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In this paper we propose an augmented Lagrangian trust region method for equality constrained optimiza-
tion. Different from standard augmented Lagrangian methods which minimize the augmented Lagrangian
function for fixed Lagrange multiplier and penalty parameter at each iteration, the proposed method tries
to minimize its second-order approximation function. We propose a new strategy for adjusting the penalty
parameter. With adaptive update of Lagrange multipliers, we prove the global convergence of the proposed
method. Numerical results on test problems from the CUTEr collection are also reported.
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1. Introduction

In this paper, we consider the following equality constrained optimization:

min
x∈Rn

f (x)

s. t. c(x) = 0, (1)

where f : R
n → R is Lipschitz continuously differentiable and c = (c(1), . . . , c(m))T with c(i) :

R
n → R, i = 1, . . . , m, Lipschitz continuously differentiable.
In the past decades, quantities of methods have been studied for solving (1). One of the most

effective methods is the sequential quadratic programming (SQP) method, which dates back to
Wilson [31] and later is developed by Han [20], Powell [27], etc. Its basic idea is to transform the
original problem into a sequence of quadratic programming (QP) subproblems. At each iteration,
a trial step solves the following QP subproblem:

min
d∈Rn

gT
k d + 1

2
dTBkd

s. t. ck + Akd = 0, (2)
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560 X. Wang and Y. Yuan

where k is referred as the iteration number, Ak is the Jacobian of the constraints and Bk denotes
the exact Hessian of the Lagrange function f (x) − λTc(x) or its approximation evaluated at the
current iterate xk . Here, λ ∈ R

m is a vector of multipliers. To be practical, specific strategies need
to be applied to globalize the SQP method. One strategy is to carry out line search techniques.
However, in order to avoid unbounded solutions, line search methods normally require Bk to
be positive definite in the null space of Ak , a condition which may fail when Bk is set as the
exact Hessian of the Lagrangian function. Another strategy is to apply the trust region technique.
It restricts the length of the trial step by adding the trust region constraint ‖d‖ ≤ �k . It allows
indefinite Bk , so that Bk can be chosen as the exact Hessian of the Lagrange function. However,
complications may arise, as the inclusion of the trust region bound might cause infeasibility of
the linearized constraints. Thus, it is necessary to relax the constraints (see, e.g. [6,28]), which
however complicates the algorithm. Besides, it is very important to choose an effective merit
function to ensure global convergence. Several kinds of merit functions have been studied, for
example, l1 penalty function, l∞ penalty function and augmented Lagrangian function. However,
the effectiveness of all these merit functions depends on, and may be sensitive to, the choices of
some parameters, which need very careful consideration.

To avoid the possible difficulties arising from infeasible subproblems, two kinds of quadratic-
related subproblems based on exact penalty functions have been proposed. Two resultant
methods are the sequential l1 quadratic programming (S l1QP) method [15] and the sequential
l∞ quadratic programming (S l∞QP) method [32], respectively. Their common idea is penaliz-
ing the linearized constraints in the objective of (2) in terms of an l1 penalty term or an l∞ penalty
term, and integrating trust region techniques. And the corresponding l1 or l∞ penalty function
is applied as the merit function. However, one major concern associated with these two meth-
ods is the nonsmoothness. As the merit function is nonsmooth, Maratos effect may happen [22].
It prevents the superlinear trial step from being accepted due to an increase in the merit func-
tion. Another difficulty of using a nonsmooth exact penalty function is that the corresponding
subproblem is a nonsmooth problem, which may be not easy to solve. Motivated by these, we
consider to build up some kind of smooth and feasible subproblems.

Penalty methods for nonlinear programming have been greatly developed in the past years.
The key idea of such methods is moving the original constraints into the objective in (1). Then,
at each iteration a much easier optimization problem, for example, unconstrained optimization or
simple-bounded optimization problem, is to be solved. One of the most famous penalty methods
is the augmented Lagrangian method. This method was first studied by Hestenes [21], Powell
[26] and Rockfellar [30], and then was adapted by Conn et al. [8]. Since then, it has attracted
much attention, and many augmented Lagrangian function-based variants have sprung up, such
as [2,3,13,14]. It is fully applied in other fields, such as compressed sensing [5], semidefinite
programming [34] and matrix completion [16]. Let us take (1) for example. At each iteration,
the augmented Lagrangian function with fixed Lagrange multiplier λk and penalty parameter σk

is minimized:

min
x∈Rn

f (x) − λT
k c(x) + σk

2
‖c(x)‖2

2. (3)

By introducing the explicit Lagrange multiplier, this method reduces the possibility of ill con-
ditioning arising from simple penalty methods, like the Courant penalty method or log-barrier
approach (see [25] for reference). Moreover, it does not introduce any nonsmoothness, different
from Sl1QP and Sl∞QP methods (see, e.g. [25]). Thus, implementations can be constructed from
standard methods and software for unconstrained optimization. One influential work on practical
augmented Lagrangian method was the paper by Conn et al. [8], based on which a well-known
package LANCELOT [9] has been released. We will compare our method with it in the numer-
ical experiments presented below. In [8], subproblem (3) is solved until its first-order criticality
measure within the precision wk , where the sequence {wk} is reduced to zero. However, it is
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Optimization Methods & Software 561

questionable whether such an approach is the best. Firstly, when wk is very small, if f is highly
nonlinear, it will be very costly to solve (3) to achieve the required precision wk . Secondly, when
Lagrange multiplier λk is far away from the Lagrange multiplier associated with the solution, it
seems unnecessary to make too much endeavour to solve (3) with high precision. Therefore, it is
desirable to construct subproblems which can be easily solved to reduce the computational cost
at each iteration.

A useful approach was given by Niu and Yuan [24]. They propose a filter-typed method,
where the subproblem is to minimize a quadratic approximation to the augmented Lagrangian
function in the trust region, thus different from the standard augmented Lagrangian methods
where (3) to be solved. An advantage of Niu and Yuan’s method is that the trust region subprob-
lem is a relatively easier problem, which can be efficiently solved by many algorithms. Some
satisfactory numerical results are reported in [24]. However, no convergence results are given
in that paper. Recently, Curtis et al. [11] apply similar trust region subproblems and propose an
adaptive method for large-scale constrained optimization. Nice numerical results are presented.
However, the first-order criticality of the accumulation points of iterates could not be obtained, if
there are infinite number of penalty parameter updates and the constraint violation converges
to zero. Motivated by the nice numerical properties of trust region subproblems applied in
aforementioned two papers, we adopt the same design of subproblems in our algorithm.

Contributions. Our contributions in this paper lie in several folds. Firstly, we propose a new strat-
egy to update the penalty parameters, which not only depends on constraint violations, but also
relies on the model improvement. This new strategy normally prevents the iteration from being
trapped around some local minimizer of the augmented Lagrangian function with fixed Lagrange
multiplier and penalty parameter. Secondly, for this proposed method, we show its global conver-
gence when penalty parameters are either bounded or unbounded. Moreover, the relaxed constant
positive linear dependence (RCPLD) constraint qualification (will be defined later) is applied to
analyse the global convergence. This RCPLD condition is recently proposed by Andreani et al.
[4] and has been shown weaker than many other traditional constraint qualification conditions.
Notations. Throughout this paper, we use the notation R

n to represent the n dimensional real
vector space, and R+ as the set of nonnegative real numbers. N denotes the set of all non-negative
integers. The superscript (i) refers to the ith element of a vector, while the subscript k refers to
the iteration number in an algorithm. Without specification, ‖ · ‖ represents the Euclidean norm
‖ · ‖2 in R

n. We denote g(x) as the gradient of f and A(x) as the Jacobian of c at x, namely,

g(x) = ∇f (x), A(x) = (∇c(1)(x), . . . , ∇c(m)(x))T.

We denote Nk as the null space of A(xk) and the operator P� as the Euclidean projection into a
closed and convex set �. For convenience, we abbreviate g(xk) to gk , and similar abbreviations
fk , ck and Ak are also used.
Organizations. The rest of this paper is organized as follows. In Section 2, we propose an aug-
mented Lagrangian trust region (ALTR) method for equality constrained optimization (1). In
Section 3, we study the global convergence of the proposed method. In Section 4, preliminary
numerical results are reported on majority of the equality constrained optimization problems
from CUTEr. Finally, we draw some conclusions in Section 5.

2. Algorithm description

In this section, we propose an ALTR method for equality constrained optimization (1). Firstly,
we give two widely used optimality conditions characterizing the feasible points of (1) (see, e.g.
[32]).
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562 X. Wang and Y. Yuan

Definition 2.1 A feasible point x∗ satisfies the Fritz-John conditions, if there exist a scalar
λ0 and a vector λ ∈ R

m, such that λ2
0 + ‖λ‖2 
= 0 and λ0g(x∗) = A(x∗)Tλ. Then x∗ is called a

Fritz-John point of (1).

Specifically, when λ0 
= 0, we obtain the definition of Karush-Kuhn-Tucker (KKT) points.

Definition 2.2 A feasible point x∗ satisfies the KKT conditions, if there exists a vector λ∗ ∈ R
m

such that

g(x∗) = A(x∗)Tλ∗. (4)

Then x∗ is called a KKT point of (1).

Constraint qualifications are normally used to describe the relations among the gradients of
constraints. One of the most widely used constraint qualification conditions in nonlinear pro-
gramming is the so-called linear independence constraint qualification (LICQ) (see, e.g. [25]).
With respect to (1), we give its definition as follows.

Definition 2.3 Given a feasible point x∗ of (1), we say that the LICQ condition holds at x∗, if
the gradients of all the equality constraints ∇c(i)(x), i = 1, . . . , m, are linearly independent.

Recently, another constraint qualification condition has attracted much attention [1–3,29],
which is called constant positive linear dependence (CPLD) condition. It has been shown that
the CPLD condition is weaker than LICQ condition. Later Andreani et al. [4] propose a RCPLD
constraint qualification, which is proved strictly weaker than CPLD. As in this paper the prob-
lem (1) has only equality constraints, we state the definition of RCPLD with respect to equality
constrained optimization.

Definition 2.4 Given a feasible point x∗ of (1), we say that the RCPLD condition holds at x∗,
if there exists a neighbourhood of x∗ such that {∇c(i)(x)}m

i=1 has the same rank for any x in this
neighbourhood.

We next discuss our algorithm in details, including the issues associated with the trust region
subproblems, and the update strategy of Lagrange multipliers and penalty parameters.

2.1 Trust region subproblems

Firstly, let us recall classic augmented Lagrangian methods. The augmented Lagrangian function
with respect to (x, λ, σ) is defined as

L(x; λ, σ) = f (x) − λTc(x) + σ

2
‖c(x)‖2, (5)

where λ ∈ R
m refers to the vector of multipliers and σ ∈ R+ is denoted as the penalty parameter.

The reason for introducing the augmented Lagrangian function (5) is based on the following
theoretical result. If x∗ is a local solution of (1) and λ∗ is the Lagrange multiplier associated with
x∗, under some regularity assumptions, there exists a threshold σ∗, such that, for all σ > σ∗, x∗
is a strict local minimizer of L(x; λ∗, σ). Interested readers are referred to [25, Theorem 17.5]
for further details. Based on this result, even though in practice the exact values of λ∗ and σ∗
are not known, a good estimate of x∗ can still be obtained by minimizing L(x; λ, σ) when σ is
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Optimization Methods & Software 563

not particularly large and λ is close to λ∗. Therefore, given the current iterate xk , xk+1 can be
obtained by solving the following subproblem:

min
x∈Rn

L(x; λk , σk). (6)

The good news is that there is no need to solve (6) exactly. Given a tolerance wk , Conn et al. [8]
suggest to apply an algorithm solving (6) until finding xk+1 such that

‖∇xL(xk+1; λk , σk)‖ ≤ wk .

Then by forcing wk → 0 together with adaptive update of λk and σk , the algorithm will find
KKT points or Fritz-John points. However, in practice, as f (x) might be highly nonlinear, this
procedure may be too expensive, especially when wk is small.

Instead of minimizing the nonlinear function L(x; λk , σk), Niu and Yuan [24] consider its
quadratic approximation. Such an approximation to L(xk + d; λk , σk) can be defined as

�k(d) := L(xk; λk , σk) + gT
k d − λT

k Akd + 1

2
dTBkd + σk

2
‖ck + Akd‖2, (7)

where Bk is the Hessian of Lagrange function f (x) − λT
k c(x), or its approximation, and the con-

straints in the penalty term are approximated by their linearizations. To ensure that �k(d) can be
trusted as an adequate approximation, the search region is restricted around the current iterate by
applying the trust region technique, which gives the following trust region subproblem:

min
d∈Rn

qk(d) := gT
k d − λT

k Akd + 1

2
dTBkd + σk

2
‖ck + Akd‖2

s. t. ‖d‖ ≤ �k . (8)

In (8), choices of approximate Hessian Bk are possible. For example, Bk can be generated through
update strategies, such as damped BFGS update (see, e.g. [25]), which only depends on the
first-order derivatives of f and c.

Subproblem (8) minimizes a quadratic function within an l2-norm trust region. This kind of
problem has the strong advantage that there are very efficient methods for solving it, such as
gqtpar subroutine [23], sequential subspace method [18] and so on. Actually, it just needs at
most a polynomial (in n) number of operations (see, e.g. [10]). Moreover, there is no need to
solve (8) exactly or nearly exactly. It is enough to find an inexact solution sk satisfying

qk(0) − qk(sk) ≥ β̄ ·
[

qk(0) − min
‖d‖≤�k

qk(d)

]
(9)

for some positive constant β̄ ∈ (0, 1). For example, the truncated CG method always satisfies (9)
for β̄ = 0.5, if the Hessian of qk(d) is positive definite (see, e.g. [33]). We believe that (9) admits
many inexact solutions of (8). In the following analysis, we will assume that (9) holds for all k.

After obtaining the trial step sk , we should decide whether to accept it or not. Similar to the
classic strategy in trust region methods, the ratio between the actual reduction and the predicted
reduction:

ρk := Aredk

Predk
= L(xk; λk , σk) − L(xk + sk; λk , σk)

qk(0) − qk(sk)
(10)

is computed. If ρk is far from 1, it implies that the approximation of L(xk + d; λk , σk) is not
adequate in the current trust region. Then we reduce �k . We expect ρk to be close to one when
�k is sufficiently small.
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564 X. Wang and Y. Yuan

However, a delicate situation may arise. It may happen that xk is a local minimizer of
L(x; λk , σk) for some λk and σk , so the equality ∇xL(xk; λk , σk) = 0 holds. Then although the
least value of L(x; λk , σk) is reached at x = xk , and although the gradient of qk(d) at d = 0 is
zero, qk(d) may take negative values near d = 0 due to negative curvature, because Bk could
be a large negative multiple of the unit matrix. Then Aredk and Predk are negative and positive,
respectively, for every positive trust region radius �k , giving ρk < 0, which may cause an infi-
nite loop. As a matter of fact, in such circumstance, two cases are possible. One case arises when
xk is feasible. Then the relations

∇xL(xk; λk , σk) = gk − AT
k λk + σkAT

k ck = 0 and ‖ck‖ = 0 (11)

indicate that xk is a KKT point as gk − AT
k λk = 0. In this case, the algorithm terminates finitely.

The other case happens when xk is infeasible, giving

∇xL(xk; λk , σk) = 0 and ‖ck‖ > 0. (12)

In order to make the algorithm escape from this situation, we break the first equality in (12) by
increasing σk . If ∇xL(xk; λk , σk) 
= 0 for a new larger σk , it can go into the minimization phase of
(8). While, if for all large σ ≥ σk , ∇xL(xk; λk , σ) is zero vector and ‖ck‖ > 0, it will be proved
that xk is an infeasible stationary point of minimizing ‖c(x)‖2 in Theorem 3.2. Besides, normally
increasing σk is helpful for reducing constraint violations.

Let us look back to subproblem (8) again. Compared with classic penalty methods, it just
needs to minimize a quadratic approximation of the augmented Lagrangian function at each
iteration. Therefore, it can be regarded as applying one iteration step of a trust region method to
solve (6). This strategy avoids some trouble in trying to solve the equations ∇xL(x; λk , σk) = 0
approximately. Thus we can expect a substantial reduction in the cost of computation at each
iteration.

As we have mentioned already, standard trust region SQP methods may encounter infeasi-
ble subproblems. Although Sl1QP and Sl∞QP are designed to settle this situation, these two
approaches still involve difficulties arisen from nonsmoothness. However, subproblem (8) can
be seen as applying the augmented Lagrangian function directly for (2), with a trust region con-
straint. This not only solves the difficult infeasibility issues, but also avoids the disadvantages of
nonsmooth penalty functions.

2.2 Update of penalty parameters and vectors of multipliers

In augmented Lagrangian methods, the strategies to update penalty parameters and Lagrange
multipliers play an important role. Different updating schemes normally have different influences
on the efficiency of algorithms.

Firstly, we decide how to update σk effectively in our algorithm. Niu and Yuan [24] suggest

σk+1 =
{

max{2σk , 2‖λk+1‖} if ‖c(xk + sk)‖ ≥ 0.5‖ck‖,

max{σk , 2‖λk+1‖}, otherwise.
(13)

The motivation for (13) is the inequality σk+1 ≥ 2‖λk+1‖, a condition that Niu and Yuan [24] use
to analyse the exactness of the augmented Lagrangian function. However, σ∗ ≥ 2‖λ∗‖ is not a
necessary condition for L(x; λ∗, σ∗) to be an exact penalty function of (1). Thus, in our method,
we do not use (13) to update penalty parameters.

As we have discussed in the subsection above, in order not to be trapped around local min-
imizers of L(x; λk , σk), we should increase σk as long as (12) holds. We next assume that the
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Optimization Methods & Software 565

subproblem (8) generates a trial step sk . Most updating techniques for penalty parameters depend
on the improvement of constraint violations, such as (13). In general, the penalty parameter is
increased if sufficient improvement is not obtained. To be more exact, if the constraint violation
‖c(xk + sk)‖ is not improved much compared with ‖ck‖, e.g.

‖c(xk + sk)‖ ≥ τ‖ck‖
for some constant 0 < τ < 1 independent of k, σk will be increased.

However, it is inadequate to adopt such kind of strategies in our method. We see that in the
subproblem (8), the penalty term involving σk also plays an important role in the objective, which
consequently affects the computation of the trial step sk as well as the predicted reduction Predk .
Conversely, the important contribution from σk to Predk inspires us to use Predk in the choice of
σk+1. When updating σk , we pay attention to the relation among the predicted reduction Predk ,
the constraint violation ‖ck‖ and the trust region radius �k . Our novel way of updating σk tests
the inequality:

Predk < δkσk min{�k‖ck‖, ‖ck‖2}, (14)

where δk ∈ R+ is an auxiliary parameter. If (14) holds, we think that the model (8) has not given
enough attention to ‖ck‖, so we focus on reducing ‖ck‖ by increasing the penalty parameter σk .
It is necessary for σkδk to have the property

σkδk → 0,

if σk increases to infinity. Once σk increases to a very large number, ‖ck‖ becomes very small.
Then xk is close to the feasible region, so it is not necessary to increase σk unless Predk is very
small. The condition (14) is different from that in [32] due to the l2-norm penalty term of the
augmented Lagrangian function.

Our next major consideration is how to update the multiplier λk . Whenever the iterates are
relatively far away from the feasible region, or the constraint violation is not improved much, it
seems urgent to reduce the constraint violation and drive the iterates to the feasible region instead
of updating λk . We set a switch condition

‖ck+1‖ ≤ Rk , (15)

where {Rk} is a sequence of nonincreasing controlling factors. It can be regarded as some indi-
cation on the progress of the algorithm. If (15) holds, we think that the iterates are approaching
the feasible region. In this case, we choose to update the multiplier with the latest algorithmic
information. Otherwise, the new iterate is thought to be relatively far away from the feasible
region. Then, we pay our attention to obtaining a point with lower constraint violation, rather
than giving priority to updating the multiplier.

In augmented Lagrangian methods, λk plays a very important role in guiding the algorithm
to the solution of (1). A good update strategy will speed up the algorithm a lot. In standard
augmented Lagrangian methods, as the new iterate xk+1 obtained by solving (6) satisfies the
equation

gk+1 − AT
k+1λk + σkAT

k+1ck+1 = 0, (16)

(4) suggests that a good estimate of λk+1 is λk − σkck+1. However, this estimate is unsuitable
in our method, because xk+1 is obtained from the approximate subproblem (8), which does not
imply (16). As the standard update λk+1 = λk − σkck+1 can not be used here, we obtain λk+1

through minimizing ‖gk+1 − AT
k+1λ‖.

In addition, Lagrange multipliers are normally required to be bounded or not to grow too fast
compared with the penalty parameter σk (see, e.g. [8, Lemma 4.1–4.2]). A similar requirement is
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566 X. Wang and Y. Yuan

needed in our method. To ensure global convergence, the ratio λk/σk needs to approach zero vec-
tor when σk increases to infinity. However, if we simply define λk = arg minλ∈Rm ‖gk − AT

k λ‖2,
we can not guarantee that λ̃k/σk will converge to zero as σk goes to infinity. So we introduce an
auxiliary vector λ̃k which is defined as

λ̃k = arg min
λ∈Rm

‖gk − AT
k λ‖2. (17)

The easiest way to obtain an acceptable λk is to set a boundedness condition on it. Therefore,
after obtaining λ̃k , we project it onto a compact box [λmin, λmax] to get λk , namely,

λk = P[λmin,λmax]λ̃k . (18)

This projection seems reasonable, as a bounded optimal multiplier λ∗ exists at the solution x∗
of the original problem (1). For a globally convergent method with λk converging to λ∗, the
boundedness of λk is natural. Although we choose λ̃k as defined in (17) in the following ALTR
algorithm, any update strategy for λ̃k will not destroy the global convergence property presented
in the following section, provided that λk stays bounded.

2.3 Algorithm framework

The above discussions are summarized in the following ALTR algorithm for solving the equality
constrained optimization problem (1).

In ALTR algorithm, we introduce an update of penalty parameters (19) to move the iterates
away from infeasible local minimizers of the augmented Lagrangian function. The following
lemma shows a property of xk if the loop (19) is an infinite loop at xk .

Lemma 2.5 Suppose that xk is an iterate satisfying ∇xL(xk; λk , σ j
k) = 0 with σ

j
k updated by (19)

in an infinite loop. Then xk is an infeasible KKT point of

min
x∈Rn

‖c(x)‖2. (21)

Proof The KKT point x of (21) is characterized by A(x)Tc(x) = 0. As j increases to ∞, gk −
AT

k λk + σ
j
kAT

k ck = ∇xL(xk; λk , σ j
k) = 0. Since gk − AT

k λk is bounded, it implies that AT
k ck = 0.

Therefore, due to ‖ck‖ > 0, xk is an infeasible KKT point of (21). �

Theoretically, (19) may be trapped in an infinite loop at each iteration. However, in practical
computation, we could not allow this situation to happen. So we usually set a maximum number
of j to test whether ∇xL(xk; λk , σ j

k) = 0 or not. If it fails, we return xk as an approximate solution.
We thus in the following context assume that (19) finishes in a finite loop at each iteration. Once
this loop terminates finitely, we have ∇xL(xk; λk , σk) 
= 0. Then the subproblem (8) is solved. It
is easy to see that (8) always generates a trial step sk such that ρk ≥ η, provided that the trust
region radius �k is sufficiently small (see, e.g. [10]). Therefore, the loop between Steps 2 and 3 in
ALTR algorithm will stop in finite number of inner iterations. This implies that ALTR algorithm
is well-posed.

3. Global convergence

We assume that ALTR algorithm generates an infinite sequence of iterates {xk}. In this section,
we study the convergence properties of ALTR algorithm. We first give the following assumptions
required throughout this paper.
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Optimization Methods & Software 567

Algorithm 1 Augmented Lagrangian Trust Region Method (ALTR)

Step 0: Initialization. Given constants β ∈ (0, 1), ε > 0, θ > 1, λmin < λmax and

0 < η < η1 <
1

2
, R0 = max{‖c(x0)‖, 1}.

Given x0 ∈ R
n, B0 ∈ R

n×n, λ0 ∈ R
m, σ0 > 1, δ0 > 0, �0 > 0; Set j := 0, k := 0.

Step 1: Termination Test. If ‖ck‖ = 0 and PNk (gk) = 0, stop (return xk as solution).
Step 2: Computing Trial Steps. Set σ 0

k := σk and j := 0;
While ∇xL(xk; λk , σ j

k) = 0 and ‖ck‖ > 0,

σ
j+1
k := θσ

j
k; j := j + 1 (19)

Endwhile; Set σk = σ
j
k; Solve (8) obtaining sk;

Step 3: Update of Iterates. Compute the ratio ρk in (10); If ρk ≥ η, go to Step 4;
�k+1 = ‖sk‖/4; xk+1 = xk; k := k + 1; go to Step 2;

Step 4: Update of Penalty Parameters and Multipliers. If (14) is satisfied, then set

σk+1 = 2σk; δk+1 = δk/4; (20)

else σk+1 = σk , δk+1 = δk;
If ‖ck+1‖ ≤ Rk , then compute λ̃k+1 through (18) and set Rk+1 = βRk;
otherwise, set λk+1 = λk and Rk+1 = Rk;

Step 5: Update of Trust Region Radii. Set xk+1 = xk + sk and

�k+1 =

⎧⎪⎨
⎪⎩

max{�k , 1.5‖sk‖}, ifρk ∈ [1 − η1, +∞),

�k , if ρk ∈ [η1, 1 − η1),

max{0.5�k , 0.75‖sk‖}, if ρk ∈ [η, η1);

Calculate fk+1, gk+1, ck+1 and Ak+1; Generate Bk+1;
k := k + 1, then go to Step 1.

AS.1 f (x) and c(x) are Lipschitz continuously differentiable.
AS.2 {xk} and {Bk} are bounded.

It is reasonable to assume the boundedness of {xk}, as otherwise we are allowing the possibility
that the original problem has no bounded solution. For {Bk}, we can ensure its boundedness
unless a numerical overflow happens.

From the construction of ALTR algorithm, we could not exclude the case that the penalty
parameter σk increases to infinity. Thus the following analysis is separated into two parts. Firstly,
we analyse the theoretical properties of ALTR algorithm in the case when σk increases to infinity,
while the case with bounded σk is addressed later.

3.1 Convergence properties with unbounded penalty parameters

When the penalty parameter σk increases to infinity, we find that the sequence of constraint
violations {‖ck‖} is convergent, as stated and proved in the following lemma.
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568 X. Wang and Y. Yuan

Lemma 3.1 Under assumptions AS.1–AS.2, if σk → ∞, then limk→∞ ‖ck‖ exists.

Proof The penalty parameters σk , k = 1, 2, 3, . . . , are positive and increase monotonically.
Therefore the numbers σ−1

i −σ−1
i+1, i≥1, are all nonnegative, and, for all integers p and q that

satisfy 0<p<q, their sum has the property

q−1∑
i=p

(σ−1
i − σ−1

i+1) = σ−1
p − σ−1

q . (22)

Thus we deduce the bound
q∑

i=p

σ−1
i [f (xi) − f (xi+1)] = σ−1

p f (xp) +
q−1∑
i=p

(−σ−1
i + σ−1

i+1)f (xi+1) − σ−1
q f (xq+1)

≤ σ−1
p fmax + (σ−1

p − σ−1
q ) fmax + σ−1

q fmax = 2σ−1
p fmax, (23)

where fmax is an upper bound on |f (xk)|, k = 1, 2, 3, . . . .
We also require a bound on the sum

q∑
i=p

σ−1
i [λT

i c(xi+1) − λT
i c(xi)] = −σ−1

p λT
p c(xp) + σ−1

q λT
q c(xq+1)

+
q−1∑
i=p

{σ−1
i λT

i c(xi+1) − σ−1
i+1λ

T
i+1c(xi+1)}. (24)

We give special attention to the integers i such that λi+1 
= λi. We let I(p, q) be the set of such
integers in the interval [p, q − 1], but this set may be empty.

The algorithm provides the condition∑
i∈I(p,q)

{σ−1
i λT

i c(xi+1) − σ−1
i+1λ

T
i+1c(xi+1)} ≤

∑
i∈I(p,q)

{σ−1
i ‖λi‖ + σ−1

i+1‖λi+1‖}‖c(xi+1)‖

≤ 2σ−1
p ‖λmax‖

∑
i∈I(p,q)

‖c(xi+1)‖

≤ 2σ−1
p ‖λmax‖ R0

(1 − β)
,

where ‖λmax‖ is an upper bound on every ‖λk‖. For all the other terms in the second line of
expression (24), the vectors λi and λi+1 are the same, which gives the inequality

σ−1
i λT

i c(xi+1) − σ−1
i+1λ

T
i+1c(xi+1) ≤ (σ−1

i − σ−1
i+1)‖λmax‖ ‖cmax‖. (25)

Therefore, with the help of Equations (22) and (24), we find the bound
q∑

i=p

σ−1
i [λT

i c(xi+1) − λT
i c(xi)] ≤ σ−1

p ‖λmax‖ ‖cmax‖ + σ−1
q ‖λmax‖ ‖cmax‖

+ 2σ−1
p ‖λmax‖ R0

(1 − β)
+ (σ−1

p − σ−1
q )‖λmax‖ ‖cmax‖

= 2σ−1
p ‖λmax‖

{
‖cmax‖ + R0

(1 − β)

}
. (26)

Now, the algorithm provides L(xk+1; λi, σi) ≤ L(xk; λi, σi) on every iteration, because xk+1 is
different from xk only if Aredk is positive. Inequalities (23) and (26) with the definition (5) imply
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Optimization Methods & Software 569

the property

q∑
i=p

σ−1
i {L(xi; λi, σi) − L(xi+1; λi, σi)} ≤ 1

2
‖c(xp)‖2 − 1

2
‖c(xq+1)‖2 + M0σ

−1
p , (27)

where M0 is the constant

M0 = 2fmax + 2‖λmax‖
{
‖cmax‖ + R0

(1 − β)

}
.

We see that the sum on the left-hand side of inequality (27) is bounded above by 1
2‖c(xp)‖2 +

M0σ
−1
p . By letting q become infinite for any fixed p, it follows that the sum of the products

σ−1
k {L(xk; λk , σk) − L(xk+1; λk , σk)}, k = 1, 2, 3, . . . , is absolutely convergent. Furthermore, the

nonnegativity of the left-hand side of inequality (27) supplies the condition

‖c(xq+1)‖2 ≤ ‖c(xp)‖2 + 2M0σ
−1
p , 0 < p < q. (28)

Therefore, by letting q become infinite again with p fixed, we find that the sequence ‖c(xk)‖2,
k = 1, 2, 3, . . ., is bounded.

Let its liminf be ‖c∞‖2, and, for any ε > 0, let p satisfy ‖c(xp)‖2 < ‖c∞‖2 + ε. Because of
the assumption σk → ∞, the choice of p can also satisfy 2M0σ

−1
p < ε. It follows that condition

(28) gives the bound

‖c(xq+1)‖2 < ‖c∞‖2 + 2ε, q > p,

showing that limsup of the sequence ‖c(xk)‖2 as k → ∞ is at most ‖c∞‖2 + 2ε. Thus, because
the positive number ε can be arbitrarily small, the lim inf and lim sup limits of ‖c(xk)‖2, k =
1, 2, 3, . . ., are the same. The proof is complete. �

Lemma 3.1 ensures the convergence of {‖ck‖}, as σk → ∞. Hence, two cases arise: either
all the accumulation points of {xk} are infeasible, or all the accumulation points are feasible. We
welcome methods that can find feasible accumulation points, but that is impossible if the original
problem is ‘naturally’ infeasible, for example, c(x) 
= 0 for any x ∈ R

n. Therefore, it is necessary
to study how the algorithm behaves in terms of infeasibility.

Theorem 3.2 Under assumptions AS.1–AS.2, if limk→∞ σk = ∞ and limk→∞ ‖ck‖ > 0, then
any accumulation point of {xk} is a KKT point of (21).

Proof To prove the theorem, we have to establish limk→∞ ‖AT
k ck‖ = 0. Firstly we prove

lim inf
k→∞

‖AT
k ck‖ = 0. (29)

By contradiction, we assume that (29) were not true. Then there exists a constant μ > 0 such
that

lim inf
k→∞

‖AT
k ck‖ ≥ 2μ. (30)

Denote ḡk = ∇xL(xk; λk , σk). Due to σk → ∞ and (30), there exists k0 such that the following
property holds:

‖ḡk‖ ≥ σk‖AT
k ck‖ − ‖gk − AT

k λk‖ ≥ μσk , for all k ≥ k0. (31)

Therefore, (19) occurs at most finite number of iterations. Without loss of generality, we assume
that (19) never happens. Then σk → ∞ is only caused by (20) happening infinitely many times.
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570 X. Wang and Y. Yuan

Note that the subproblem (8) can be rewritten as

min
d∈Rn

qk(d) = ḡT
k d + 1

2
dT(Bk + σkAT

k Ak)d + σk

2
‖ck‖2

s. t. ‖d‖ ≤ �k . (32)

Then, the predicted reduction achieved at the exact solution of (32) satisfies (see, e.g. Chapter 4
in [25]) the following inequality

qk(0) − min
‖d‖≤�k

qk(d) ≥ 1

2
‖ḡk‖ min

{
‖ḡk‖

‖Bk + σkAT
k Ak‖

, �k

}
. (33)

It follows from AS.1 and AS.2 that there exists a positive constant M such that ‖Bk +
σkAT

k Ak‖ ≤ Mσk . Then (33) gives the lower bound

qk(0) − min
‖d‖≤�k

qk(d) ≥ 1

2
‖ḡk‖ min

{‖ḡk‖
Mσk

, �k

}
≥ μσk

2
min

{ μ

M
, �k

}
,

where the second inequality is due to (31). Then (9) implies that the predicted reduction Predk

along sk satisfies the following lower bound:

Predk ≥ β̄μσk

2
min

{ μ

M
, �k

}
, for all k ≥ k0. (34)

However, σk → ∞ provides the conditions that δkσk → 0 and Predk < δkσk min{�k‖ck‖, ‖ck‖2}
holds for infinitely many k. This contradicts (34). Hence, (29) holds.

We now assume that there exist an accumulation point x̄ of {xk} and a subset K such that
{xk}K → x̄ and ‖A(x̄)Tc(x̄)‖ 
= 0. Then a constant η > 0 is existent such that

min
‖d‖≤1

‖c(x̄) + A(x̄)d‖2 ≤ ‖c(x̄)‖2 − η.

Therefore, there exists ε ∈ (0, 1) such that, for all xk satisfying ‖xk − x̄‖ ≤ ε

min
‖d‖≤1

‖ck + Akd‖2 ≤ ‖ck‖2 − 0.9η,

which gives the inequality

min
‖d‖≤�k

‖ck + Akd‖2 ≤ ‖ck‖2 − 0.9 min(1, �k)η (35)

due to the convexity of ‖ck + Akd‖2. Denote dk as the minimizer of min{‖ck + Akd‖2 | ‖d‖ ≤
�k}. Then the predicted reduction has the lower bound

Predk ≥ β̄[qk(0) − qk(dk)]

= β̄

[
−(gT

k dk − (AT
k λk)

Tdk + 1

2
dT

k Bkdk) + σk

2
(‖ck‖2 − ‖ck + Akdk‖2)

]

≥ O(�k) + βσk

2
0.9 min(1, �k)η

≥ βσk

4
η min(1, �k), for all large k ∈ K,

as σk → ∞. (35) also indicates that {�k}K → 0 due to the fact that limk→∞ ‖ck‖ exists, which
implies that {ρk}K → 1, as k → ∞. Hence, there are infinitely many k ∈ K such that �k ≤ ε
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Optimization Methods & Software 571

and ‖xk − x̄‖ ≤ 1
4ε. For those k, the following property holds:

‖ck + Aksk‖2 ≤ ‖ck‖2 − 0.8η�k ,

which shows the relation between ‖ck‖ and ‖ck+1‖:

‖ck+1‖2 ≤ ‖ck‖2 − 0.7η�k . (36)

We now choose an arbitrary k̂ ∈ K such that ‖xk̂ − x̄‖ ≤ ε/8 and �k̂ ≤ ε. Let p be the smallest
nonnegative integer such that ‖xk̂+p+1 − x̄‖ ≥ ε/4. Thus, for i = 0, . . . , p, we have ‖xk̂+i − x̄‖ ≤
ε/4, which indicates that

‖sk̂+i‖ ≤ ‖xk̂+i+1 − x̄‖ + ‖xk̂+i − x̄‖ ≤ 1

2
ε, for 0 ≤ i ≤ p − 1.

The above bound and the update rule of trust region radii show that

�k̂+i ≤ 1.5‖sk̂+i‖ ≤ ε, for 0 ≤ i ≤ p.

Hence, (36) holds for k = k̂ + i, (i = 0, . . . , p). Thus, we obtain

‖ck̂+i+1‖ ≤ ‖ck̂‖2 − 0.7η

p∑
i=0

�k̂+i

≤ ‖ck̂‖2 − 0.7η

p∑
i=0

‖sk̂+i‖

≤ ‖ck̂‖2 − 0.7η‖xk̂+p+1 − xk̂‖
≤ ‖ck̂‖2 − 0.7η[‖xk̂+p+1 − x̄‖ − ‖xk̂ − x̄‖]

≤ ‖ck̂‖2 − 0.7η · 1

8
ε,

which contradicts Lemma 3.1 as there are infinitely many such k̂. Therefore, limk→∞ ‖AT
k ck‖ =

0, which completes the proof. �

We now give the convergence property of ALTR algorithm when σk → ∞ and ‖ck‖ → 0.

Theorem 3.3 Let assumptions AS.1–AS.2 hold. If limk→∞ σk = ∞ and limk→∞ ‖ck‖ = 0,
then the sequence of iterates {xk} is not bounded away from KKT points of (1), or its Fritz-John
points at which the RCPLD condition fails to hold.

Proof Let x̄ be any accumulation point of {xk}. Then c(x̄) = 0. If the RCPLD condition fails to
hold at x̄, then all the gradients of constraints at x̄ are linearly dependent. Thus according to the
definition of the RCPLD condition, we obtain that x̄ is a Fritz-John point. We next study the case
when the RCPLD condition holds at accumulation points.

As σk → ∞ and the increase of σk is due to (19) or (and) (20), two possible cases may happen.
Case 1 Update (19) occurs in only finitely many iterations. Then for all large k, only update

(20) happens in the kth iteration. Without loss of generality, we assume that (19) never happens.
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572 X. Wang and Y. Yuan

Firstly, we prove that for any ε > 0, there exists k = k(ε), such that

‖ck‖ < ε and ‖PNk (gk − AT
k λk)‖ < ε. (37)

Suppose (37) were not true. Then, due to limk→∞ ‖ck‖ = 0, there exists ε̄ > 0 such that for all
sufficiently large k,

‖ck‖ < ε̄ and ‖PNk (gk − AT
k λk)‖ ≥ ε̄.

Hence, the predicted reduction satisfies the lower bound

Predk ≥ β̄ξ1‖PNk [gk − AT
k λk]‖ min{ξ2‖PNk [gk − AT

k λk]‖, �k}
≥ β̄ξ1ε̄ min{ξ2ε̄, �k} ≥ ν̄ min{�k‖ck‖, ‖ck‖2}

with some positive constant ν̄. However, σk → ∞ indicates that

Predk ≤ σkδk min{�k‖ck‖, ‖ck‖2}

holds for infinitely many k with σkδk → 0 as k → ∞. This is a contradiction. As a result, for
any ε > 0, there exists k such that (37) holds. Consequently, by forcing ε → 0 we obtain a
subsequence K such that

lim
k→∞
k∈K

‖ck‖ = 0 and lim
k→∞
k∈K

‖PNk (gk − AT
k λk)‖ = 0.

Let x∗ be any accumulation point of {xk}K. Then there exists a subset K1 ⊆ K such that {xk}K1 →
x∗. Assume that the RCPLD condition holds at x∗. We next prove that x∗ is a KKT point of (1).

Denote {∇c(i)(x∗)}i∈I as the maximal set of linearly independent vectors, among all the gradi-
ents of constraints at x∗. Then by RCPLD and continuity of constraint functions, there exists a
neighbourhood of x∗ such that for any point x in this neighbourhood, {∇c(i)(x)}i∈I are linearly
independent and

span{∇c(i)(x), i = 1, . . . , m} = span{∇c(i)(x), i ∈ I}.

Then an index k0 is existent such that for all k0 < k ∈ K, {∇c(i)(xk)}i∈I are linearly independent
and

Range(AT
k ) = span{∇c(i)(xk), i = 1, . . . , m} = span{∇c(i)(xk), i ∈ I}. (38)

We now introduce a new matrix Ā
T
k , whose columns consist of the vectors ∇c(i)(xk), i ∈ I. We

denote it as Ā
T
k = (∇c(i)(xk))i∈I . Similarly, we denote Ā

T
∗ as Ā

T
∗ = (∇c(i)(x∗))i∈I . Because Ā

T
∗

has full column rank and {xk}K1 → x∗, there exist k1 ≥ k0 and M such that Ā
T
k has full column

rank and

‖(ĀT
k )+‖ ≤ M , ∀ k1 ≤ k ∈ K1. (39)

Since for any k, there exist μk and yk such that gk − μk = Ā
T
k yk , (39) implies that μk → 0 as

k ∈ K1, k → ∞. Due to gk → g∗ and Āk → Ā∗ as k ∈ K1, k → ∞, it follows that y∗ is existent

such that yk → y∗ as k ∈ K1, k → ∞. Therefore, we obtain g∗ = Ā
T
∗y∗. This shows that g∗ ∈

Span{∇c(i)(x∗), i ∈ I}, which indicates that g∗ ∈ Range(AT
∗ ). Therefore, it follows from c∗ = 0

that x∗ is a KKT point of (1).

D
ow

nl
oa

de
d 

by
 [

A
ca

de
m

y 
of

 M
at

he
m

at
ic

s 
an

d 
Sy

st
em

 S
ci

en
ce

s]
 a

t 0
4:

22
 0

4 
Ja

nu
ar

y 
20

16
 



Optimization Methods & Software 573

Case 2 Update (19) occurs in infinitely many iterations.
In this case, from the update strategy (19), we know that there exist subsequences {xk}K and

{σ̄k}K such that

gk − AT
k λk + σ̄kAT

k ck = 0, k ∈ K. (40)

Suppose x∗ is an accumulation point of {xk}K and {xk}K1 → x∗ where K1 ⊆ K. If the RCPLD
condition holds at x = x∗, for any sufficiently large k ∈ K1, similar to the discussion in Case 1,
there exists Āk which has full row rank such that

Range(AT
k ) = Range(Ā

T
k ).

As (40) indicates that gk ∈ Range(AT
k ), consequently gk ∈ Range(Ā

T
k ). Therefore, g∗ ∈

Range(Ā
T
∗ ) due to {xk}K1 → x∗. It follows from c∗ = 0 that x∗ is a KKT point. �

3.2 Convergence properties with bounded penalty parameters

We now investigate the theoretical properties of ALTR algorithm when all the penalty parameters
are bounded. In this case, σk keeps unchanged for all large k, equivalently, neither (19) nor (20)
happens. Without loss of generality, we assume that

σk = σ for all k. (41)

Firstly, we show that all the accumulation points are feasible if {σk} is bounded.

Lemma 3.4 Let AS.1–AS.2 hold. If {σk} is bounded, then there must have

lim
k→∞

‖ck‖ = 0. (42)

Proof Due to (41), it follows from Step 4 in ALAS that Predk has the lower bound

Predk ≥ δσ min{�k‖ck‖, ‖ck‖2}. (43)

The update scheme of λk in Step 4 and the assumption AS.2 indicate that the sum of all −λT
k ck +

λT
k ck+1 is bounded because

∞∑
k=0

(−λT
k ck + λT

k ck+1) ≤ 2‖λmax‖
(

cmax + 1

1 − β
R0

)
< ∞.

Thus, the sum of all Aredk is bounded as well:

∞∑
k=0

Aredk =
∞∑

k=0

(fk − fk+1) +
∞∑

k=0

(−λT
k ck + λT

k ck+1) + σ

2

∞∑
k=0

(‖ck‖2 − ‖ck+1‖2) ≤ M̄ (44)

for some positive constant M̄ due to AS.1–AS.2. In order to prove (42), we first need to show
that

lim inf
k→∞

‖ck‖ = 0. (45)

By contradiction, let us assume that (45) were not true. Then there exists a constant τ > 0 such
that for all large k, ‖ck‖ ≥ τ . In this case, (43) indicates Predk ≥ δσ min{�kτ , τ 2}. Denote S̄ as
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574 X. Wang and Y. Yuan

the set of all indices corresponding to successful iterations, namely,

S̄ = {k ∈ N : ρk ≥ η}.

With the help of (43) and (44), we have that {�k}S̄ → 0. Then the update rule of trust region
radii indicates that for all k

�k → 0, as k → ∞, (46)

which deduces that for all large k

|ρk − 1| = |Aredk − Predk|
Predk

≤ M�2
k

δσ min{�kτ , τ 2} → 0,

where M is a finite positive constant. It implies that �k+1 ≥ �k for all large k, which contradicts
Equation (46). Therefore Equation (45) holds.

We now prove Equation (42) by the way of contradiction. Assume that Equation (42) were not
true. Then there exists an infinite indices set {mi} ⊂ S̄ and a positive number ν such that

‖cmi‖ ≥ 2ν. (47)

Moreover, Equation (45) suggests the existence of a subsequence {ni} ⊂ S̄ such that

‖ck‖ ≥ ν (mi ≤ k < ni) and ‖cni‖ < ν. (48)

Define the set

K :=
⋃

i

{k ∈ S̄ : mi ≤ k < ni}.

Then, Aredk with k ∈ K has the lower bound

Aredk ≥ ηδσ min{�kν, ν2} ≥ ξ�k , k ∈ K

for some positive constant ξ . From this and Equation (44) we know that {�k}K → 0. Then for
all sufficiently large i,

‖xmi − xni‖ ≤
ni−1∑
k=mi

‖xk − xk+1‖ ≤
ni−1∑
k=mi

k∈S̄

�k ≤ 1

ξ

ni−1∑
k=mi

k∈S̄

Aredk .

The boundedness of
∑∞

k=0 Aredk in Equation (44) implies that ‖xmi − xni‖ → 0 as i →
∞, which further indicates that ‖cmi − cni‖ → 0 as i → ∞. Therefore, with the help of
Equation (48), we know that for all sufficiently large i, ‖cmi‖ < 2ν holds, which contradicts
Equation (47). The proof is complete. �

We are now ready to give the main convergence result of ALTR algorithm with bounded
penalty parameters.

Theorem 3.5 Let AS.1–AS.2 hold. If {σk} is bounded, then {xk} generated by ALTR algorithm
is not bounded away from KKT points of (1).

D
ow

nl
oa

de
d 

by
 [

A
ca

de
m

y 
of

 M
at

he
m

at
ic

s 
an

d 
Sy

st
em

 S
ci

en
ce

s]
 a

t 0
4:

22
 0

4 
Ja

nu
ar

y 
20

16
 



Optimization Methods & Software 575

Proof Due to (41), the subproblem (8) now turns into

min
d∈Rn

qk(d) = ḡT
k d + 1

2
dT(Bk + σAT

k Ak)d + σ

2
‖ck‖2

s. t. ‖d‖ ≤ �k

with ḡk = gk − AT
k λk + σAT

k ck . Then through simple calculations, the predicted reduction at
each iteration satisfies

qk(0) − qk(sk) ≥ β̄
‖ḡk‖

2
min

{
‖ḡk‖

‖Bk + σAT
k Ak‖

, �k

}

≥ β̄ζ1‖ḡk‖ min{ζ2‖ḡk‖, �k}, (49)

with two positive constants ζ1 and ζ2 (see [10] for reference). Then (44) indicates that

lim inf
k→∞

‖ḡk‖ = 0. (50)

It follows from Lemma 3.4 that

lim inf
k→∞

‖gk − AT
k λk‖ = 0.

As λk is bounded for all k, there exist an accumulation point x∗ of {xk} and an accumulation point
λ∗ of {λk} such that

c(x∗) = 0, ∇f (x∗) = A(x∗)Tλ∗.

Therefore, x∗ is a KKT point of (1). �

Note that we do not assume any constraint qualification in the convergence result of ALTR
algorithm when penalty parameters are bounded.

4. Numerical experiments

In this section we examine the numerical behaviour of ALTR algorithm. Our implementation is
executed in Matlab 7.6.0 (R2008a) on a PC with a 1.86 GHz Pentium Dual-Core microprocessor
and 1GB of memory running Fedora 8.0. We test 136 equality constrained optimization problems
from CUTEr [17]. The test set comprises both medium and large-scale problems. The number of
variables varies from 2 to 4499, while the number of equality constraints ranges from 1 to 2998.

In our implementations, we use the default starting point x0 for each problem. Moreover, as
CUTEr can provide the exact Hessian of functions, we set Bk = ∇2

xxl(xk , λk) at each iteration. We
believe that it is useful during the early stages of code development. Many solvers have been pro-
posed for the trust region subproblem (8) (see, e.g. [7,19,23]). Among them, the routine gqtpar
proposed by Moré and Sorensen [23] is very effective and stable. It relies on a convenient char-
acterization of the exact solution and usually performs very well for relatively small problems.
But it was designed initially for general purpose without consideration of any specific charac-
teristic of each problem, especially for large-scale problems. However, for large-scale problems,
normally there exist some special structures, such as sparsity and low rank property. Take prob-
lems AUG2DC and DTOC3 for examples. We draw the distribution curve of nonzero elements
of the Hessian Bk + σkAT

k Ak for these two problems, respectively, in Figure 1. The percentage
for nonzero numbers are both around 0.1%, which shows that both problems are very sparse
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Figure 1. Dimension and distribution curve of nonzero elements of the Hessian Bk + σkAT
k Ak . (a) AUG2DC

(3280 × 3280) and (b) DTOC3 (4499 × 4499).

although their dimensions are large. So the performance is believed to be improved a lot if the
algorithm can make use of structures of the test problems. For large-scale problems, the main
cost of gqtpar is spent on Cholesky factorizations. Actually, this cost can be reduced if sparsity
is considered. Motivated by this, we rewrite gqtpar in Matlab and combine some techniques to
deal with sparsity.

We compare ALTR with the famous code LANCELOT [8], which is written in Fortran. It
seems fair that we should compare our method with some existing approach which is also writ-
ten in Matlab. So we choose to compare with the subroutine fmincon in Matlab Optimization
Toolbox. To meet different users’ demands, some parameters in LANCELOT and fmincon are
optional. In numerical experiments we adopt the following settings to make the comparisons as
fair as possible.

LANCELOT:
BEGIN

gradient-accuracy-required 1e-5
exact-second-derivatives-used
trust-region-radius 1.0
maximum-number-of-iterations 1000
two-norm-trust-region-used

END
fmincon:
options = optimset(‘Algorithm’, ‘Active-set Algorithm’, ‘Hessian’, ‘on’, ‘InitTrustRegionRa-
dius’, ‘1’, ‘MaxFunEvals’, ‘1000’, ‘TolCon’, 1e-5, ‘TolFun’, ‘1e-5’, ‘TolX’, 1e-15).

In ALTR, we also set the initial trust region radius as 1. And the maximum number of function
evaluations is set as 1000. The practical termination condition adopted here is

‖ck‖ < 10−5, ‖PNk (gk)‖ < 10−5. (51)

Except for (51) we terminate ALTR when

‖sk‖ ≤ 10−15 (52)
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Optimization Methods & Software 577

Table 1. Results on small- and medium-scale problems.

Prob. Dim. LANCELOT fmincon ALTR

Problem n m nf ng nf ng nf ng

AIRCRFTA 8 5 4 5 3 2 3 3
ARGTRIG 200 200 19 17 3 2 4 4
ARTIF 102 100 34 25 12 10 11 11
BDVALUE 100 100 1 2 2 1 2 2
BDVALUES 100 100 28 29 14 13 33 33
BOOTH 2 2 3 4 2 1 4 4
BROWNALE 200 200 6 7 14 7 9 9
BROYDN3D 500 500 6 7 5 4 7 7
BT1 2 1 23 20 F F 7 7
BT2 3 1 27 27 16 15 21 21
BT3 5 3 10 11 9 8 22 22
BT4 3 2 20 21 13 11 7 7
BT5 3 2 17 17 9 7 6 6
BT6 5 2 21 20 33 26 13 11
BT7 5 3 48 46 154 38 122 120
BT8 5 2 27 25 11 10 14 14
BT9 4 2 20 21 F F 23 21
BT10 2 2 17 18 8 7 16 16
BT11 5 3 18 19 13 10 18 18
BT12 5 3 22 21 7 6 21 18
BYRDSPHR 3 2 35 22 166 14 16 15
CATENA 33 10 53 53 F F 133 111
CATENARY 33 10 81 79 F F 277 254
CHAIN 800 401 F F 4 3 F F
CHANDHEU 100 100 14 15 10 9 13 13
CHNRSBNE 50 98 74 61 F F 46 40
CLUSTER 2 2 11 11 8 7 9 9
CUBENE 2 2 46 40 3 2 19 15
DECONVNE 61 40 57 46 2 1 24 15
DRCAVTY3 196 100 45 37 F F 20 12
DTOC2 298 198 31 31 114 52 82 71
EIGENA2 6 3 5 6 3 2 5 5
EIGENACO 110 55 19 20 3 1 13 13
EIGENAU 110 110 20 20 2 1 12 12
EIGENB2 6 3 10 10 3 1 19 19
EIGENB 110 110 185 151 F F 86 69
EIGENBCO 6 3 18 16 3 1 10 9
EIGENC2 30 15 44 40 2 1 10 10
EIGENCCO 462 231 204 169 F F 211 198
ELEC 75 25 48 42 667 211 27 22
FLOSP2TH 323 323 F F F F 230 158
GENHS28 10 8 6 7 8 7 8 8
GOTTFR 2 2 27 24 8 5 10 6
HATFLDF 3 3 24 22 F F 9 7
HATFLDG 25 25 15 14 18 6 8 8
HEART6 6 6 F F F F 490 481
HEART8 8 8 599 520 F F 40 35
HIMMELBA 2 2 3 4 2 1 5 5
HIMMELBC 2 2 7 7 7 5 6 6
HIMMELBE 3 3 5 6 3 2 5 5
HS100LNP 7 2 39 38 F F 9 7
HS111LNP 10 3 55 52 42 41 12 12
HS26 3 1 31 29 8 4 16 16
HS27 3 1 12 13 631 96 13 11
HS28 3 1 3 4 8 6 6 6
HS39 4 2 20 21 F F 23 21
HS40 4 3 10 11 7 6 6 6
HS42 4 2 10 11 10 9 8 8
HS46 5 2 26 20 15 11 17 16
HS47 5 3 22 22 61 27 16 15

(Continued)
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578 X. Wang and Y. Yuan

Table 1. Continued

Prob. Dim. LANCELOT fmincon ALTR

Problem n m nf ng nf ng nf ng

HS48 5 2 3 4 8 6 6 6
HS49 5 2 15 16 22 18 15 15
HS50 5 3 10 11 19 10 14 14
HS51 5 3 2 3 7 5 10 10
HS52 5 3 7 8 6 5 17 17
HS56 7 4 13 13 10 12 10 8
HS61 3 2 18 18 F F 11 10
HS6 2 1 53 48 14 7 14 12
HS77 5 2 23 22 24 21 13 10
HS78 5 3 13 12 10 9 7 7
HS79 5 3 14 13 11 10 6 6
HS7 2 1 17 17 18 10 8 8
HS8 2 2 10 10 6 5 6 6
HS9 2 1 5 6 11 6 6 6
HYDCAR20 99 99 F F 10 8 759 753
HYDCAR6 29 29 F F 6 5 76 71
HYPCIR 2 2 5 6 6 4 5 5
INTEGREQ 102 100 3 4 3 2 3 3
JUNKTURN 510 350 72 68 3 2 F F
LCH 150 1 35 34 F F 29 17
MARATOS 2 1 7 8 4 3 8 6
MWRIGHT 5 3 18 18 19 9 8 8
METHANB8 31 31 243 244 3 2 4 4
METHANL8 31 31 592 584 5 4 18 18
MSQRTA 100 100 18 17 7 5 12 11
MSQRTB 100 100 19 17 7 4 9 9
OPTCTRL3 299 200 82 83 F F 31 28
OPTCTRL6 299 200 82 83 F F 28 26
ORTHRDM2 203 100 300 260 8 6 8 8
ORTHRDS2 503 250 852 738 F F 614 614
ORTHREGB 27 6 74 66 6 5 48 47
ORTHRGDS 503 250 908 790 43 32 F F
POWELLBS 2 2 47 42 23 11 61 56
POWELLSQ 2 2 16 14 F F 22 19
RECIPE 3 3 16 17 23 11 14 14
RSNBRNE 2 2 32 28 5 2 14 12
S316-322 2 1 26 27 F F 14 14
SINVALNE 2 2 37 33 5 2 21 18
SPMSQRT 499 829 15 13 F F 10 10
TRIGGER 7 6 22 20 29 11 12 10
YATP1SQ 120 120 181 161 11 5 77 70
YATP2SQ 120 120 993 905 F F 20 20
YFITNE 3 17 95 81 F F 39 38
ZANGWIL3 3 3 7 8 3 1 11 11

or

‖ck‖ ≤ 10−5 and ‖sk‖ ≤ 10−5. (53)

According to Theorem 3.2, it may occur that the sequence {xk} is not bounded away from the
infeasible stationary points of min ‖c(x)‖2, so it is reasonable to terminate the algorithm when
the trial step is very short such as (52). In addition, once the iterate is close to the feasible region,
it is acceptable to terminate the algorithm when the trial step is short, as required in (53).

We separate all the test problems into two classes. One class insists of small- and medium-
scale problems, while the other is of large scale. We present the numerical results on all the
aforementioned problems in Tables 1 and 2, respectively. For each problem, ‘n’ and ‘m’ denote
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Optimization Methods & Software 579

Table 2. Results on large-scale problems.

Prob. Dim. LANCELOT fmincon ALTR

Problem n m nf ng CPU(s) nf ng CPU(s) nf ng CPU(s)

AUG2DC 3280 1600 58 59 1.99 3 1 462.65 29 29 3.77
BRATU2D 1024 900 4 5 0.11 >10 min 7 7 0.44
BRATU2DT 1024 900 8 9 0.26 >10 min 9 9 0.56
BROYDN3D 1000 1000 6 7 0.02 9 4 20.964 8 8 0.23
CBRATU2D 3200 2888 5 6 0.55 >10 min 8 8 1.6
CBRATU3D 3456 2000 6 7 0.15 >10 min 7 7 3.14
DRCAVTY1 961 961 46 40 14.26 F F F 29 24 7.03
DRCAVTY2 961 961 104 85 24.06 F F F 64 59 16.5
DTOC1L 745 490 14 15 0.11 17 8 25.248 11 11 0.37
DTOC3 4499 2998 57 58 0.87 F F F 30 30 1.92
DTOC4 4499 2998 33 34 0.84 F F F 28 28 1.52
DTOC5 1999 999 37 38 0.3 38 11 385.4 26 26 0.52
DTOC6 1000 500 120 118 0.98 >10 min 128 197 1.46
EIGENC 462 462 299 247 9.83 F F F 45 35 23.03
FLOSP2TL 867 803 >10 min 9 4 336 21 21 6.6
FLOSP2TM 867 803 >10 min 19 9 461.1 66 66 27.54
GRIDNETB 3444 1764 32 33 3.11 F F F 22 22 4.18
HAGER1 2001 1000 11 12 0.14 >10 min 14 14 0.37
HAGER2 2001 1000 12 13 0.12 7 3 142.46 15 15 0.40
HAGER3 2001 1000 9 10 0.15 13 7 134.1 13 13 0.49
LUKVLE10 1000 998 47 37 0.2 >10 min 24 19 0.47
LUKVLE11 998 664 34 30 0.14 21 4 18.884 26 26 0.43
LUKVLE13 998 664 101 93 0.29 >10 min 121 116 1.56
LUKVLE16 997 747 59 50 0.17 >10 min 42 36 0.86
LUKVLE1 1000 998 20 20 0.14 43 15 98.29 30 30 0.53
LUKVLE3 1000 2 26 26 0.08 >10 min 16 16 0.27
LUKVLE6 999 499 41 42 0.31 >10 min 20 20 0.53
LUKVLE7 1000 4 92 80 0.21 >10 min 29 20 0.33
ORTHREGA 2053 1024 177 173 1.8 >10 min 26 23 11.71
ORTHREGC 1005 500 50 44 0.27 46 21 91.14 17 11 1.61
ORTHREGD 1003 500 515 443 3.55 >10 min 14 12 1.07
ORTHRGDM 4003 2000 158 141 2.96 F F F 12 12 27.19

the number of variables and the number of equality constraints separately. In addition, the num-
ber of function evaluations ‘nf ’ and the number of gradient evaluations ‘ng’ are given. Actually,
as the function value and constraint value can be obtained simultaneously by calling the subrou-
tine ‘cfn’ in CUTEr, ‘nf ’ denotes the number of ‘cfn’ calls. Similarly, ‘ng’ denotes the number of
‘cgr’ calls to compute both the gradient of objective function and gradient of constraints simulta-
neously. The entry ‘F’ means that corresponding algorithm terminates unsuccessfully because the
CPU time exceeds 10 min, or the number of function evaluations exceeds the maximum number.

As the problems in Table 1 are of small and medium scale, they can be solved very fast by all
of these three algorithms, so we do not report the CPU time on them here. We only record the
CPU time on large-scale problems in Table 2. Note that fmincon is much slower than other two
algorithms. One possible reason is that the computation of the trial step at each iteration costs
too much. And although ALTR algorithm is written in Matlab, the CPU time on large problems
are quite satisfactory, compared with LANCELOT.

To make a vivid description of algorithms, efficiency comparisons are shown in Figures 2
and 3, using the performance profiles introduced by Dolan and Moré [12]. The performance
profiles are generated by executing solvers S on the test set P . Considering the measure of
interest, e.g. number of function evaluations, for each problem p ∈ P and each solvers from the
set s ∈ S, define np,s as the number of function evaluations to solve problem by solver s. To
compare the performance on problem p by solver s with the best performance on p by any solver,
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Figure 2. Performance profiles of ALTR and LANCELOT. (a) Function evaluations and (b) gradient evaluations.
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Figure 3. Performance profiles of ALTR and fmincon. (a) Function evaluations and (b) gradient evaluations.

define the performance ratio

rp,s = np,s

min{np,s : 1 ≤ s ≤ ns} ,

where ns is the number of solvers. Whenever the solver s does not solve problem p successfully,
set rp,s = rM . Here, rM is a very large preset positive constant. To obtain the overall performance
of solver s on the test set P , define

ρs(τ ) = 1

np
size{p ∈ P : log2 rp,s ≤ τ }.

Equivalently, ρs(τ ) represents the probability that the performance ratio rp,s is within the factor
2τ . It is easy to see that ρs(0) is the probability that the solver s wins over the rest of solvers.

Observing Figure 2, we can see that ALTR performs slightly better than LANCELOT on both
function evaluations and gradient evaluations. It shows that the probability that ALTR is faster
on the function evaluations is near 65%(obtained from ρs(0)) and on the gradient evaluations is
70%. One can also compare the results when τ increases, by the definition of ρs(τ ). So on the
test problems our algorithm is comparable with the famous solver LANCELOT. Similar analysis
can be made to Figure 3, which indicates that ALTR is more effective and efficient than fmincon.
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Optimization Methods & Software 581

5. Conclusions

In this paper we propose an ALTR method for equality constrained optimization. At each iter-
ation, we minimize a second-order approximation of the augmented Lagrangian function. We
introduce a new technique for updating penalty parameters which depends on results of trust
region subproblems. With Lagrange multipliers adjusted adaptively, we establish the global con-
vergence of our algorithm under mild conditions, no matter penalty parameters are bounded
or unbounded. Numerical tests are reported on majority of equality constrained optimization
problems from CUTEr. The numerical results reveal that our method is promising.
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