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Abstract. In this paper, we review various subspace techniques that have been used in constructing
numerical methods for solving nonlinear optimization problems. As large scale optimization problems
are attracting more and more attention in recent years, subspace methods are getting more and more
important since they do not require solving large scale subproblems in each iteration. The essential
parts of a subspace method are how to construct subproblems defined in lower dimensional subspaces
and how to choose the subspaces in which the subproblems are defined. Various subspace methods for
unconstrained optimization, constrained optimization, nonlinear equations and nonlinear least squares,
and matrix optimization problems are given respectively, and different proposals are made on how to
choose the subspaces.
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1. Introduction

Nonlinear optimization problems have the following form:

min
x∈<n

f(x) (1.1)

subject to ci(x) = 0, i = 1, ...,me , (1.2)
ci(x) ≥ 0, i = me + 1, ...,m , (1.3)

where m and me are integers satisfying m ≥ me ≥ 0, f(x) and ci(x)(i = 1, ...,m) are
real functions defined in <n and at least one of functions f(x) and ci(x)(i = 1, ...,m)
is nonlinear. If there is no constraint, namely m = me = 0, problem (1.1) is called an
unconstrained optimization problem, otherwise problem (1.1)-(1.3) is called a constrained
optimization problem.

Numerical methods for nonlinear optimization are iterative. At the k−th iteration, if
the current iterate point xk is not a solution, we try to compute a “better” point xk+1 and
continue the process so that it will stop at a solution or generate a sequence which, hopefully,
converges to a solution.

There are mainly two classes of numerical methods for nonlinear optimization. One class
is line search methods in which the next iterate point is obtained by searching along a search
direction. Namely, we let

xk+1 = xk + αkdk (1.4)
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where dk ∈ <n is a search direction and αk > 0 is a step-length. The other class of methods
are trust region algorithms, where a trial step sk in a trust region is computed and then the
algorithm decides whether the trail step should be accepted. The trust region is normally a
small neighbourhood centered at the current iterate point xk. Generally, the search direc-
tion or the trial step are obtained by solving a subproblem which is an approximation to the
original nonlinear optimization problem. Convergence results of numerical methods for non-
linear optimization are normally based on the reduction of a penalty function. For example,
the step-length αk in a line search algorithm is chosen in such a way that sufficient reduction
in the penalty function is achieved. Trial steps in a trust region algorithm will be accepted if
the penalty function is reduced. A penalty function can be viewed as a combined measure
for the two tasks of nonlinear optimization: reducing the objective function and satisfying
the constraints. Another approach for ensuring global convergence of numerical methods
for nonlinear optimization is the filter technique, which measures the constraint violation
and objective function value as a two dimensional array. Detailed discussions on numerical
methods for nonlinear optimization can be found in [32].

Due to their broad applications in many fields, large scale optimization problems are at-
tracting more and more attention in recent years. However, even though the subproblems
for computing search directions and trial steps are simpler than the original nonlinear opti-
mization problems, they are still linear or quadratic problems large-scale in nature, as they
are also defined in the same dimensional space as the original nonlinear problem. For ex-
ample, in the k−th iteration, the sequential quadratic programming method for nonlinear
optimization needs to solve the following quadratic programming subproblem:

min
x∈<n

Qk(d) (1.5)

s. t. ci(xk) + dT∇ci(xk) = 0, i = 1, ...,me , (1.6)

ci(xk) + dT∇ci(xk) ≥ 0, i = me + 1, ...,m , (1.7)

where Qk(d) is a quadratic approximation to the Lagrangian function. Though the above
quadratic programming subproblem is simpler than the original nonlinear optimization prob-
lem, it is still large scale when the original nonlinear problem is large scale.

Therefore, it is important to study subspace techniques [9, 17, 41] due to the fact that
subspace methods do not need to solve large scale subproblems in each iteration. In general,
a subspace method searches in a lower dimensional subspace to obtain the search direction
or the trust region step. Thus, in each iteration, we only need to solve a subproblem that is
defined in a lower dimensional subspace.

In addition to the practical computation considerations, there are other reasons that mo-
tivated us to study numerical methods based on subspace techniques. First, let us consider
a standard full space line search method. The search direction dk is normally obtained by
solving an approximation model based on the full space. For example, the search direction
of the Newton’s method is obtained by minimizing the second order Taylor expansion of a
general nonlinear function in the whole space. Therefore, one can view that the computa-
tion of dk is very aggressive as it is obtained through an optimistic approach by trusting the
corresponding approximate model in the whole space. Once dk is obtained, the line search
procedure of computing the step-length αk tries to minimize the one dimensional function
f(xk+αdk). Thus, the computation of αk is very conservative as it is obtained by searching
in a one dimensional subspace. Thus, a standard full space line search algorithm swings
between full space approximations and one-dimensional subspace searches.
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Another motivation is from our long time studies on nonlinear conjugate gradient meth-
ods [10]. The search direction of a nonlinear conjugate gradient method for unconstrained
optimization problem (1.1) has the form

dk = −∇f(xk) + βkdk−1 , (1.8)

where βk is defined by certain conjugate conditions. Typical choices of βk are as follows:

βHSk =
gTk+1(gk+1 − gk)

dTk (gk+1 − gk)
, βFRk =

||gk+1||22
||gk||22

, (1.9)

βPRPk =
gTk+1(gk+1 − gk)

||gk||22
, βDYk =

||gk+1||22
dTk (gk+1 − gk)

. (1.10)

We have two observations on the nonlinear conjugate gradient methods. Firstly, no matter
which βk is used, the new point xk+1 = xk +αkdk is always in the 2-dimensional subspace
xk + span{−gk, dk−1}. Secondly, the conjugacy property is a good property only when it
is associated with exact line searches. Therefore, instead of studying which formulae for
βk would lead to a good nonlinear conjugate gradient method, we should ask ourselves a
different question: which point x in the two-dimensional space xk + span{−gk, dk−1} is the
best point?

The third motivation for us to study subspace algorithms is the famous limited mem-
ory quasi-Newton method. Quasi-Newton methods for nonlinear optimization use quadratic
models in which the Hessian is a quasi-Newton matrix updated from iteration to iteration
and satisfies the following quasi-Newton equation:

Bksk−1 = yk−1 , (1.11)

where sk−1 = xk − xk−1 and yk−1 = ∇f(xk)−∇f(xk−1). An example of quasi-Newton
update is the famous Broyden-Fletcher-Goldfarb-Shanno (BFGS) update:

Bk = UBFGS(Bk−1, sk−1, yk−1)

= Bk−1 −
Bk−1sk−1s

T
k−1Bk−1

sTk−1Bk−1sk−1
+
yk−1y

T
k−1

sTk−1yk−1
. (1.12)

For extremely large scale optimization problems, such as those derived from numerical
weather prediction and data assimilation, we can not afford to store a full quasi-Newton
matrix. To overcome such difficulties, Liu and Nocedal[21] proposed the limited memory
BFGS method, which generates the quasi-Newton matrix by using the vectors s and y in the
previous m iterations. Namely, B(0)

k = σkI and

B
(i)
k = UBFGS(B

(i−1)
k , sk−m−1+i, yk−m−1+i) ,

for i = 1, ...,m. Eventually, the quasi-Newton matrix in the limited memory BFGS method
has the following representation:

Bk = B
(m)
k = σkI + [Sk Yk]Tk

[
STk
Y Tk

]
,

where Tk is a 2m× 2m symmetric matrix and

[Sk Yk] = [sk−1, sk−2, ...sk−m, yk−1, yk−2, ..., yk−m] ∈ <n×2m .
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In a line search method we have sk = αkdk = −αkB−1
k gk for some αk > 0, while in a trust

region algorithm sk = −(Bk + λkI)−1gk for some λk ≥ 0. Thus, in either case, we have

xk+1 − xk ∈ span{gk, sk−1, ..., sk−m, yk−1, ..., yk−m} . (1.13)

This shows that limited memory quasi-Newton methods always produce a step in a lower
dimensional subspace.

The block coordinate descent (BCD) method is a technique that is widely used in com-
putational mathematics. From subspace point of view, the BCD method is a very special
subspace method whose subspaces are spanned by coordinate directions. The method parti-
tions the variables into a few blocks and then minimizes the objective function with respect
to each block by fixing all other blocks at each iteration. It has been studied in convex pro-
gramming [25], nonlinear programming [2], semidefinite programming [35], compressive
sensing [11, 24], etc. A popular extension of the BCD method is the alternating direction
method of multipliers (ADMM) by minimizing the augmented Lagrangian function blocks
by blocks and then updating the Lagrangian multipliers. It dates back to optimization prob-
lems arising from partial differential equations (PDEs) [14–16], and has been applied to
semidefinite programming [37], compressive sensing [40], distributed computation [5] and
many other areas.

Parallel computation methods can also be viewed as subspace techniques. For exam-
ple, the domain decomposition technique of Tai and Xu[39] decomposes the n dimensional
space into p lower dimensional subspaces using the domain decomposition technique, and p
processors search in parallel in the corresponding subspaces.

A general subspace approach requires

xk+1 − xk ∈ Sk , (1.14)

where Sk is a subspace in <n with the good feature that the dimension τk of Sk being much
less than n. An advantage of subspace approaches is that the subproblems for computing
searching directions or trust region trial steps are defined in lower dimensional subspaces,
which enables us to solve the corresponding subproblems quickly. Moreover, for many
cases, we could show that subspace approaches attain good theoretical properties as full
space models.

In a subspace method, the dimension of the subspace τk is either fixed or updated from
iteration to iteration. Sk+1 is normally updated from Sk. Often Sk+1 is obtained by adding
some new directions d(k)

i (i = 1, ...,m):

Sk+1 = span{Sk, d(k)
1 , ..., d(k)

m } .

The directions d(k)
i to be added can be randomly generated or constructed based on the

iteration information at the current iterate in order to improve the subspace. Sometimes,
it is reasonable to remove some directions from the current subspace to avoid redundancy
or to prevent the dimension of the subspace from increasing too rapidly. Moreover, it is
reasonable for us to delete directions along which significant function reductions are not
possible to obtain.
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2. Subspace algorithms for unconstrained optimization

Consider a trust region algorithm for unconstrained optimization

min
x∈<n

f(x) . (2.1)

The trust region subproblem (TRS) is normally

min
d∈<n

Qk(d) = gTk d+
1

2
dTBkd (2.2)

s. t. ‖d‖2 ≤ ∆k , (2.3)

where gk = ∇f(xk), Bk is an approximate to ∇2f(xk) and ∆k > 0 is the trust region
bound.

When the approximate Hessian Bk is generated by quasi-Newton updates, the trust re-
gion subproblem has subspace properties. First, we have the following result

Lemma 2.1 ([34]). Suppose B1 = σI, σ > 0. The matrix updating formula is any one
chosen from amongst SR1, PSB and Broyden family, andBk is the k-th updated matrix. sk is
the solution of TRS, xk+1 = xk + sk, gk = ∇f(xk). Let Gk = span{g1, g2, · · · , gk}. Then
sk ∈ Gk and for any z ∈ Gk, w ∈ G⊥k , we have

Bkz ∈ Gk, Bku = σu . (2.4)

The above lemma shows that quasi-Newton matrices have very nice subspace properties.
Similar results for line search QN methods are given by Gill and Leonard[13].

From the above lemma, it is not difficult to prove the following theorem.

Theorem 2.2 ([34]). If Sk = span{g(x1), ..., g(xk)}. The subspace trust region algorithm
will generate the same sequences as the full space trust region quasi-Newton algorithm for
unconstrained optimization if the B1 = σI and Bk is updated by SR1, PSB and Broyden’s
family.

Based on the above results, a subspace trust region quasi-Newton method for large scale
unconstrained optimization is presented by Wang and Yuan[34].

Now, we discuss a special trust region subproblem which makes good use of subspace
properties. If we replace the ||.||2 by a general norm ||.||W in (2.3), we obtain a general TRS
subproblem

min
s∈<n

gT s+
1

2
sTBs (2.5)

s. t. ‖s‖W ≤ ∆ , (2.6)

where ‖.‖W is any norm in <n. A natural question is which norm ||.||W we should use.
Intuitively, we should choose the norm ‖.‖W properly so that the trust region subproblem
can easily be solved by using the corresponding subspace properties of the objective function
gT s+ 1

2s
TBs. Assume thatB is a limited memory quasi-Newton matrix which is expressed

as B = σI + PDPT , where P ∈ <n×l satisfies PTP = I . If we define a cylinder norm:

‖s‖P = max{‖PT s‖∞, ‖PT⊥ s‖2} , (2.7)
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where PT⊥ is the projection onto the space orthogonal to range(P ). Due to the definition of
||.||P , the solution s of the P norm trust region subproblem

min
s∈<n

gT s+
1

2
sTBs (2.8)

s. t. ‖s‖P ≤ ∆ , (2.9)

can be expressed by Ps1+P⊥s2, where s1 is the solution of the bound-constrained quadratic
programming problem

min
s∈<l

sT (PT g) +
1

2
sT (σI +D)s (2.10)

s. t. ‖s‖∞ ≤ ∆ , (2.11)

and s2 is solution of the 2-norm constrained quadratic programming problem

min
s∈<n−l

sT (PT⊥ g) +
1

2
σsT s (2.12)

s. t. ‖s‖2 ≤ ∆ . (2.13)

It is easy to see that both s1 and s2 have closed form solutions:

(s1)i =

{
−(PT g)i
σ+Dii

if |(PT g)i| < (σ +Dii)∆ ,
∆sign(−(PT g)i) otherwise ,

(2.14)

i = 1, ..., l, and

s2 = −min

(
1

σ
,

∆

||PT⊥ g||

)
PT⊥ g . (2.15)

Numerical results based on a trust region algorithm that uses the P-norm trust region sub-
problem are given by [6].

In a general line search type subspace algorithm for unconstrained optimization, we ob-
tain the search direction by solving a subproblem defined in the subspace:

min
d∈Sk

mk(d) , (2.16)

wheremk(d) is an approximation to f(xk+d) for d in the subspace Sk It would be desirable
that the approximation model mk(d) has the following properties: it is easy to minimize in
the subspace Sk, it is a good approximation to f and the solution of the subspace subproblem
will yield a sufficient reduction in the original objective function f .

It is natural to use quadratic approximations to the objective function. This leads to
quadratic models in subspaces. Let dim(Sk) = τk and

Sk = span{p1, p2, ..., pτk} .

Define Pk = [p1, p2, ..., pτk ]. Thus, the subspace condition d ∈ Sk is satisfied if we let d =
Pkd̄ for d̄ ∈ <τk . The quadratic function Qk(d) defined in the subspace can be expressed as
a function Q̄k in a lower dimension space <τk : Qk(d) = Q̄k(d̄).
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Now, we discuss possible choices for the subspace Sk. First, we consider the special
subspace

Sk = span{−gk, sk−1, ..., sk−m} . (2.17)

In this case, any vector d in the subspace Sk has the following form:

d = αgk +
m∑
i=1

βisk−i = (−gk, sk−1, · · · , sk−m)d̄ (2.18)

where d̄ = (α, β1, · · · , βm)T ∈ <m+1. By using the secant conditions, we estimate all the
second order terms of the Taylor expansion of f(xk + d) in the subspace Sk

sTk−i∇2f(xk)sk−j ≈ sTk−iyk−j , sTk−i∇2f(xk)gk ≈ yTk−igk , (2.19)

except one term gTk∇2f(xk)gk. Therefore, it is reasonable to use the following quadratic
model in the subspace Sk:

Q̄k(d̄) = (−‖gk‖2, gTk sk−1, · · · , gTk sk−m)d̄+
1

2
d̄T B̄kd̄ , (2.20)

where

B̄k =


ρk −gTk yk−1 . . . −gTk yk−m

−gTk yk−1 yTk−1sk−1 . . . yTk−msk−1

...
...

. . .
...

−gTk yy−m yTk−msk−1 . . . yTk−msk−m

 (2.21)

with ρk ≈ gTk∇2f(xk)gk. Hence, once we have a good estimate to the term gTk∇2f(xk)gk,
we obtain a good quadratic model in the subspace Sk.

There are different ways to choose ρk. Similarly to Stoer and Yuan[31], we let

ρk = 2
(sTk−1gk)2

sTk−1yk−1
, (2.22)

due to the fact that the mean value of cos2(θ) is 1
2 , which gives

gTk∇2f(xk)gk =
1

cos2 θk

(sTk−1∇2f(xk)gk)2

sTk−1∇2f(xk)sk−1
≈ 2

(sTk−1gk)2

sTk−1yk−1
, (2.23)

where θk is the angle between (∇2f(xk))
1
2 gk and (∇2f(xk))

1
2 sk−1. Another way to esti-

mate gTk (∇2f(xk))gk is to replace ∇2f(xk) by a quasi-Newton matrix. We can also obtain
ρk by computing an extra function value f(xk + tgk) and setting

ρk =
2(f(xk + tgk)− f(xk)− t‖gk‖22)

t2
. (2.24)

By letting the second order curvature along gk to be the average of those along sk−i (i =
1, ...,m), we get

ρk =
‖gk‖22
m

m∑
i=1

sTk−iyk−i

sTk−isk−i
. (2.25)
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Suppose gTk∇2f(xk)gk = ρ, we have d(ρ) =

(−gk, sk−1, . . . , sk−m)


ρ −gTk yk−1 . . . −gTk yk−m

−gTk yk−1 yTk−1sk−1 . . . yTk−msk−1

...
...

. . .
...

−gTk yy−m yTk−msk−1 . . . yTk−msk−m


−1

−‖gk‖2
gTk sk−1

. . .
gTk sk−m


Using

(B + ρeeT )−1 = B−1 − ρ

1 + ρeTB−1e
B−1eeTB ,

we could show that the solution set is on a line:

d(ρ) = d(+∞) + α(ρ)d̂ .

Thus, instead of estimating an ideal ρ, we can carry out a line search for ρ to achieve sufficient
reduction in the objective function.

Similar to (2.17), a slightly different subspace is

Sk = span{−gk, yk−1, ..., yk−m} . (2.26)

In this case, any vector in Sk is represented as

d = αgk +
m∑
i=1

βiyk−i = Wkd̄ (2.27)

where Wk = [−gk, yk−1, ..., yk−m] ∈ <n×(m+1). The Newton’s step in the subspace Sk is
Wkd̄k with

d̄k = −
[
WT
k ∇2f(xk)Wk

]−1
WT
k ∇f(xk) . (2.28)

Thus, the remaining issue we need to consider is to obtain a good estimate of d̄k, us-
ing the fact that all the elements of

[
WT
k (∇2f(xk))−1Wk

]
is known except one entry

gk∇2f(xk)−1gk.
Due to the property of (1.13), it is reasonable to use

Sk = span{−gk, sk−1, ..., sk−m, yk−1, ..., yk−m} . (2.29)

This subspace is used by [33] where a subspace trust region limited memory quasi-Newton
method is presented.

Now, we consider subspaces spanned by coordinate directions. Such subspaces have
sparsity structures. First, let us sort |(gk)i| by the descending order

|(gk)i1 | ≥ |(gk)i2 | ≥ |(gk)i3 | ≥ · · · . (2.30)

We call the subspace
Sk = span{ei1 , ei2 , ..., eiτ } (2.31)

the τ -steepest coordinates subspace. One good property of the steepest coordinates subspace
is that the steepest descent direction in the subspace is a sufficiently descent direction, namely

min
d∈Sk

dT gk
||d||2||gk||2

≤ − τ
n
. (2.32)
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If (gk)2
iτ+1
≤ ε

∑τ
j=1(gk)2

ij
, we obtain the following estimate:

min
d∈Sk

dT gk
||d||2||gk||2

≤ − 1√
1 + ε(n− τ)

. (2.33)

By sequentially adding steepest coordinate directions into the subspace, we obtain a
sequential steepest coordinates search (SSCS) technique. As an example, let us consider
applying the sequential steepest coordinates search to the minimization of a convex quadratic
function

Q(x) = gTx+
1

2
xTBx .

Algorithm 2.3. (Sequential steepest coordinates search for quadratic functions)

Step 1 Given x1. k := 1.

Step 2 Compute gk = ∇Q(xk), if ||gk|| = 0 then stop;
Choose ik = arg mini{|(gk)i|}.

Step 3 Let Sk = span{ei1 , ..., eik},
Find xk+1 = arg minx∈x1+Sk Q(x);
Go to Step 2.

The sequential steepest coordinates search could be used to obtain an approximate sparse
solution of linear least square problems. For example, consider the following sparsity con-
straint linear least squares problem:

min
x∈<n

||Ax− b||22 (2.34)

s. t. ||x||0 ≤ r , (2.35)

where A ∈ <n×m, b ∈ <m, r is a positive integer less than n, and ||x||0 is the number of
non-zero elements of vector x. If Algorithm 2.3 is applied to minQ(x) = 1

2 ||Ax − b||
2
2, it

will give a greedy algorithm for (2.34)-(2.35).

Algorithm 2.4. (SSCS for linear least squares)

Step 1 x1 = 0, g = AT b, i1 = arg max{|(g)i|}, p1 = ei1 , given ε > 0.

Step 2 αk = arg minαQ(xk + αpk),
xk+1 = xk + αkpk,

Step 3 If k ≥ r then stop; g := g − αATApk;
If ||g||2 ≤ ε then stop;

Step 4 let ik+1 = arg maxi{|(g)i|};
let pk+1 ∈ span{p1, ..., pk, eik+1

} conjugate to p1, ..., pk.

Step 5 k := k + 1, go to Step 2.

If ε = 0, the solution obtained by the above algorithm is a local solution of problem
(2.34)-(2.35). Let S(r,A, b) be the set of all global solutions of (2.34)-(2.35), we are inter-
ested in studying what conditions would imply xr+1 ∈ S(r,A, b). If A = I , it is easily to
see that xr+1 ∈ S(r, I, b). For general A, if r = 1 or 2 we have the following results.
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Lemma 2.5. Let A = (a1, ..., an). If ||ai|| = 1 for all i, the iterate point xk+1 obtained by
the SSCS algorithm has the following properties:

(1) x2 ∈ S(1, A, b);

(2) There exists a y ∈ S(2, A, b) such that x3 and y share one non-zero element index.

The subproblems in the SSCS algorithm have the form

min
x∈<n

||Ax− b||22 (2.36)

s. t. xi = 0 , i ∈ Ik (2.37)

for some active set Ik. Thus, general subspaces spanned by coordinate directions for sparsity
constraint problems should have the form Sk = {d | di = 0, i ∈ Ik}. Such subspaces
are used by many methods for compressive sensing. One particular optimization model in
compressive sensing is the l0 minimization problem

min
x∈<n

||x||0 (2.38)

s. t. Ax = b . (2.39)

For more detailed discussions, please refer to [38] and the references given there.
Another possible subspace is the steepest descent τ−subspace, which is a τ dimensional

subspace which forces τ elements of the gradient vector to be zero. Instead of requiring
the whole vector g(x) = 0, which is the optimality condition for min f(x), we require τ
elements of g(x) to be zero, namely

ḡ(x) = ((g(x))i1 , (g(x))i2 , ..., (g(x))iτ )T = 0 ,

at the current iteration. This should be achievable by searching in a subspace spanned by τ
coordinate directions, since there are only τ equations. Let the Jacobian of ḡ(x) to be Ā(x),
a Newton’s step d satisfies

(Ā(xk))T d+ ḡ(xk) = 0 . (2.40)

Because the above system has τ equations with n unknowns, it is possible to consider d in
any subspace spanned by τ coordinate directions. There are Cmn such choices, and we call
the one which makes the length of the solution of (2.40) in the subspace the shortest as the
steepest descent τ -subspace. Intuitively, this subspace has the nice property of forcing τ
elements of the gradient vector to zero by moving a τ−coordinate step as small as possible.
However, such a definition of the subspace seems to be too theoretical and may not be easy
to be implemented in practice, as it needs to solve linear least squares problem with linear
constraints and a sparsity constraint:

min
d∈<n

||d||22

s. t. (Ā(xk))T d+ ḡ(xk) = 0, ||d||0 = τ .

3. Subspace techniques for constrained optimization

Now we consider subspace techniques for constrained optimization. In order to simplify the
presentation, instead of considering the general problem (1.1)-(1.3), we focus on the equality



A review on subspace methods for nonlinear optimization 817

constrained problem:

min
x∈<n

f(x) (3.1)

s. t. c(x) = 0 , (3.2)

where c(x) = (c1(x), · · · , cm(x))T .
The sequential quadratic programming method (SQP) is an important numerical method

for solving constrained optimization. The main idea of the SQP method is to solve the
nonlinearly constrained problem (3.1)-(3.2) by successively minimizing quadratic approxi-
mations to the Lagrangian function subject to the linearized constraints. The search direction
dk of a line search type SQP method is obtained by solving the following quadratic program-
ming subproblem

min
d∈<n

Qk(d) = gTk d+
1

2
dTBkd (3.3)

s. t. c(xk) +ATk d = 0 , (3.4)

where Ak = ∇c(xk) and Bk is an approximation to the Hessian of the Lagrangian function.
The SQP step dk can be decomposed into two parts dk = hk + vk where vk ∈ range(Ak)
and hk ∈ null(ATk ). Thus, vk is a solution of the linearized constrained constraints (3.4) in
the range space of Ak, while hk is the minimizer of the quadratic function Qk(vk +d) in the
null space of ATk .

One good property of the SQP method is that it converges superlinearly, namely when
xk is close to a KKT point x∗ we have the following relation

xk + dk − x∗ = o(‖xk − x∗‖) . (3.5)

But, the superlinearly convergent step dk may lead to a point that seems “bad” as it may
increase both the objective function and the constraint violations. The famous Marotos effect
shows that it is possible for the SQP step dk to have both f(xk + dk) > f(xk) and ‖c(xk +
dk)‖ > ‖c(xk)‖, even though (3.5) holds. A remedy for overcoming the Marotos effect is
the second order correction step method[12, 26], where the step is obtained by resolving the
quadratic programming subproblem with the constraints (3.4) are replaced by

c(xk + dk) +ATk (d− dk) = 0 (3.6)

because the left hand side of (3.6) is a better approximation to c(xk + d) near the point
d = dk. Since the change of the constraints is a second order term, the new step can be
viewed as the SQP step dk adding a second order correction step d̂k. For detailed discussions
on the SQP method and the second order correction step, please see [32].

Now, let us examine the second order correction step from subspace point of views. The
second order correction step d̂k is a solution of

min
d∈<n

Qk(dk + d) (3.7)

s. t. c(xk + dk) +ATk d = 0 . (3.8)

Assume that the QR factorization ofAk is [Yk, Zk]

[
Rk
0

]
andRk is nonsingular. Thus, the

second order correction step is represented as d̂k = v̂k+ĥk, where v̂k = −YkR−Tk c(xk+dk)
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and ĥk is the minimizer of

min
h∈null(ATk )

Q(dk + v̂k + h) . (3.9)

Since dk is the SQP step, it follows that gk + Bkdk ∈ range(Ak), which implies that the
minimization problem (3.9) is equivalent to

min
h∈null(ATk )

1

2
(v̂k + h)TBk(v̂k + h) . (3.10)

If Y Tk BkZk = 0, we have that ĥk = 0, which shows that the second order correction step
d̂k ∈ range(Ak) is also a range space step. In this case, the second order correction uses two
range space steps and one null space step. This is an undesirable property because a range
space step is a fast convergent step as it is a Newton’s step while a null space step is normally
a slower convergent step due to the fact that it is normally a quasi-Newton step becauseBk is
generally a quasi-Newton approximation to the Hessian of the Lagrangian function. Hence,
examining the SQP method with subspace properties helps us to understand the insights of
the method. Intuitively, it would be more reasonable to have two steps in the slower space
with one step in the fast space. Thus, it might be better to investigate a modified SQP method
with a correction step d̂k ∈ null(ATk ).

We can also consider subspaces other than the null space and the range space. In general,
a subspace SQP method obtains the search direction dk by solving a QP in a subspace:

min
d∈<n

Qk(d) (3.11)

s. t. ck +ATk d = 0, d ∈ Sk , (3.12)

where Sk is a subspace. Lee[20] considered the following choice:

Sk = span{−gk, d1, ..., dk−1,−∇cki} ,

where |cki | = ‖ck‖∞.
In some trust region algorithms for constrained optimization, the subproblem that needs

to be solved in each iteration is the Celis-Dennis-Tapia subproblem[7]

min
d∈<n

Qk(d) = gTk d+
1

2
dTBkd (3.13)

s. t. ||ck +ATk d||2 ≤ ξk, ||d||2 ≤ ∆k . (3.14)

Recently, It is shown that the CDT subproblem has certain subspace properties[18]:

Lemma 3.1 ([18]). Let Sk = span{Zk}, ZTk Zk = I , span{Ak, gk} ⊂ Sk and Bku =
σu, ∀u ∈ S⊥k . Then the CDT subproblem is equivalent to

min
d̄∈<r

Q̄k(d̄) = ḡTk d̄+
1

2
d̄T B̄kd̄ (3.15)

s. t. ||ck + ĀTk d̄||2 ≤ ξk, ||d̄||2 ≤ ∆k , (3.16)

where ḡk = ZTk gk, B̄k = ZTk BkZk and Āk = ZTk Ak.
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Based on the above result, a subspace version of the Powell-Yuan trust algorithm[28]
was given in [18].

Subspace techniques can also be used with other methods for constrained optimization.
For example, interior methods for nonlinearly constrained optimization basically use a New-
ton’s step to the KKT system based on the log-barrier function. If we solve the derived linear
system in a lower dimensional subspace, it will give us a subspace version of an interior point
method.

There are many subspace techniques for bound-constrained problems, where the con-
straints are

l ≤ x ≤ u , (3.17)

where l and u are two given vectors in <n. For example, A subspace adaptation of the
Coleman-Li trust region and interior method[8] is proposed for solving large-scale bound-
constrained minimization problems[3], and another subspace version of the Coleman-Li trust
region algorithm was presented in [41]. Ni and Yuan[27] proposes a subspace limited mem-
ory quasi-Newton method for solving large-scale optimization with bound constraints (3.17),
in which the limited memory quasi-Newton method is used to update the variables with in-
dices outside of the active set, while the projected gradient method is used to update the
active variables.

4. Subspace techniques for nonlinear equations and nonlinear least squares

In this subsection, we consider systems of nonlinear equations

Fi(x) = 0, i = 1, ...,m; x ∈ <n , (4.1)

and nonlinear least squares:

min
x∈<n

m∑
i=1

(Fi(x))2 . (4.2)

Because nonlinear least squares problem (4.2) is a special unconstrained optimization
problem, all the subspace techniques discussed in Section 2 can be applied. Due to the spe-
cial structures of nonlinear equations and nonlinear least squares, there are special subspace
approaches. For example, several implementations of Newton-like iteration schemes based
on Krylov subspace projection methods for solving nonlinear equations are considered in
[4]. The Gauss-Seidel iteration for linear equations can be extended for nonlinear equations.
In the following, we will discuss some possible subspace approaches including incomplete
sum, partition of variables, and steepest descent τ−subspace.

First, we explain the technique of incomplete sum for nonlinear least squares. At iteration
k, we minimize the sum of squares of some selected terms instead of all terms. Namely,
define an index set Jk which is a subset of {1, ...,m}, and consider

min
x∈<n

∑
i∈Jk

(Fi(x))2 . (4.3)

The incomplete sum approach works quite well for certain class of problems, for exam-
ple the distance geometry problem which has lots of applications including protein struc-
ture prediction, where the nonlinear least squares of all the terms would have lots of local
minimizers[30].
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For nonlinear equations, the incomplete approach is to ignore some equations. Instead
of requiring the original system (4.1), we consider

Fi(x) = 0, i ∈ Jk , (4.4)

which is an incomplete set of equations. It is easy to see the incomplete approach is a
subspace technique. Define the vector

F =


F1(x)
F2(x)

...
Fm(x)

 ∈ <m .
To solve the nonlinear equations (4.1) is to find a x at which F maps to the origin. Let PTk
be a mapping from Rm to a lower dimensional subspace, solving the reduced system

PTk F (x) = 0 (4.5)

is exactly replacing F = 0 by requiring its mapping to the subspace spanned by Pk to be
zero. In particular, if the columns of Pk are chosen to be coordinate vectors {ei, i ∈ Jk}, we
obtain the incomplete set of equations (4.4).

Now, we consider partition of variables, which is clearly a subspace technique. Let Ik
be a subset of {1, ..., n}. We partition the variables into two group x = (x̄ , x̂), where
x̄ = {xi, i ∈ Ik} and x̂ = {xi , i 6∈ Ik}. At the k−th iteration, we fix the variables x̂ and
allow x̄ to change in order to obtain a better iterate point. To be exact, we try to solve

min
x̄∈<|Ik|

m∑
i=1

(Fi(x̄, x̂k))2 . (4.6)

The above problem has fewer variables. It is easy to see that partition of variables use special
subspaces that spanned by coordinate directions. An obvious generalization of partition of
variables is decomposition of the space which uses subspaces spanned by any given direc-
tions. For example, assume that we have ik vectors {q(k)

1 , q
(k)
2 , ..., q

(k)
ik
} which spans Sk.

Similar to (4.6), we consider the subspace subproblem

min
d∈Sk

m∑
i=1

(Fi(xk + d))2 . (4.7)

When the above subproblem is combined with the reduced system technique, it gives the
general subspace subproblem for nonlinear least squares

min
d∈Sk

||PTk F (xk + d)||22 . (4.8)

For nonlinear equations, a similar subproblem is

PTk F (xk +Qkz) = 0, (4.9)

where Qk = [ q
(k)
1 , q

(k)
2 , ..., q

(k)
ik

] and Pk = [ p
(k)
1 , p

(k)
2 , ..., p

(k)
ik

]. Let Jk be the Jacobian
of F at xk, the linearized system for subproblem (4.9) is

PTk [ F (xk) + JkQkz ] = 0 . (4.10)
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Of course, the efficiency of such an approach depends on how to select Pk and Qk. We can
borrow ideas from subspace techniques for large scale linear systems[29]. Instead of using
(4.10), we construct a subproblem of the following form:

PTk F (xk) + Ĵkz = 0 , (4.11)

where Ĵk ∈ <ik×ik is an approximation to PTk JkQk. The reason for preferring (4.11)
over (4.10) is that in (4.11) we do not need the Jacobian matrix Jk, whose size is normally
significantly larger than that of Ĵk.

The τ−steepest descent coordinate subspace discussed in Section 2 can also be extended
to nonlinear equations and nonlinear least squares. Here we only discuss nonlinear equa-
tions. Assume we have

|Fi1(xk)| > · · · > |Fiτ (xk)| > · · · (4.12)

at the k−th iteration. A direct extension of the τ− steepest descent coordinate subspace
method discussed in Section 2 would solve

Fij (xk) + dT∇Fij (xk) = 0 j = 1, ..., τ . (4.13)

in the subspace spanned by the corresponding coordinate directions {eij , j = 1, ..., τ}.
This approach is reasonable if F (x) is a monotone operator. For general nonlinear functions
F (x), it seems that we should replace eij by the coordinate direction which is the steepest
descent coordinate direction of the function Fij (x) at xk. Namely, we should replace ij by
an index lj such that

lj = argmaxt=1,...,n

∣∣∣∣∂Fij (xk)

∂(x)t

∣∣∣∣ .
However, such a choice may lead to one lj for two different j, which makes subproblem
(4.13) has no solution in the subspace spanned by {el1 , ..., elτ }.

A good subspace spanned by τ− coordinate directions might be the steepest descent
τ−subspace as discussed in Section 2, which should contain the shortest vector d from all so-
lutions of (4.13) satisfying ||d||0 = τ . However, such a subspace is not easy to obtain, an ap-
proximation could be derived by finding τ row indices of the matrix [∇Fi1(xk), ...,∇Fiτ (xk)]
such that the corresponding τ × τ sub-matrix Γk makes ||(Γk)−1|| as small as possible.

More detailed discussions on subspace methods for nonlinear equations and nonlinear
least squares are given in [42].

5. Subspace techniques for matrix optimization

Matrix optimization problems have stimulated lots of researches in recent years due to their
broad applications. The one million dollar Netflix prize problem[1] may be formulated as
the following problem

min
X∈<n×m

rank(X) (5.1)

s. t. (X)ij = Mij , (i, j) ∈ T , (5.2)

where T is a subset of {(i, j) | i = 1, ..., n; j = 1, ...,m}, and Mij((i, j) ∈ T ) are given
data. A second example of matrix optimization problem is the semidefinite programming
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problem

min
X∈<n×n

〈C , X〉 (5.3)

s. t. 〈Ai, X〉 ≥ bi, i = 1, ...,m, (5.4)
X � 0, (5.5)

where 〈X , Y 〉 = trace(XTY ). Another example is solving the Kohn-Sham equation in
density functional theory from physics and quantum chemistry, where the total energy of a
system needs to be minimized. This leads to the minimization of a nonlinear matrix function
with orthogonality constraints:

min
X∈<n×m

E(X) (5.6)

s. t. XTX = I , (5.7)

where E(X) is the energy function [22, 36].
A general nonlinear matrix optimization has the following form

min
X∈X

f(X) (5.8)

s. t. c(X) = 0, (5.9)

where f : <n×m → <, X ⊆ <n×m and c : <n×m → <p. The constraints have been
split into the set X and the general constraints c(X) = 0 according to their structures and
roles in the targeted subspace subproblems. For example, some simple constraints such as
orthogonality and positive semidefiniteness can be put in X and the subspace subproblems
still have a computable closed form solution. Specifically, for a suitably chosen subspace
Sk ⊂ <n×m, mk(X) ≈ f(X) and an linear operator Ak such that Ak(X) ≈ c(X) for
X ∈ Sk, the subspace subproblem is:

min
X∈Sk∩X

mk(X) (5.10)

s. t. Ak(X) = 0. (5.11)

Then, a model subspace algorithm for the general matrix optimization problem (5.8)-(5.9)
can be given as follows.

Algorithm 5.1. (Model subspace method for nonlinear matrix optimization)

Step 1 Given X1. Let k := 1.

Step 2 If Xk is a stationary point of (5.8)-(5.9) then stop.
Choose a low-dimensional subspace Sk ⊂ <n×m,
build an approximate modelmk(X) ≈ f(X) forX ∈ Sk, and an linear operator
Ak such that Ak(X) ≈ c(X) for X ∈ Sk.

Step 3 Solve (5.10)-(5.11) to obtain X̂ .

Step 4 Choose a suitable map h(X) : <n×m → <n×m to construct
the next iteration: Xk+1 := h(X̂k); Go to Step 2.
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Most of the techniques for choosing subspaces in subsection 2.1 can be extended here.
For example, we can choose the subspace mainly spanned by the gradients at the first k
iterations:

Sk = span{Xk,∇f(X1), · · · ,∇f(Xk)} , (5.12)

or use the conjugate gradient type subspace

Sk = span{∇f(xk) , Xk, Xk−1} . (5.13)

There are various ways for defining subspaces when the matrix optimization problems have
special structures. For example, for the low rank matrix optimization problems we can search
in subspaces of low dimensional manifolds of low rank matrices. In particular, consider the
following problem

min
X∈<n×p

||A(X)− b||22 (5.14)

s. t. rank(X) ≤ r . (5.15)

One special subspace is
Sk = {Xk + Y | rank(Y ) ≤ τ} . (5.16)

If τ = 1, we update the iterate matrix with the increment being a rank-1 matrix.
Computing the dominate singular value decomposition of a given matrix A ∈ <n×m

leads to a matrix optimization problem with orthogonality constraints:

max
X∈<n×p

||ATX||2F (5.17)

s. t. XTX = I. (5.18)

Let X = {X ∈ <n×p | XTX = I} and c(X) = ∅. The locally optimal block precondi-
tioned conjugate gradient method (LOBPCG) [19] chooses h(·) as the identity map and the
following conjugate gradient type of subspace:

Sk = span{Xk−1, Xk, AA
TXk} , (5.19)

The corresponding subspace problem is a 3p-dimensional generalized eigenvalue problem
which can be solved fast due to the fact that p � min{n,m}. The limited memory block
Krylov subspace optimization method (LMSVD, [23]) selects the subspace

Sk = span{Xk, Xk−1, ..., Xk−q} (5.20)

with an adaptive way to adjust the size of Sk and takes

h(X) := orth(AATX), (5.21)

which reduces the probability to be trapped by saddle points of (5.17)-(5.18). A general
global convergence analysis for both LOBPCG and LMSVD is established in [23] by requir-
ing some minimal assumptions.
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6. Summary

In this paper, we review subspace techniques for nonlinear optimization. Compared to full
space algorithms which normally convert nonlinear problems to linear/quadratic systems
without reducing the size of the problem, subspace algorithms aim to to take a short-cut from
large scale nonlinear problem to small scale linear/quadratic systems. This is illustrated by
the following diagram:

Full-space via Sub-space

Subspace techniques are suitable for problems where function values are difficult to com-
pute and problems that are highly nonlinear for which normally line searches are very ex-
pensive. Though we have given quite a few suggestions on how to choose subspaces, there
are still many issues to be investigated further, including how to balance between null space
and range space for constrained optimization for null-space type methods and how to choose
subspaces depending on constraints for general subspace methods for constrained optimiza-
tion.

The subspace techniques discussed in the paper show that large scale problems can be
approximated by lower dimensional subspace subproblems, and we believe that the nice
properties of subspace techniques will enable them to play an important role in the develop-
ment of numerical methods for large scale optimization.
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