̃1 such that

‖H(y) − H(x)‖ ≤ L̃1‖y − x‖ ∀x, y ∈ N(x∗, b̃1). (67)

By Assumption 4.1(c), we know

‖g(y) − g(x) − H(x)(y − x)‖ ≤ L̃1‖y − x‖2 ∀x, y ∈ N(x∗, b̃1), (68)

and there exists a constant L̃2 > 0 such that

‖g(y) − g(x)‖ ≤ L̃2‖y − x‖ ∀x, y ∈ N(x∗, b̃1). (69)

Note that λk = μk‖gk‖ with μk ≥ m for all k; taking the same process of deduction as the proof
of Lemma 2.5, we obtain that there exist positive constants c̄2 and c̃2 such that

‖dk‖ ≤ c̄2 dist(xk , S∗) and ‖sk‖ ≤ c̃2 dist(xk , S∗) (70)

hold for all sufficiently large k.
Since inequality (69) implies the boundedness of H(x), combining (66), (68), (70) and

Lemma 4.1, we have

|rk − 1| =
∣∣∣∣Aredk − Predk

Predk

∣∣∣∣
≤

∣∣∣∣∣ f (xk + sk) − fk − gT
k sk − 1

2 sT
k Hksk

( 1
2 )‖gk‖ min{‖sk‖/2, ‖gk‖/‖Hk‖}

∣∣∣∣∣
≤ o(‖sk‖2)

‖x̄k − xk‖ min{‖sk‖, ‖x̄k − xk‖} −→ 0,
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14 J. Fan and Y. Yuan

which implies rk → 1. Hence, there exists a positive constant m̃ > m such that

μk < m̃ (71)

holds for all sufficiently large k. It then follows from (66) and (68)–(71) that

‖x̄k+1 − xk+1‖ ≤ c̃−1
1 ‖g(xk+1)‖

≤ c̃−1
1 ‖gk + Hksk‖ + c̃−1

1 L̃1‖sk‖2

= c̃−1
1 ‖λk(dk − sk)‖ + c̃−1

1 L̃1‖sk‖2

≤ c̃3‖x̄k − xk‖2 (72)

for some c̃3 > 0. Using the same arguments as (22) and (23), we derived

‖sk+1‖ ≤ O(‖sk‖2). (73)

Therefore, {xk} converges quadratically to some solution of (41).
As the solution of (41) is also a minimizer of f (x), we summarize our results in the next theorem.

Theorem 4.4 Suppose Assumption 4.3 holds. Then, the convergence rate of Algorithm 2 is
quadratic.

5. Numerical experiments

We test Algorithm 2 on the unconstrained nonlinear optimization problem given in [8].
The function to be minimized is

f (x) = 1

2

n−1∑
i=1

(xi − xi+1)
2 + 1

12

n−1∑
i=1

αi(xi − xi+1)
4, (74)

where αi ≥ 0 (i = 1, . . . , n − 1) are constants. Obviously, f (x) is convex and the minimizer set
of f (x) is

S = {x ∈ Rn|x1 = x2 = · · · = xn}.
It can also be verified that ‖g(x)‖ provides a local error bound near the minimizer of f (x).
The Hessian ∇2f (x) is given as follows:

∇2f (x) =

⎛
⎜⎜⎜⎜⎜⎝

1 −1
−1 2 −1

. . .
. . .

. . .
−1 2 −1

−1 1

⎞
⎟⎟⎟⎟⎟⎠ +

⎛
⎜⎜⎜⎜⎜⎝

a1 −a1

−a1 a1 + a2 −a2

. . .
. . .

. . .
−an−2 an−2 + an−1 −an−1

−an−1 an−1

⎞
⎟⎟⎟⎟⎟⎠ ,

where ai = αi(xi − xi+1)
2 (i = 1, . . . , n − 1) is symmetric semidefinite, but singular as the sum

of every column is zero.
The aims of the experiments are as follows: to check whether Algorithm 2 converges quadrat-

ically as stated in Section 4 and to see how well the technique of correction works. We set p0 =
0.0001, p1 = 0.25, p2 = 0.75, p3 = 4, p4 = 0.25, μ0 = 10−2 and m = ε = 10−5 for Algorithm 2.
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Optimization Methods & Software 15

Table 1. Results of Algorithm 2 to test quadratic convergence.

k 0 1 2 3 4

‖∇f (xk)‖ 1.8856 0.4921 0.0320 1.1e–05 2.5e–15
‖sk‖ 6.0092 2.8629 0.2109 7.6e–05

Table 1 reports the norms of ∇f (xk) and sk at every iteration when n = 10, αi = 1 (i =
1, . . . , n − 1) and x0 = (1, 2, . . . , n)T. Algorithm 2 only takes four iterations to obtain the
minimizer of f (x); both ‖∇f (xk)‖ and ‖sk‖ decrease very quickly.

We also ran the regularized Newton algorithm without correction (Algorithm RNA), that is, we
do not solve the linear equations (46) and just set the solution of (45) to be the trial step sk . We
first take the same values of αi, n and x0 as given in [8]. The results are reported in Table 2. ‘niter’
represents the number of iterations, ‘‖∇fk‖’ represents the final value of ‖∇fk‖, and x∗ the final
value of xk . The result before the sign / is for Algorithm RNA and after for Algorithm 2. If they
are the same, we just present one. We also generate x0 randomly with ‖x0‖ being 1, 103, 106 and
109, respectively. The results are given in Table 3, where ‘Ng’ represents the number of gradient
calculations and ‘NH’ the number of Hessian calculations. If they are equal, we just present one.

Since the Hessian H is always singular, the Newton method cannot be used to solve nonlinear
equations (41). But by using the regularization technique, both Algorithm RNA and Algorithm 2
work quite well. The sequence generated always converges to the minimizer of f (x) in few

Table 2. Results of Algorithm RNA and Algorithm 2.

αi n (x0)i niter ‖∇fk‖ x∗
i n (x0)i niter ‖∇fk‖ x∗

i

0 10 i 3/2 6.5e − 10/1.8e − 09 5.5 50 i 4/3 9.1e − 09/2.2e − 09 25.5
n − i 3/2 6.5e − 10/1.8e − 09 4.5 n − i 4/3 9.1e − 09/2.2e − 09 24.5
1/i 2 4.6e − 07/6.7e − 15 0.2929 1/i 2 5.0e − 06/3.7e − 10 0.0902/0.0899

100 i 5/4 6.5e − 12/4.4e − 14 50.5 200 i 5/4 2.3e − 07/3.8e − 08 100.5
n − i 5/4 6.5e − 12/4.4e − 14 49.5 n − i 5/4 2.3e − 07/3.8e − 08 99.5
1/i 2 7.0e − 06/2.4e − 09 0.0529/0 1/i 2 8.0e − 06/1.0e − 08 0.0321/0.0294

500 i 6/5 6.3e − 08/2.4e − 09 250.5 1000 i 7/6 8.9e − 10/1.5e − 12 500.5
n − i 6/5 6.3e − 08/2.4e − 09 249.5 n − i 7/6 8.9e − 10/1.6e − 12 499.5
1/i 2 8.4e − 06/4.7e − 08 0.0214/0 1/i 2 8.4e − 06/1.1e − 07 0.0202/0.0080

1 10 i 4 3.4e − 12/2.5e − 15 5.5 50 i 5/4 3.5e − 12/3.8e − 08 25.5
n − i 4 3.4e − 12/2.5e − 15 4.5 n − i 5/4 3.5e − 12/3.8e − 08 24.5
1/i 3 7.9e − 11/7.3e − 12 0.2929 1/i 3 4.6e − 09/7.6e − 12 0.0900

100 i 5 7.2e − 08/2.6e − 13 50.5 200 i 6/5 9.7e − 11/6.0e − 08 100.5
n − i 5 7.2e − 08/2.6e − 13 49.5 n − i 6/5 9.7e − 11/6.0e − 08 99.5
1/i 3 1.9e − 08/7.8e − 12 0.0519 1/i 3 4.7e − 08/1.5e − 11 0.0294

500 i 7/6 5.2e − 12/2.9e − 10 250.5 1000 i 7/6 2.7e − 07/6.3e − 06 500.5
n − i 7/6 5.2e − 12/2.9e − 10 249.5 n − i 7/6 2.7e − 07/6.3e − 06 499.5
1/i 3 7.6e − 08/1.9e − 10 0.0137 1/i 3 8.7e − 08/7.5e − 10 0.0078/0.0075

i 10 i 5 1.1e − 06/7.3e − 07 5.5 50 i 7 4.6e − 06/1.3e − 07 25.5
n − i 5 1.1e − 06/7.3e − 07 4.5 n − i 7 4.6e − 06/1.3e − 07 24.5
1/i 3 8.0e − 11/7.3e − 12 0.2929 1/i 3 4.5e − 09/7.6e − 12 0.0900

100 i 9/8 1.2e − 10/7.7e − 07 50.5 200 i 10 6.7e − 08/1.2e − 11 100.5
n − i 9/8 1.2e − 10/7.7e − 07 49.5 n − i 10 6.7e − 08/1.2e − 11 99.5
1/i 3 1.9e − 08/8.0e − 12 0.0519 1/i 3 4.6e − 08/3.9e − 11 0.0294

500 i 12/11 7.5e − 09/2.1e − 06 250.5 1000 i 13 1.1e − 06/9.3e − 10 500.5
n − i 12/11 7.5e − 09/2.1e − 06 249.5 n − i 13 1.1e − 06/9.3e − 10 499.5
1/i 3 7.6e − 08/2.0e − 10 0.0137 1/i 3 8.6e − 08/7.5e − 10 0.0078/0.0075
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16 J. Fan and Y. Yuan

Table 3. Comparisons between RNA and Algorithm 2 with different x0.

RNA Algorithm 2

n αi ‖x0‖ Ng/NH ‖∇fk‖ x∗
i Ng/NH ‖∇fk‖ x∗

i

10 0 1 3 2.57e − 06 0.050754 3 4.59e − 13 0.050746
103 7 1.05e − 07 50.746 6 1.90e − 11 50.746
106 13 0 50,746 11 1.30e − 09 50,746
109 33 0 50,746,000 24 0 50,746,000

1 1 4 1.23e − 08 0.050746 4 6.20e − 09 0.050746
103 21 1.96e − 12 50.746 20 4.91e − 08 50.746
106 43 0 50,746 42 1.03e − 10 50,746
109 78 0 50,746,000 68 3.60e − 06 50,746,000

i 1 5 4.08e − 09 0.050746 5 2.96e − 09 0.050746
103 23 2.01e − 14 50.746 22 1.30e − 09 50.746
106 44 3.14e − 06 50,746 44 0 50,746
109 79 0 50,746,000 70 1.05e − 08 50,746,000

100 0 1 3 8.81e − 06 −0.0068268 3 2.30e − 10 −0.0068912
103 7 9.36e − 06 −6.8915 6 1.08e − 06 −6.8913
106 13 1.61e − 10 −6891.2 12 0 −6891.2
109 36 6.84e − 09 −6,891,200 26 0 −6,891,200

1 1 4 3.12e − 10 −0.0068912 4 2.39e − 14 −0.0068912
103 19 3.54e − 06 −6.8912 19 1.98e − 11 −6.8912
106 41 4.22e − 07 −6891.2 41 0 −6891.2
109 122/104 3.86e − 06 −6,891,200 118/98 7.92e − 06 −6,891,200

i 1 6 7.52e − 08 −0.0068913 6 7.68e − 08 −0.0068912
103 24 1.27e − 07 −6.8912 24 1.93e − 13 −6.8912
106 46 1.71e − 08 −6891.2 45 1.27e − 06 −6891.2
109 126/109 2.63e − 09 −6,891,200 140/115 0 −6,891,200

1000 0 1 4 1.37e − 10 0.0015583 3 1.28e − 08 0.0015437
103 8 1.63e − 10 1.5583 7 1.11e − 13 1.5583
106 13 4.01e − 07 1558.3 12 2.11e − 11 1558.3
109 39 3.59e − 08 1.558300 28 0 1,558,300

1 1 4 2.32e − 10 0.0015582 3 2.89e − 07 0.0015855
103 17 2.25e − 11 1.5583 16 3.26e − 07 1.5583
106 50/47 5.13e − 09 1558.3 40 9.03e − 06 1558.3
109 802/543 6.46e − 08 1.558300 778/516 3.29e − 10 1,558,300

i 1 7 3.07e − 10 0.0015583 7 2.92e − 10 0.0015583
103 25 7.32e − 13 1.5583 24 2.80e − 08 1.5583
106 308/211 3.88e − 07 1558.3 229/162 2.00e − 07 1558.3
109 791/526 4.53e − 09 1.558300 777/506 5.79e − 06 1,558,300

iterations, whatever the initial point is chosen, though different initial points may lead to different
minimizers. However, for all the same n, x0 and different α, Algorithm 2 converges to the same
minimizer of f (x). That happens to Algorithm RNA too. The reason may be that the first part of
the Hessian ∇2f (x) is a constant, while the second part of ∇2f (x) at all minimizers is zero, which
is independent of α.

Moreover, we can see that for the same α, n and x0, the number of iterations of Algorithm 2
is always less than or equal to that of Algorithm RNA. Even if they are equal, the final norm of
the gradient obtained in Algorithm 2 is always less than that in Algorithm RNA. Though it seems
that the advantage of Algorithm 2 over Algorithm RNA is not significant when the initial point is
very close to the minimizer of f (x), Table 3 shows that the correction term does help to improve
Algorithm 2 when the initial point is far away from the minimizer. These facts indicate that the
introduction of correction is really useful and could accelerate the convergence of the regularized
Newton method.
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6. Concluding remarks

We propose a regularized Newton method with correction for monotone nonlinear equations.
The technique of regularization is not new; it is used to overcome the possible singularity of the
Jacobian. However, the idea of correction is novel; it has the advantages of compensating for the
shorter trial step because of the regularization and needs just little additional calculations. Under
the local error bound condition which is weaker than nonsingularity, we show that the method
achieves the same quadratic convergence as the Newton method.

An unconstrained convex nonlinear optimization problem with singular Hessian at the solutions
can be transformed to a special case of monotone nonlinear equations. Therefore, we applied the
regularized Newton method with correction to solve these problems and developed a globally
convergent algorithm using a trust region technique. The numerical results in Section 5 sug-
gest that Algorithm 2 appears more efficient than Algorithm RNA, which does not perform the
correction process.
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