
1 23

Mathematical Programming
A Publication of the Mathematical
Optimization Society
 
ISSN 0025-5610
Volume 151
Number 1
 
Math. Program. (2015) 151:249-281
DOI 10.1007/s10107-015-0893-2

Recent advances in trust region algorithms

Ya-xiang Yuan



1 23

Your article is protected by copyright and

all rights are held exclusively by Springer-

Verlag Berlin Heidelberg and Mathematical

Optimization Society. This e-offprint is for

personal use only and shall not be self-

archived in electronic repositories. If you wish

to self-archive your article, please use the

accepted manuscript version for posting on

your own website. You may further deposit

the accepted manuscript version in any

repository, provided it is only made publicly

available 12 months after official publication

or later and provided acknowledgement is

given to the original source of publication

and a link is inserted to the published article

on Springer's website. The link must be

accompanied by the following text: "The final

publication is available at link.springer.com”.



Math. Program., Ser. B (2015) 151:249–281
DOI 10.1007/s10107-015-0893-2

FULL LENGTH PAPER

Recent advances in trust region algorithms

Ya-xiang Yuan1

Received: 29 September 2014 / Accepted: 17 February 2015 / Published online: 15 March 2015
© Springer-Verlag Berlin Heidelberg and Mathematical Optimization Society 2015

Abstract Trust region methods are a class of numerical methods for optimization.
Unlike line search type methods where a line search is carried out in each iteration,
trust region methods compute a trial step by solving a trust region subproblem where
a model function is minimized within a trust region. Due to the trust region con-
straint, nonconvex models can be used in trust region subproblems, and trust region
algorithms can be applied to nonconvex and ill-conditioned problems. Normally it is
easier to establish the global convergence of a trust region algorithm than that of its
line search counterpart. In the paper, we review recent results on trust region meth-
ods for unconstrained optimization, constrained optimization, nonlinear equations and
nonlinear least squares, nonsmooth optimization and optimizationwithout derivatives.
Results on trust region subproblems and regularization methods are also discussed.

Keywords Trust region algorithms · Nonlinear optimization · Subproblem ·
Complexity · Convergence

Mathematics Subject Classification 65K05 · 90C30

1 Introduction

Trust region algorithms are a class of numerical methods for optimization, which have
been extensively studied for many decades. Historical development of trust region
methods can be traced back to Levenberg [72], where a modified Gauss–Newton
method is given for solving nonlinear least square problems. Levenberg’s method
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250 Y. Yuan

was re-discovered independently by Morrison [80] and Marquardt [76]. The method
was popularized due to the influential paper of Marquardt [76], thus it is called as
Levenberg–Marquardt method (see [48]). Though Morrison’s paper was not widely
known because it was published in a conference proceeding instead of a journal,
many leading experts now favor the name “Levenberg–Morrison–Marquadt method”
as an acknowledgment of the important contribution of Morrison [80]. Levenberg–
Marquardt method modifies Gauss–Newton method by adding a damping term to
restrict the length of the Gauss–Newton step, in order to avoid a too long step when
the Jacobian matrix of the nonlinear functions is nearly singular at the current point.
Thus, a more imaginable name for trust region method is restricted step method which
was used by Fletcher [48]. Pioneer researches on trust region methods were given
by Powell [88–91], Fletcher [47], Hebden [67], Madsen [74], Osborne [86], Moré
[78], Toint [118–122], Dennis and Mei [37], Sorensen [113,114], and Steihaug [115].
Moré [79] gave an excellent survey of early works on trust region methods, which
popularized trust region methods and standardized the term “trust region”. An invited
plenary talk on trust regionmethodswas givenbyYuan [148] at theFourth International
Congress on Industrial and Applied Mathematics, which was held in Edinburgh, July
1999. The huge comprehensive monograph by Conn et al. [24] is the first published
book on trust region methods, which gives a very good summary of works being done
until the time of publication and is regarded as an encyclopedia of the subject.

Unlike line search algorithms, where a line search is carried out along a search
direction in each iteration, trust region algorithms obtain the new iterate point by
searching in a trust region which is normally a neighbourhood of the current iterate
point. To be more exact, at the kth iteration, a trust region algorithm for the general
optimization problem

min
x∈X f (x), (1.1)

where f (x) is the objective function to be minimized and X ⊂ �n is the feasible set,
obtains the trial step sk by solving the following trust region subproblem

min
d∈Xk

mk(d) (1.2)

s.t. ‖d‖Wk ≤ Δk, (1.3)

where mk(d) is a model function that approximates the objective function f (xk + d)

near the current iteration point xk , Xk is an approximation to the shifted feasible set
X − xk , ‖.‖Wk is a norm in �n and Δk > 0 is the trust region radius.

The framework of a trust regionmethod for optimization problem (1.1) is as follows

Framework of a trust region method for optimization

Step 1 Initialization, given x1, construct m1(d), ‖.‖W1 and Δ1 > 0, set k := 1.
Step 2 If convergence, then stop;

Solve (1.2)–(1.3) giving the trial step sk .
Step 3 Decide whether the trial step should be accepted (whether to set xk+1 = xk + sk or

xk+1 = xk ).
Step 4 Construct mk+1(d), choose Δk+1 and ‖.‖Wk+1 ;

Set k := k + 1; go to Step 2.
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Recent advances in trust region algorithms 251

Thus, the essential parts of a trust region algorithm are the construction of the trust
region subproblem and how to judge the trial step. In order to define the trust region
subproblem, we need to build up an approximate model mk(d), and to select the trust
region {d ∈ �n | ‖d‖Wk ≤ Δk}. Once the trial step sk is obtained by solving the trust
region subproblem exactly or inexactly, we can use the information at the trial point
xk + sk to judge the quality of the trial step sk . Based on certain criteria, if the trial
point xk + sk is (sufficiently) better than the current iterate xk , we accept the trial step.
At the end of each iteration, we need to choose the trust region for the next iteration
and construct the new model function mk+1(d).

Due to the trust region constraint (1.3), the feasible region of a trust region subprob-
lem is always a bounded set, which enables us to use nonconvex approximation model
functionsmk(d). This is one of the advantages of trust region methods over line search
methods. The trust region constraint can be viewed as an implicit regularization and
preconditioning can be used by selecting proper norm ‖.‖Wk . These make trust region
algorithms reliable and robust, as they can be applied to nonconvex and ill-conditioned
problems.

An advantage of trust region methods is that it is easier to establish convergence
results for trust region algorithms than for line search algorithms. For example, in
order to prove the global convergence of line search type quasi-Newton methods,
one needs to use sophisticated techniques to estimate the growing of the quasi-
Newton matrices (see Powell [92]), while the global convergence of trust region type
quasi-Newton methods can be easily established as long as the trace of the quasi-
Newton matrices does not increase faster than linearly (see Powell [90]). In [128], it is
explained also why the assumptions for line searches are stronger. Another advantage
of trust region methods over line search methods is that trust region methods using
second order information can normally converges to second-order stationary points
while line search type methods could converges to saddle points (for example, see
[24] and [117]).

In this paper, we review recent results on trust region methods. In Sect. 2, we
consider trust region methods for unconstrained optimization, particularly on results
about subspace techniques, non-standard updating techniques for trust region radius,
and non-standard shaped trust regions that are not definedbyEuclidean balls. In Sect. 3,
we discuss trust region methods for constrained optimization, where emphases are
given on subspace techniques, and recent results on augmented Lagrangian function
methods. Trust region techniques for nonlinear equations and nonlinear least squares
are presented in Sect. 4. In Sect. 5, trust region algorithms for nonsmooth optimization
are discussed. Trust region methods for optimization without derivatives are reviewed
in Sect. 6 and some regularization methods are discussed in Sect. 7. A brief discussion
is given at the end of the paper.

2 Unconstrained optimization

In this section, we consider unconstrained optimization, that is the case where the
feasible region X is the whole space �n . This case is fundamental and relatively
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252 Y. Yuan

simple, because we can simply let Xk = X = �n . Thus, the trust region subproblem
in the kth iteration has the following form:

min
d∈�n

mk(d) (2.1)

s.t. ‖d‖Wk ≤ Δk . (2.2)

Let sk be a trial step which is an exact or inexact solution of (2.1)–(2.2). We compute
the predicted reduction Predk = mk(0) − mk(sk), which is the reduction in the
model function, and the actual reduction of the objective function Aredk = f (xk) −
f (xk + sk). In general, if xk is not a stationary point of f (x), the predicted reduction
Predk > 0. For example, a quadratic model function with the Euclidean norm trust
region constraint leads to the standard trust region subproblem (TRS):

min
d∈�n

mk(d) = f (xk) + gTk d + 1

2
dT Bkd (2.3)

s.t. ‖d‖2 ≤ Δk, (2.4)

where gk = g(xk) = ∇ f (xk) and Bk ∈ �n×n is a symmetricmatrix approximating the
Hessian of the objective function. Subproblem (2.3)–(2.4) is widely used in many trust
region algorithms as it is easy to solve and it has nice theoretical properties including
that the Hessian of the Lagrangian function of (2.3)–(2.4) is positive semi-definite
[53,113], and that it has at most one non-global local minimizer [77]. For convex
quadratic model functions mk(d), it is shown that the truncated conjugate gradient
method can obtain a very good inexact solution of (2.3)–(2.4), namely the reduction
of the objective function obtained by the truncated conjugate gradient method will be
at least half of the maximum reduction in the trust region [149]. Let sk be the exact
solution of (2.3)–(2.4), we have that

Predk ≥ 1

2
‖gk‖2 min

{
Δk,

‖gk‖2
‖Bk‖2

}
, (2.5)

whichwas first proved byPowell [91]. However, it is not necessary for sk to be the exact
solution of (2.3)–(2.4) to satisfy (2.5). For example, aminimizer of the quadraticmodel
mk(d) in (2.3) along the steepest descent direction within the trust region (2.4) also
satisfies (2.5). Inequalities of the type (2.5) indicate that certain sufficient reduction
can be achieved in the approximate model provided that xk is not a stationary point of
the objective function. The quadratic model (2.3) is not the only possible model for
mk(d). For example, the following conic model

mk(d) = gTk d

1 − hTk d
+ 1

2

dT Bkd

(1 − hTk d)2
(2.6)

is used in a trust region algorithm given by Di and Sun [38], where hk ∈ �n . Nomatter
what kind of model function mk(d) is chosen, we normally require that the trial step
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sk obtained satisfies some “sufficient descent” condition similar to (2.5), in order to
establish the global convergence of the algorithm.

The ratio between the actual reduction and the predicted reduction

rk = Aredk
Predk

(2.7)

plays a very important role in trust region algorithms, since it gives a measure for
judging how good the trial step sk is. Intuitively, a larger rk corresponds to a better
trial step because it achieves a lower objective function value for the same predicted
reduction Predk . Thus, a general strategy is to accept the trial step as long as rk is
larger than a preset non-negative constant.

The value of the trust region radius Δk decides the size of the trust region in which
we replace the original problem by the approximate model. A larger trust region radius
shows thatwe aremore confident about ourmodelwhile a smaller trust region indicates
that we are more conservative. Thus, the ratio (2.7) is also used to adjust the new trust
region radius.

For unconstrained optimization problem, a model trust region method is given as
follows.

A Model Trust Region Method for Unconstrained Optimization

Step 1 Given x1 ∈ �n , Δ1 > 0, ε ≥ 0, B1 ∈ �n×nsymmetric;
0 < τ3 < τ4 < 1 < τ1, 0 ≤ τ0 ≤ τ2 < 1, τ2 > 0, k := 1.

Step 2 If ‖gk‖2 ≤ ε then stop; Solve (2.1)–(2.2) giving sk .
Step 3 Compute rk = Aredk/Predk ;

xk+1 =
{
xk if rk ≤ τ0 ,
xk + sk otherwise ;

(2.8)

Choose Δk+1 that satisfies

Δk+1 ∈
{ [τ3‖sk‖Wk , τ4Δk ] if rk < τ2,

[Δk , τ1Δk ] otherwise;
(2.9)

Step 4 Choose a new model function mk+1(d) and select a norm ‖.‖Wk+1 ;
k := k + 1; go to Step 2.

Different choices for the parameters τi (i = 0, 1, 2, 3, 4) are discussed in Yuan
[148], Chapter 17.1 of Conn et al. [24], and Gould et al. [55]. Global convergence of
the trust region method can be easily established as long as the trial step sk satisfies a
sufficient descent condition similar to (2.5). To prove the local superlinear convergence
of a trust regionmethod, the general approach is to show that the trust region constraint
‖d‖Wk ≤ Δk is inactive for all sufficiently large k. In order to ensure ‖sk‖Wk < Δk ,
the standard technique is to show that sk → 0 and Δk is bounded away from zero.
This explains why we set Δk+1 ≥ Δk when rk ≥ τ2 in the model algorithm.

However, Δk bounded away from zero is only a sufficient condition for the local
superlinear convergence, but not a necessary one. Therefore, it is worthwhile to study
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254 Y. Yuan

techniques that allow Δk → 0. The reason for preferring Δk → 0 is that for ill-
conditioned and even degenerate problems, it is more reliable and robust to have
Δk → 0. Moreover, in trust region methods for derivative-free optimization, Δk also
goes to zero, because of the so-called criticality step (for example, see [30]).

One approach is to let the new trust region radius Δk+1 depend on sk . Hei [68]
suggests to update the trust region radius by

Δk+1 = Rη(rk)‖sk‖2, (2.10)

where Rη(t) is a monotonically increasing function satisfying

0 < β ≤ Rη(t) ≤ 1 − γ1 < 1, ∀t ∈ (−∞, η),

1 < 1 + γ2 ≤ Rη(t) ≤ M < +∞, ∀t ∈ [η,+∞),

with 0 < β < 1, 0 < γ1 < 1 − β, γ2 > 0, M > 1 + γ2, 0 < η < 1.
Suppose the algorithm converges to a local minimizer x∗ of f (x) at which the

second order sufficient condition is satisfied. The algorithm is locally superlinearly
convergent if we can prove that sk is close toNewton’s step−(∇2 f (xk))−1gk , namely,

‖sk + (∇2 f (xk))
−1gk‖2 = o(‖sk‖2), (2.11)

and that the trust region constraint is inactive (‖sk‖2 < Δk). Assuming that the
minimum eigenvalue of ∇2 f (x∗) is ξ , (2.11) implies that ‖sk‖2 ≤ 2

ξ
‖gk‖2 for all

sufficiently large k. Thus, it is reasonable to let Δk depend on ‖gk‖2. Fan and Yuan
[45] suggested to use

Δk := μk‖gk‖2 (2.12)

where

μk+1 =

⎧⎪⎨
⎪⎩
c1μk if rk < η2,

c2μk if rk ≥ η2 and ‖sk‖2 >
1

2
Δk,

μk otherwise,

with 0 < η2 < 1, 0 < c1 < 1 < c2 and μ1 > 0 being given (2.12) can be generalized
to

Δk = μk‖gk‖α
2 ,

where α ∈ (0, 1] is a parameter.
Recently, motivated by applications in adaptive techniques which exploit the infor-

mation made available during the optimization process in order to vary the accuracy
of the objective function computation, Bastin et al. [5] proposed an interesting way of
updating the trust region radius. In their retrospective trust region algorithm, they use
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the model function at the current iteration to compute the ratio of the actual reduc-
tion and the predicted reduction in the previous trial step, and use this ratio to update
the trust region radius. Namely, if xk+1 = xk + sk , a new model function mk+1 is
constructed. Then, the new ratio

ρ̃k = f (xk) − f (xk + sk)

mk+1(−sk) − mk+1(0)
(2.13)

is computed, and the trust region radius is updated by the following formula:

Δk+1 =

⎧⎪⎪⎨
⎪⎪⎩

max[γ2‖sk‖,Δk] if ρ̃k ≥ η̃2,

Δk if ρ̃k ∈ [η̃1, η̃2],
γ1‖sk‖ if ρ̃k ∈ [0, η̃1) ,

min[γ1‖sk‖,max[γ0, θ̃k]Δk] if ρ̃k < 0,

(2.14)

where

θ̃k = −(1 − η̃2)〈∇x f (xk+1), sk〉
(1 − η̃2)[ f (xk+1) − 〈∇x f (xk+1), sk〉] + η̃2mk+1(−sk) − f (xk)

,

and the constants satisfy 0 < γ0 < γ1 ≤ γ2 > 1 and 0 < η̃1 ≤ η̃2 < 1. θ̃kΔk is used
to ensure ρ̃k+1 ≥ η̃2. Please notice that θ̃k uses the gradient at xk+1.

For large-scale optimization problems, namely when n is very large, trust region
subproblems are also large-scale. Thus, it is valuable to investigate subspace properties
of trust region subproblems. Consider the standard trust region quasi-Newton method
where the model functions mk(d) are quadratic functions with the Hessian matrices
being updated by quasi-Newton formulae. Wang and Yuan [130] gave the subspace
properties of the trial steps sk :

Lemma 1 Suppose B1 = σ I , σ > 0. The matrix updating formula is any one chosen
from PSB and Broyden family (where the updates may be singular), and Bk is the
kth update matrix. Let sk be a solution of subproblem (2.3)–(2.4), gk = ∇ f (xk),
Gk = Span{g1, g2, . . . , gk} and xk+1 = xk + sk (x1 ∈ �n is any given initial point).
Then for all k ≥ 1, sk ∈ Gk . Moreover for any z ∈ Gk and any u ∈ G⊥

k , we have

Bkz ∈ Gk, Bku = σu . (2.15)

This result extends a similar result for line search type quasi-Newton methods
given by Siegel [112]. Based on this result, it can be shown that the full space trust
region quasi-Newton method is equivalent to the subspace counterpart provided that
the approximate Hessian is updated by quasi-Newton formulae and the initial Hessian
approximation is appropriately chosen. In the subspace algorithm, the trial step can
be obtained by solving the trust region subproblem in the subspace spanned by all
the gradient vectors computed so far. To be more exact, the trial step can be defined
by minimizing the quasi-Newton quadratic model in the subspace spanned by all
the computed gradients. The advantage of subspace trust region algorithms is that the
subproblems are defined in lower dimension, thus they aremore suitable for large scale
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256 Y. Yuan

problems. Subproblems of general subspace trust region algorithms for unconstrained
optimization have the following form

min
d∈�n

mk(d) (2.16)

s.t. ‖d‖Wk ≤ Δk, d ∈ Sk, (2.17)

where Sk ⊂ �n is a low dimensional subspace. Possible choices for Sk are

Sk = Span{g1, g2, ..., gk}, (2.18)

Sk = Span{gk, sk−1, ..., sk−r }, (2.19)

Sk = Span{gk, yk−1, ..., yk−r }, (2.20)

and

Sk = Span
{
ek(1), ek(2), ..., ek(r)

}
, (2.21)

where r � n is a non-negative integer, yi = gi+1−gi , and ei is the i th coordinate unit
vector in �n . For more detailed discussions on subspace selection, please see Yuan
[151].

Regarding the choices for the norm ‖.‖Wk in the trust region subproblem, it is
common to use the Euclidean norm ‖.‖2, since the Euclidean norm trust region sub-
problem (2.3)–(2.4) is widely studied and easy to solve. However, in some special
cases, we can use different norm ‖.‖Wk other than the Euclidean norm ‖.‖2. For exam-
ple, for the quadratic model function (2.3) with Bk being updated by limited memory
quasi-Newton updates (for example, see [73]), the matrix Bk has the form

Bk = σk I + PkDk P
T
k , (2.22)

where σk > 0, Pk ∈ �n×r satisfying PT
k Pk = Ir and Dk ∈ �r×r is diagonal and

positive definite. Normally, r is much smaller than n. Burdakov et al. [9] suggested to
use the norm

‖d‖Wk = max
{
‖PT

k d‖∞, ‖(Pk)T⊥d‖2
}

, (2.23)

where (Pk)T⊥ is the projection onto the subspace orthogonal to Range(Pk). In this
case, the solution sk for the trust region subproblem (2.1)–(2.2) can be expressed
(by orthogonal decomposition) as Pks1 + (Pk)⊥s2. Both s1 and s2 have closed-form
solutions [151], due to the fact that s1 is the solution of the box constrained QP (in
�r )

min
s∈�n

1

2
sT (σk I + Dk) s + sT

(
PT
k gk

)
(2.24)

s.t. ‖s‖∞ ≤ Δk (2.25)
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while s2 solves the 2-norm constrained special QP

min
s∈�n

1

2
σks

T s + sT (Pk)
T⊥gk (2.26)

s.t. ‖s‖2 ≤ Δk . (2.27)

Encouraging numerical results for trust region algorithms using the cylinder-shape
trust region (2.23) were reported in Gong [54] and Zikrin [158].

A class of recursive trust region methods for multiscale nonlinear optimization,
often arising in systems governed by partial differential equations, is given by by
Gratton et al. [63]. The standard trust region method for unconstrained optimization
is a special case of this class. A remarkable result obtained by Gratton, Sartenaer
and Toint [63] is that the unconstrained trust region algorithm needs at most O(ε−2)

iterations to achieve ||g(xk)|| below ε.

3 Constrained optimization

Normally, trust region methods for constrained optimization problem (1.1) are more
complicated than line searchmethods due to the difficulty that the approximate feasible
region Xk may not have points in the trust region of the current iteration, namely
xk + d �∈ Xk as long as ‖d‖Wk ≤ Δk . Consider the case that the feasible set X is
defined by equality and inequality constraints

X = {x | ci (x) = 0, i = 1, ..., me; ci (x) ≥ 0, i = me + 1, ...,m} . (3.1)

At the kth iteration point xk , line search type SQP methods normally compute the
search direction dk by solving the QP subproblem:

min mk(d) (3.2)

s.t. d ∈ Xk (3.3)

where mk(d) is a quadratic function approximating the Lagrangian function and

Xk = {d | ci (xk) + dT∇ci (xk) = 0, i = 1, ...,me;
ci (xk) + dT∇ci (xk) ≥ 0, i = me + 1, ...,m} (3.4)

is the feasible set of the linearized constraints. To overcome the possible difficulty that
Xk ∩ {d | ‖d‖Wk ≤ Δk} = ∅, instead of using (1.2)–(1.3), we can use the following
trust region subproblem

min
d∈�n

mk(d) (3.5)

s.t. ‖d‖Wk ≤ Δk (3.6)

d ∈ θk Xk, (3.7)
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for some θk ∈ (0, 1]. It is easy to see that θk Xk∩{d | ‖d‖Wk ≤ Δk} �= ∅ for sufficiently
small θk ∈ (0, 1] provided that Δk > 0 and Xk is nonempty. In the special case of
equality constrained optimization problems, subproblem (3.5)–(3.7) is equivalent to
null-space approach, detailed discussions can be found in Bryd et al. [12], Vardi
[126] and Omojukun [85]. Normally, the model function mk(d) in (3.5) is a quadratic
function. Similar to unconstrained case, it is also possible to use non-quadratic models
such as conic models [117].

Intuitively, we should choose θk ∈ (0, 1] in (3.7) as large as possible since a larger
θk corresponding to the case that θk Xk is a better approximation to the shifted feasible
set X − xk . Thus, one way to achieve this is to replace θk by a variable θ ∈ (0, 1] and
penalize the term (1− θ) in the object. Namely we can use the following subproblem

min
d∈�n

mk(d) + σ(1 − θ)2 (3.8)

s.t. ‖d‖Wk ≤ Δk, (3.9)

d ∈ θXk, θ ∈ (0, 1] . (3.10)

The shifted linearized feasible region θXk , can be viewed as a null space of the
linearized constraints. All the trust region algorithms that obtain the trial step by
computing a range-space step (also called vertical step or normal step) and a null-
space step (also called horizontal step or tangential step) can be regarded as trying
to satisfy (3.7). Along this direction, a trust-funnel algorithm is given by Gould and
Toint [58] where neither a penalty function nor a filter [52] is used. The algorithm
converges to first-order stationary points by using different trust regions to cope with
the nonlinearities of the objective function and the constraints and allowing inexact
SQP steps that do not lie exactly in the null space of the constraints. Recently, a
new algorithm is given by Curtis et al. [33] where global convergence is achieved by
combining a trust region methodology with a funnel mechanism similar to [58]. The
new algorithm has the additional capability that it solves problems with both equality
and inequality constraints, and has prominent features such as that the subproblems
that define each search direction may be solved approximately, that inexact sequential
quadratic optimization steps may be utilized when advantageous, and that it may be
implemented matrix-free so that derivative matrices need not be formed or factorized
so long as matrix-vector products with them can be performed.

The condition d ∈ θXk is one particular way of approximating the linearized
constraints. For trust region SQP algorithms that use null-space approach, the normal
steps try to reduce the constraint violations whilst the tangential steps try to reduce
the objective function or the Lagrangian function. In order to ensure convergence,
conditions have to be imposed on normal steps and tangential steps. A detailed study
was made on these condition in [69], where convergence results can be extended to
the case that allow the use of inexact problem information originating from inexact
first-order derivative information.

Another type of trust region subproblems has the following form

min
d∈�n

φk(d) (3.11)

s.t. ‖d‖Wk ≤ Δk, (3.12)
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where φk(d) is a model function approximating some penalty function. For example,
Fletcher [50] suggests the following SL1QP type trust region subproblem

min
d∈�n

gTk d + 1

2
dT Bkd + σk

∥∥∥∥
(
ck + AT

k d
)(−)

∥∥∥∥
1

(3.13)

s.t. ‖d‖∞ ≤ Δk, (3.14)

where (ck + AT
k d)(−) is the vector of violations of the linearized constraints defined

by

(ck + (Ak)
T d)

(−)
i =

{
ci (xk) + dT∇ci (xk) i = 1, ...,me,

min{0, ci (xk) + dT∇ci (xk)} i = me + 1, ...,m,
(3.15)

where Ak is the Jacobian of the constraints computed at xk , The above trust region
subproblem for constrained optimization can be viewed as the trust region subproblem
for the L1 exact penalty of the constrained problem. A similar subproblem based
on the L∞ exact penalty function is given by Yuan [146]. The L∞ exact penalty
function, comparing with the L1 exact penalty, can reduce the maximum violation of
constraintsmore quickly, whilst possibly increasing the violations overall. Trust region
subproblems based on exact penalty functions are closely related to subproblems of
trust region algorithms for nonlinear equations [40,147] and nonlinear least squares
that will be discussed in the next section. Trust region algorithms that use (3.13)–
(3.14) are also similar to trust region algorithms for composite nonsmooth optimization
[50,51,140–142].

For equality constrained optimization problems, Niu and Yuan [82] suggested a
quadratic model function Qk(d)which approximates the augmented Lagrangian func-
tion at the kth iteration, and used the subproblem

min
d∈�n

Qk(d) (3.16)

s.t. ‖d‖2 ≤ Δk . (3.17)

One nice property of this approach is that (3.16)–(3.17) is exactly in the form of
the standard trust region subproblem for unconstrained optimization (2.3)–(2.4). The
model function in (3.16) is given by

Qk(d) = (gk − Akλk)
T d + 1

2
dT Bkd + σk‖ck + AT

k d‖22, (3.18)

where λk is the current approximate Lagrange multiplier and σk > 0 is the penalty
parameter. In the algorithm of Niu and Yuan [82], the trial step is computed by solving
(3.16)–(3.17). Then, the augmented Lagrange function is also used as a merit function
to decidewhether the trial step should be accepted. Theirmethod extends the traditional
trust region approach by combining a filter technique into the rules for accepting trial
steps so that a trial step could still be accepted evenwhen it is rejected by the traditional
rule based on the merit function reduction. An estimate of the Lagrange multiplier is
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updated at each iteration, and the penalty parameter is updated to force sufficient
reduction in the norm of the constraint violations. An active set technique is used to
handle the inequality constraints. Numerical results for a set of constrained problems
from the CUTEr collection [56] indicate that this approach is very efficient. However,
no convergence results are given in Niu and Yuan [82] about their algorithm. Another
possible way of handling inequality constraints is to use

Qk(d) = (gk − Akλk)
T d + 1

2
dT Bkd + σk‖(ck + AT

k d)(−)‖22. (3.19)

The idea of approximating augmented Lagrangian by a quadratic function is also
used in the trust region algorithm by Curtis et al. [34], in which global convergence
is analyzed. However, when constraint violations converge to zero and the penalty
parameter varies infinitely many times, first-order criticality could not be guaranteed,
unless a much stronger assumption is enforced on the update of penalty parameters.

A modification to Niu and Yuan’s algorithm is given by Wang and Yuan [132] for
equality constrained optimization, where a condition is introduced to decide whether
the Lagrangemultiplier should be updated. It also suggests a new strategy for adjusting
the penalty parameters. Global convergence of the modified method is established
under mild conditions by Wang and Yuan [132], in which the behavior of penalty
parameters is analyzed. Recently, an extended trust region algorithm is given byWang
and Zhang [133] for nonlinear optimization with both equality constraints and simple
bounds. At each iteration, an affine scaling trust region subproblem is constructed,
where affine scaling technique is applied to handle bounds constraints. By adaptive
update strategies of Lagrange multipliers and penalty parameters, global convergence
can be achieved under mild conditions.

The shifted feasible set Xk defined by (3.4) is the set containing all the points that
satisfy the linearized constraints. We can equivalently write it as

Xk =
{
d | (ck + AT

k d)(−) = 0
}

. (3.20)

Thus, in order to handle the case when Xk has no intersection with the trust region,
instead of requiring zero residual of the linearized constraints, we can set an upper
bound for the sum of squares of violations of the linearized constraints. Namely, we
can let

Xk =
{
d | ‖(ck + AT

k d)(−)‖22 ≤ ξk

}
, (3.21)

where ξk ≥ 0 is a parameter. If

ξk ≥ min‖d‖Wk≤Δk
‖(ck + AT

k d)(−)‖22,

Xk defined by (3.21) has nonempty intersection with the trust region. Thus, it is
reasonable to consider the following trust region subproblem
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min
d∈�n

mk(d) (3.22)

s.t. ‖(ck + AT
k d)(−)‖22 ≤ ξk (3.23)

‖d‖Wk ≤ Δk . (3.24)

The above subproblem with quadratic model mk(d) and ‖.‖Wk = ‖.‖2, called Celis–
Dennis–Tapia (CDT) subroblem, is given by Celis et al. [18] and used by Powell
and Yuan [107]. Properties of the CDT subproblem are discussed by many authors
[2,19,87,116,144], and algorithms for solving the CDT subproblem are given by
[145,156]. Recently, Bienstock [6] shows that the CDT problem is polynomial-time
solvable.

Subspace properties of the CDT problem are studied by Grapiglia, Yuan and Yuan
[59], which establishes the following result.

Lemma 2 Let Sk be an r (1 ≤ r ≤ n) dimensional subspace in �n, and Zk ∈ �n×r

be an orthonormal basis matrix of Sk , namely

Sk = span{Zk}, ZT
k Zk = Ir .

Suppose that

{∇c1(xk), ...,∇cm(xk), gk} ⊂ Sk

and Bk ∈ �n×n is a symmetric matrix satisfying

Bku = σu, ∀u ∈ S⊥
k ,

where σ > 0. Then, the CDT subproblem

min
d∈�n

gTk d + 1

2
dT Bkd (3.25)

s.t. ‖ck + AT
k d‖2 ≤ ξk (3.26)

‖d‖2 ≤ Δk (3.27)

is equivalent to the following problem:

min
d̄∈�r

ḡTk d̄ + 1

2
d̄T B̄k d̄ (3.28)

s.t. ‖ck + ĀT
k d̄‖2 ≤ ξk (3.29)

‖d̄‖2 ≤ Δk, (3.30)

where ḡk = ZT
k gk, B̄k = ZT

k Bk Zk, and Āk = ZT
k Ak.

Due to the above lemma, a subspace version of the Powell-Yuan trust region algo-
rithm is presented in Grapiglia, Yuan and Yuan [59]. Comparing with the full space
implementation, the amount of computation of the subspace version algorithm can be
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reduced when the number of constraints is much smaller than the number of variables,
especially in the early iterations. The subspace properties of the CDT subproblem
described in the above lemma can be used in the same way to construct a subspace
version of the CDT trust region algorithm for equality constrained optimization pro-
posed by Celis et al. [18], as well of any algorithm based on the CDT subproblem.

Trust region interior-point methods are important class of numerical methods for
general constrained optimization. Suchmethods are based on solving theKKT systems
of barrier functions with trust region techniques. Formore detailed discussions on trust
region interior-point methods, please see Chapter 13 of [24]. The famous software
package KNITRO [11] is an excellent example of the success of trust region interior-
pointmethods.Other recentworks on trust region interior-pointmethods include [129],
[139] and [71].

When the constraints are simple bounds, we have the general bound constrained
optimization problem

min
x∈�n

f (x) (3.31)

s.t. l ≤ x ≤ u, (3.32)

where l < u are two vectors in �n . If xk is an interior point, namely

l < xk < u, (3.33)

Coleman andLi [22,23] suggested the following affine scaling trust region subproblem

min
d∈�n

mk(d) (3.34)

s.t. ‖D−1
k d‖2 ≤ Δk (3.35)

where Dk is a diagonal positive definite matrix. In Coleman and Li [22,23], the affine
scaling matrix Dk is defined by

(Dk)i i =
√

|v(i)(xk)|, i = 1, ..., n, (3.36)

where v(i)(x) is defined by

v(i)(x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

x (i) − u(i) if (g(x))i < 0 and u(i) < ∞,

x (i) − l(i) if (g(x))i ≥ 0 and l(i) > −∞,

−1 if (g(x))i < 0 and u(i) = ∞,

1 if (g(x))i ≥ 0 and l(i) = −∞.

(3.37)

The derivation of the scaling matrix (3.36) is based on the Newton’s method for the
diagonal system D(x)2g(x) = 0.
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Wang and Yuan [131] suggested a new scaling matrix:

(Dk)i i =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

tk ·
√

a(i)
k

(gk )i
, i ∈ S1

k ,

tk ·
√

b(i)
k|(gk )i | , i ∈ S2

k ,

1, i /∈ Sk
�= S1

k ∪ S2
k .

(3.38)

where

tk =

√ ∑
i∈S1

k

a(i)
k (gk)i + ∑

i∈S2
k

b(i)
k |(gk)i |

Δk
, (3.39)

with the vectors ak and bk being defined componentwise by

a(i)
k = x (i)

k − l(i), b(i)
k = u(i) − x (i)

k , i = 1, . . . , n,

and the two index sets are defined by

S1
k =

{
i | a(i)

k ≤ Δk, (gk)i ≥ εa(i)
k

}
, S2

k =
{
i | b(i)

k ≤ Δk, −(gk)i ≥ εb(i)
k

}
,

(3.40)

with ε � 1 being a small positive constant. The scaling matrix (3.38) depends on
the distances of the current iterate to the boundaries, the gradient of the objective
function and the trust region radius. The motivation for choosing the scaling matrix
by (3.38) is that the trust region step sk would head to the solution if the objective
function is linear, which is proved in [131]. To be more exact, if the object function
f (x) = cT x with ci �= 0 for all i = 1 : n, the minimizer sk of problem (3.34)–(3.35)
withmk(d) = cT d and the scalingmatrix Dk given by (3.38) implies that xk+sk = x∗
when xk is sufficiently close to x∗ which is the solution of (3.31)–(3.32).

4 Nonlinear equations and nonlinear least squares

In this section we consider trust region algorithms for nonlinear equations

F(x) = ( f1(x), f2(x), ..., fm(x))T = 0, (4.1)

where F(x) is a nonlinear mapping from �n to �m , and a closely related problem, the
nonlinear least squares problem,

min
x∈�n

‖F(x)‖22 . (4.2)

Normally, a trust region algorithm for nonlinear Eq. (4.1) tries to minimize some
penalty function h(F(x)). Thus, trust region algorithms for composite nonsmooth
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optimization [50,51,140–142] can be applied. The penalty function h(·) satisfies that
h(0) = 0 and

h(F) > 0, ∀F �= 0, F ∈ �m . (4.3)

Thus, a general trust region subproblem for nonlinear equations is:

min
d∈�n

h(Fk + Jkd) + 1

2
dT Bkd (4.4)

s.t. ‖d‖Wk ≤ Δk, (4.5)

where Fk = F(xk) and Jk = [∇ f1(xk),∇ f2(xk), ...,∇ fm(xk)]T ∈ �m×n is the
Jacobian matrix of F(x) computed at xk . Pioneer works on trust region algorithms
for nonlinear equations and nonlinear least squares are given by Powell [90], Madsen
[74], Moré [78], Duff et al. [40]. In these early papers, Bk is set to be the zero matrix
for all k, and h(·) is chosen as a simple penalty function such as ‖.‖2, ‖.‖1 or ‖.‖∞.
El Hallabi and Tapia [41] considered the case where h(F) = ‖F‖α is a general norm
of F . The advantage of using a zero Bk is that the subproblem is easy to solve as
it can be converted into a linear programming problem when ‖d‖Wk = ‖d‖∞ or
‖d‖Wk = ‖d‖1. However, the price that we have to pay for Bk = 0 is that normally
the convergence rate is at most linear. Powell and Yuan [106] studied conditions for
superlinear convergence when h(F) = ‖F‖1 and h(F) = ‖F‖∞.

Under certain non-degeneracy conditions, fast convergence results can be proved
even if we let Bk ≡ 0 for all k. Consider the special case h(F) = ‖F‖22 and ‖.‖Wk =
‖.‖2, the trust region subproblem (for nonlinear equations and nonlinear least squares)
becomes

min
d∈�n

‖Fk + Jkd‖22 (4.6)

s.t. ‖d‖2 ≤ Δk . (4.7)

Instead of using the standard technique [such as (2.9)] for updating trust region radii,
Fan [42] suggests to use

Δk = μk‖Fk‖δ
2, (4.8)

where δ ∈ ( 12 , 1). Let sk be the solution of (4.6)–(4.7) with Δk being defined by (4.8),
and let

ρk = Aredk
Predk

= ‖Fk‖22 − ‖F(xk + sk)‖22
‖Fk‖22 − ‖Fk + Jksk‖22

.
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Fan [42] updates the parameter μk+1 by

μk+1 =

⎧⎪⎨
⎪⎩
c5μk if ρk < c2,

μk if ρk ∈ [c2, c4],
min{c6μk, M} otherwise,

where 0 < c2 < c4 < 1, 0 < c5 < 1 < c6, M � c6μ1 and μ1 > 0 are given. Fan
[42] proves that the algorithm has the local 2δ order convergence rate in the sense that

dist(xk+1, X
∗) ≤ dist(xk, X

∗)2δ, (4.9)

where X∗ is the solution set of F(x) = 0 if the local error bound condition holds. A
similar technique is given by Zhang and Wang [154] in which the trust region radius
has the form

Δk = α p‖Fk‖δ
2, (4.10)

where α ∈ (0, 1) and p is the smallest positive integer that gives an acceptable trial
step sk . (4.10), as well as (4.8), implies that the trust region radius converges to zero
when k → ∞. Fan and Pan [44] proposed to use

Δk = α pM‖Fk‖2,

where 0 < α < 1, M � 0, and obtained local quadratic convergence rate:

‖xk+1 − x∗‖ ≤ O(‖xk − x∗‖2) .

Recently, Fan and Lu [43] presented a new trust region algorithm which improves
the algorithm given in Fan [42]. At each iteration, the new algorithm needs to compute
the function value at an extra point and to solve an additional trust region subproblem.
The algorithm is described as follows. At the kth iteration, the algorithm obtains sk
by solving the trust region subproblem:

min
s∈Rn

‖Fk + Jks‖22
s.t. ‖s‖ ≤ Δk := μk‖Fk‖δ

2

where 1
2 < δ < 1. Denote yk = xk + sk . Then, another subproblem:

min
s∈Rn

‖F(yk) + Jks‖22,
s.t. ‖s‖ ≤ Δ̄k := μk‖F(yk)‖δ

2

is solved to obtain s̄k . Define the new predicted reduction by

Predk = ‖Fk‖22 − ‖Fk + Jksk‖22 + ‖F(yk)‖22 − ‖F(yk) + Jk s̄k‖22,
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and ρk = Aredk
Predk

= ‖Fk‖22 − ‖F(xk + sk + s̄k)‖22
Predk

. The algorithm then updates xk+1

and μk+1 by

xk+1 =
{
xk + sk if ρk ≥ p0,
xk otherwise,

and

μk+1 =

⎧⎪⎨
⎪⎩
4μk if ρk < η1,

μk if ρk ∈ [η1, η2],
max

{μk

4
,m

}
if ρk > η2,

where m > 0 is a small constant. Under the local error bound condition, it can be
shown that the modified trust region algorithm has the following property:

dist(xk+1, X
∗) ≤ dist(xk, X

∗)2δ2+δ . (4.11)

This result improves (4.9) because 2δ2 + δ > 2δ and the modified trust region algo-
rithm is superlinearly convergent (in the sense of the rate of the distance dist(xk, X∗)
converging to zero) for all δ ∈ ( 12 , 1). Moreover, the convergence rate of dist(xk, X∗)
is nearly cubic when δ is very close to 1.

Convergence results of several methods, including those allow the trust region
radius to converge to zero, can be covered by a unified convergence theory given by
Toint [124] under the framework of nonlinear stepsize control.

A derivative-free algorithm for nonlinear least squares was give by Zhang, Conn
and Scheinberg [153]. Its local convergence properties are studied in [152].

5 Nonsmooth optimization

Non-smooth optimization problems are special problems where either the objective
function or some constraints are nonsmooth. Trust region methods for nonsmooth
optimization were first given by Fletcher [49–51], where the following composite
nonsmooth optimization problem

min
x∈�n

h(F(x)) (5.1)

is studied, where F(x) = ( f1(x), ..., fm(x))T is a continuously differentiable map-
ping from �n to �m and h(·) is a nonsmooth convex function defined on �m . Other
pioneering researches on trust region algorithms for nonsmooth optimization include
Powell [93], Burke [10] andYuan [140–143]. A trust region subproblem for composite
nonsmooth optimization problem (5.1) is
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min
d∈�n

h(F(xk) + Jkd) + 1

2
dT Bkd (5.2)

s.t. ‖d‖Wk ≤ Δk, (5.3)

where Jk = [∇ f1(xk), ...∇ fm(xk)]T is the Jacobian matrix of F(x) at xk . The com-
posite nonsmooth optimization (5.1) is studied by Sampaio, Yuan and Sun [110] where
it is assumed that F(x) is a nonsmooth locally Lipschitzian function while h(·) is a
continuously differentiable function.

For the general nonsmooth optimization problem

min
x∈�n

f (x) (5.4)

where f (x) : �n → � is a nonsmooth function, we can build at each iteration a
model mk(d) = m(xk, pk)(d) which is an approximation of f (xk + d) for small d,
and pk ∈ �l is an l-dimensional parameter vector which may change from iteration
to iteration [36]. Consequently, the trust region subproblem at the kth iteration is

min m(xk, pk)(d) (5.5)

s.t. ‖d‖Wk ≤ Δk . (5.6)

The Clarke generalized directional derivative [21] of f at x in the direction of d ∈ �n

is defined by

f ◦(x; d) = lim
y→x

sup
t↓0

f (y + td) − f (y)

t
. (5.7)

Under some conditions which include

m(x, p)(0) = f (x), (5.8)

and

m(x, p)◦(0; d) = f ◦(x; d) ∀d ∈ �n\{0}, (5.9)

Dennis et al. [36] proved the convergence of a general trust region method for problem
(5.4), where the trail step sk is obtained by solving subproblem (5.5)–(5.6) approxi-
mately. The results in [36] are extended by Qi and Sun [108] where the trust region
subproblem

min f (xk) + φ(xk, d) + 1

2
dT Bkd (5.10)

s.t. ‖d‖2 ≤ Δk (5.11)

is used. It is assumed in [108] that the function φ(xk, d) satisfies

f (xk + sk) − f (xk) ≤ φ(xk, sk) + o(‖sk‖2) (5.12)

if sk → 0, for any convergent subsequence {xk}.
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By converting nonsmooth convex minimization problems into differentiable con-
vex optimization problems through Moreau-Yosida regularation, Zhang [155] gives a
trust region algorithm for nonsmooth convex optimization. The Moreau-Yosida regu-
larization of f (x) is defined by

fλ(x) = min
z∈�n

{
f (z) + 1

2λ
‖z − x‖22

}
, (5.13)

where λ > 0 is a parameter.
In recent years, regularized minimization problems with nonconvex, nonsmooth,

perhaps non-Lipschitz penalty functions have attracted considerable attention, owing
to their wide applications in image restoration, signal reconstruction, and variable
selection. Chen et al. [20] studied the following nonsmooth unconstrained minimiza-
tion problem

min
x∈�n

f (x) := θ(x) + λ

m∑
i=1

ϕ
(
|dTi x |

)
, (5.14)

where θ : �n → �+ is twice continuously differentiable λ ∈ �+, di ∈ �n, i =
1, . . . ,m, and ϕ : �+ → �+ may not be convex, differentiable, and perhaps not
even Lipschitz. Chen et al. [20] proposed a smoothing trust region Newton method for
solving (5.14). At each iteration, the method obtains the trial step by solving a model
that approximates the smoothing problem

min
x∈�n

f̃ (x, μ) := θ(x) + λ

m∑
i=1

ϕ̃(s(dTi x, μ)), (5.15)

where ϕ̃ is a smoothing function of ϕ, and s(dTi x, μ) is a smoothing term for |dTi x |.
For example, one possible choice of s(t, μ) is μln(2 + et/μ + e−t/μ). The smooth-
ing parameter μ is updated in order to ensure convergence. Assume that the penalty
function ϕ satisfies the following assumption.

Assumption 1 1. ϕ is differentiable in (0,∞) and ϕ′ is locally Lipschitz continuous
in (0,∞).

2. ϕ is continuous at 0 with ϕ(0) = 0, ϕ′(0+) > 0 and ϕ′(t) ≥ 0 for all t > 0.

Chen et al. [20] showed that the sequence generated by the smoothing trust region
Newton method for (5.14) converges to a point satisfying the second order necessary
optimality condition from any starting point.

Cartis et al. [13] studied theworst-case complexity ofminimizing an unconstrained,
nonconvex composite objective with a structured nonsmooth term by means of some
first-order methods. [13] finds that it is unaffected by the nonsmoothness of the objec-
tive in the sense that a first-order trust region or quadratic regularizationmethod (where
the subproblem is to minimize the approximation function plus a quadratic regular-
ization term σ ||d||22) applied to it takes at most O(ε−2) function-evaluations to reduce
the size of a first-order criticality measure below ε.
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6 Optimization without derivatives

In this section, we consider optimization without derivatives. Numerical methods
for optimization problems without using derivatives are also called derivative-free
methods. Derivative-free trust region methods date back to the algorithm of Winfield
[137,138], which is one of the pioneering works in trust region methods. The study of
derivative-free trust region methods is very active in recent years. Excellent reviews
on trust region algorithms for optimization without derivatives are given in [95,97]
and [29].

Comparingwith derivative-based algorithms, derivative-free trust region algorithms
have to build the model function mk(d) without using derivatives. Therefore, we can
not apply Taylor expansions which are normally used in derivative-based algorithms.
Instead, it is natural for derivative-free algorithms to construct model functions by
interpolation.

The simplest nonlinear model is the quadratic model, which can be expressed by

mk(d) = Qk(xk + d) = f̂k + ĝTk d + 1

2
dT Bkd, (6.1)

where f̂k ∈ �, ĝk ∈ �n , Bk ∈ �n×n symmetric. Because Bk is symmetric, the
number of independent elements is 1

2n(n + 1). Thus, the total number of independent
parameters in (6.1) is 1

2 (n + 1)(n + 2). Hence it is reasonable to use 1
2 (n + 1)(n + 2)

function values and the interpolation conditions

Qk(x
(k)
j ) = f (x (k)

j ) j = 1, ...,
1

2
(n + 1)(n + 2), (6.2)

to set the values f̂k , ĝk and Bk , where x (k)
j ( j = 1, ..., 1

2 (n + 1)(n + 2) ) are the
interpolation points at the kth iteration. Methods using (6.2) are given by Winfield
[137,138] and Powell [96].

However, even for a medium-size n (for example, several hundred), evaluating the
objective function at 1

2 (n + 1)(n + 2) points can be prohibitively expensive. Thus,
modernmodel-based trust region algorithmsoften build quadratic interpolationmodels
using less than (n + 1)(n + 2)/2 points. Assume that the interpolation set has only m
points x (k)

j ( j = 1, ...,m) with m < 1
2 (n + 1)(n + 2) at the kth iteration. Consider the

interpolation conditions

Qk(x
(k)
j ) = f

(
x (k)
j

)
j = 1, ...,m . (6.3)

Normally we should choosem ≥ n+1, since even for a linear model, we need at least
(n + 1) function evaluations to define the model function by interpolation uniquely.
LetQ be the linear space of all quadratic functions from �n to �. It is easy to see that
the dimension ofQ is 1

2 (n + 1)(n + 2). Hence, the interpolation conditions (6.3) give

an under-determined system for the parameters f̂k , ĝk and Bk . Therefore, we need to
impose more conditions on the model function in addition to interpolation conditions
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(6.3) in order to obtain the parameters f̂k , ĝk and Bk , for example,

min ‖ĝk‖2F + ‖Bk‖2F
by Conn and Toint [31],

min ‖Bk‖2F
by Conn et al. [25,26] and Conn, Scheigberg and Vicente (Chapter 5 of [29]), and

min ‖vec(Bk)‖1,

where vec(Bk) is a vector containing all the upper-triangular entries of Bk , byBandeira,
Scheinberg and Vicente [3].

Powell [97–99] suggests

min ‖Bk − Bk−1‖2F , (6.4)

which is used in a series of software [100–102]. An extension of (6.4) is given by
Powell [104] where the model function is obtained by

min ‖Bk − Bk−1‖2F + σk‖ĝk − ∇mk−1(xk − xk−1)‖2, (6.5)

subject to the interpolation conditions (6.3). Zhang [157] studies this extension using
a Sobolev semi-norm which is defined by

| f |H1(�) :=
[∫

�

‖∇ f (x)‖22dx
]1/2

. (6.6)

It is shown by Zhang [157] that

min
Q(x)∈Q

‖∇2Q‖2F + σ‖∇Q(x̄)‖22 (6.7)

s.t. Q(x) = f (x), x ∈ S, (6.8)

where S is the set of interpolation points, is equivalent to

min
Q∈Q

|Q(x)|H1(Br )
(6.9)

s.t. Q(x) = f (x), x ∈ S, (6.10)

whereBr = {x |‖x− x̄‖ ≤ r}with r = √
(n + 2)/σ . Based on this observation, Zhang

[157] proposes a simple and efficient method to determine σk in (6.5).
In some applications, it can also happen that the interpolation conditions (6.3) are

overdetermined (m > (n + 1)(n + 2)/2), especially when the function evaluation is
not very expensive but contaminated by noise. In this case, instead of requiring the
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exact interpolation conditions (6.3), one can define the quadratic model mk(d) to be a
weighted least squares approximation of f by solving

min
m∑
i=1

w2
i

(
mk

(
x (k)
j − xk

)
− f (x (k)

j )
)2

, (6.11)

which is used in the trust region method based on regression models [7,28], and is
also discussed in Chapter 4 of [29].

In addition to quadratic models, radial basis functions (RBF) models are also very
popular for constructing derivative-free trust region algorithms. A radial basis function
model has the following form

mk(d) =
m∑
j=1

λ jφ(‖d − x (k)
j ‖) + p(d), (6.12)

where φ : R+ → R is a univariate function and p ∈ Pn
d−1 is a polynomial in the

space of n−variate polynomials of total degree no more than d − 1. Algorithms using
radial basis function models are discussed in [84,135,136].

A special issue for derivative-free trust region methods based on interpolation and
regression is the geometry of the interpolation/regression set, which is critical to the
quality of the model. This interesting problem is discussed in [27,28]. In order to
keep the interpolation/regression set from becoming degenerate, many methods (for
instances,DFO,UOBYQA, andNEWUOA) use explicit “geometry-improving” steps.
Marazzi and Nocedal [75] proposed another strategy in which a “wedge constraint”
is imposed to the trust region subproblem so that the geometry of the interpolation set
will not be destroyed after the trial point is included into the set. Fasano, Morales and
Nocedal [46] studied the numerical performance of a trust region method using inter-
polation models but without any “geometry phase”, where surprisingly good results
are obtained. However, it is shown in [111] that the “geometry phase” cannot be com-
pletely omitted, otherwise the convergence will be jeopardized. In [111] they also
propose a convergent trust region method that does not have any explicit “geometry-
improving” step or wedge constraint but exploits “self-correcting geometry” of the
interpolation set.

Convergence theory is more difficult to be established for a derivative-free trust
region algorithm than a derivative-based trust region algorithm because no deriva-
tive information is used in the construction of the algorithm. Convergence results for
derivative-free trust region algorithms are given in [26,30,103], and [136].

Recently, an interesting paper [4] was published in which it proves the almost-sure
convergence of trust region method assuming that the models are “probabilistically
fully linear”. Another recent paper [62] shows that the algorithm studied in [4] drives
the gradient to zero at the rate of O(1/

√
k) with “overwhelmingly high” probability,

matching the rate of the deterministic trust region method using derivatives.
Derivative-free trust region algorithms for constrainedproblemswerefirst discussed

by Powell [94], where linearly constrained derivative-free optimization is studied.
Powell [102] also studies another special case for bound constrained problems. An
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active set derivative-free trust region method is given for solving nonlinear bound
constrained optimization by [64]. Recently, Troeltzsch [125] gives a derivative-free
trust region algorithm based on SQP for equality constrained optimization.

Sampaio and Toint [109] gave a derivative-free trust-funnel method for general
equality constrained nonlinear optimization problems. The algorithm is an general-
ization of the trust-funnel method of Gould and Toint [58], and preserves the main
features of the method in [58] without using derivatives.

Trust region framework provides a way to rigorously handle surrogate models [65].
Grapiglia, Yuan and Yuan [61] presented a derivative-free trust region algorithm for
composite nonsmooth optimization (5.1). The proposed algorithm is an adaptation
of the derivative-free trust region algorithm of Conn, Scheinberg and Vicente [30]
for unconstrained smooth optimization, with the techniques for composite nonsmooth
optimization proposed by Fletcher [50,51] and Yuan [141,142]. Under suitable con-
ditions, global convergence of the algorithm is proved. Furthermore, by introducing a
slightlymodified update rule for the trust region radius and assuming that the interpola-
tion models are fully linear at all the iterations, it is proved that the function-evaluation
complexity of the algorithm is O(ε−2) for the algorithm to reduce the first order crit-
icality measure below ε.

Hybrid of trust region and other methodology is also studied in the context of
derivative-free optimization. For instances, [35] and [39] incorporate trust region
techniques into direct search and stochastic search, and [65] studies a surrogate man-
agement framework using trust region steps for derivative-free optimization.

7 Regularization methods

One interesting result of the standard trust region subproblem is that the minimizer
of (2.3)–(2.4) is also a global minimizer of the model function mk(d) with a suitable
quadratic penalty term. Namely (2.3)–(2.4) is equivalent to

min
d∈�n

gTk d + 1

2
dT Bkd + 1

2
λk‖d‖22, (7.1)

for a proper penalty parameter λk ≥ 0. Thus, trust region algorithms can be viewed
as a regularization by using the quadratic penalty function. Consequently, extensions
of trust region algorithms by other regularization techniques have been attracting
attention frommany researchers. Cartis et al. [14] proposed an adaptive regularisation
algorithm using cubics (ARC) for unconstrained optimization. At each iteration of the
ARC algorithm, the following cubic model

mk(d) = f (xk) + gTk d + 1

2
dT Bkd + 1

3
σk‖d‖32 (7.2)

is used to obtain the trial step sk . To be more exact, sk satisfies

mk(sk) ≤ mk(s
C
k ) (7.3)
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where sCk = −αC
k gk is the Cauchy point with

αC
k = arg min

α∈�+
mk(−αgk) .

The ARC algorithm uses an adaptive estimation of the local Lipschitz constant and
approximations to the global model-minimizer which remain computationally-viable
even for large-scale problems. It is shown in [14] that the excellent global and local
convergence properties obtained by Nesterov and Polyak are retained, and sometimes
extended to a wider class of problems, by the ARC approach. Worst-case function-
and derivative-evaluation complexity of the ARC method is studied in [15]. Recently,
Grapiglia,Yuan andYuan [60] extended the results of [15] by relaxing the boundedness
of Bk to the following weaker condition

‖Bk‖ ≤ δ1 + δ2k.

In [16], the ARC method is adapted to the constrained optimization problem where a
nonlinear, possibly nonconvex, smooth objective function is minimized over a convex
domain.

The generalization of the model function (7.2) gives the following general regu-
larised version of trust region subproblem:

min
d∈�n

m(d) = gT d + 1

2
dT Bd + σ

p
‖d‖p

2 , (7.4)

where σ > 0, p > 2. (7.4) with p = 3 is the cubic reguarised subproblem used by
Cartis et al. [14] in their ARC algorithm. This special case was first due to Griewank
[66] and was considered later by many authors, see Nesterov and Polyak [81], Weiser
et al. [134], and Cartis et al. [14]. Recently, Gould and Toint [57], and Hsia et al. [70]
studied properties of subproblem (7.4) for the general case p > 2.

The necessary global optimality condition for (7.4) was established by Cartis et
al. [14, Thm. 3.1] and by Nesterov and Polyak [81, Thm. 10 when p = 3 ], see also
[57]. Very recently, Hsia et al. [70] proved that the presented necessary condition is
also sufficient. In the same paper, the �2 norm of the global minimizers is shown to be
unique.

Theorem 1 (Necessary and sufficient global optimality condition) The point d∗ is a
global minimizer of (7.4) if and only if it is a critical point satisfying∇m(d∗) = 0 and
B + σ‖d∗‖p−2

2 I � 0. Moreover, the �2 norms of all the global minimizers are equal.

Following Martínez’s characterization [77] on necessary and sufficient conditions
for the non-global local minimizer of (2.3)–(2.4), Hsia et al. [70] established the nec-
essary and sufficient condition for the non-global local minimizer of (7.4) as follows.

Theorem 2 (Necessary and sufficient condition for non-global local minimizer) d is
a non-global local minimizer of (7.4) if and only if

d = − (
σ t∗ I + B

)−1
g, (7.5)
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where t∗ is a root of the secular function

h(t) = ‖ (σ t I + B)−1 g‖2 − t
2

p−2 , t ∈
(
max

{
−α2

σ
, 0

}
,−α1

σ

)
(7.6)

such that h′(t∗) > 0, where σ1 ≤ σ2 are the two smallest eigenvalues of B.

Notice that, the secular function for (2.3)–(2.4) [cf. h(t) in (7.6)] is defined by

φ(λ) = ‖(Bk + λI )−1gk‖2.

Martínez [77] proved that, if d is a non-global local minimizer of (2.3)–(2.4), then
d satisfies (Bk + λ∗ I )d = −gk with λ∗ ∈ (−α2,−α1), λ∗ ≥ 0 and φ′(λ∗) ≥ 0.
And, this necessary condition becomes sufficient when φ′(λ∗) > 0. To the best of
our knowledge, it is unknown whether the gap between the necessary and sufficient
conditions can be closed as in Theorem 2.

As a corollary of Theorem 2, it is shown in [70] that

Theorem 3 (7.4) with p > 2 has at most one non-global local minimizer.

Interestingly, Theorem 3 is applied by Hsia et al. [70] to show that problem (7.4)
with m linear inequality constraints:

min
d∈�n

gT d + 1

2
dT Bd + σ

p
‖d‖p

2 (7.7)

s.t. li ≤ aTi d ≤ ui , i = 1, . . . ,m, (7.8)

can be solved in polynomial time when p = 4 and m is a fixed number. Notice that,
when m is also an input, (7.7)–(7.8) is generally NP-hard even when p = 4, see a
proof in [70].

In a recent paper, Cartis et al. [17] proved that a general nonlinear nonconvex
optimization problem can be solved to the accuracy of ε by a second-order method
using cubic regularization in at most O(ε−3/2) function evaluations, the same order
bound as in the unconstrained case. This result is obtained by first showing that the
same result holds for inequality constrained nonlinear least-squares.

8 Discussions

In this paper, trust region and regularization algorithms for unconstrained optimization,
constrained optimization, nonlinear equations and nonlinear least squares, nonsmooth
optimization, and optimization without derivatives are reviewed. Trust region algo-
rithms have been flourishing in nonlinear optimization over the past three decades,
they can also been applied to other types of optimization problems.

The application of trust region methods to Nash equilibrium problems is studied
in Yuan [150], which proposes a Jacobi-type trust region method for their solutions.
The method includes different trust regions for each player, and the trial step for each
player is computed and accepted (or rejected) based on each individual utility function.
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In order to ensure global convergence, an overall merit function is used to update the
trust regions.

A trust region algorithm for unconstrained multi-objective optimization is given in
Villacorta, Oliveira and Soubeyran [127]. At each iteration, instead of treating each
object separably, the algorithm constructs a single nonsmooth trust region subproblem.
It is shown that the algorithm generates a sequence that converges to Pareto critical
points.

Recently, a Riemannian trust region method for low-rank matrix completion is
given by Boumal and Absil [8], which studies the problem of recovering large scale
low-rank matrices when most of the entries are unknown. It adapts an approach that
exploits the geometry of the low-rank constraint to recast the problem as an uncon-
strained optimization problem on the Grassmann manifold. Consequently, the derived
unconstrained optimization problem is solved by applying first- and second-order
Riemannian trust region methods, which are studied in Absil, Baker and Gallivan [1].

Trust region is a powerful technique for ensuring global convergence and is partic-
ularly suitable for handling nonconvex and ill-conditioned problems. Trust region can
be used with other techniques to construct efficient numerical algorithms, for example
its combination with line search technique [83], and with a non-monotone technique
[123]. Recently, in optimization, particularly for sparse problems, alternating direction
minimization (ADM) techniques are attracting much attention from researchers. Yet,
most ADM methods are globalized through line search techniques. It is worthwhile
to explore the possibility of using trust region techniques in ADM type algorithms.
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