
Math. Prog. Comp.
DOI 10.1007/s12532-016-0109-7

FULL LENGTH PAPER

On efficiently combining limited-memory
and trust-region techniques

Oleg Burdakov1 · Lujin Gong2 · Spartak Zikrin1 ·
Ya-xiang Yuan3

Received: 21 April 2015 / Accepted: 14 June 2016
© Springer-Verlag Berlin Heidelberg and The Mathematical Programming Society 2016

Abstract Limited-memory quasi-Newton methods and trust-region methods repre-
sent two efficient approaches used for solving unconstrained optimization problems.
A straightforward combination of them deteriorates the efficiency of the former
approach, especially in the case of large-scale problems. For this reason, the limited-
memory methods are usually combined with a line search. We show how to efficiently
combine limited-memory and trust-region techniques. One of our approaches is based
on the eigenvalue decomposition of the limited-memory quasi-Newton approximation
of the Hessian matrix. The decomposition allows for finding a nearly-exact solution
to the trust-region subproblem defined by the Euclidean norm with an insignificant
computational overhead as compared with the cost of computing the quasi-Newton
direction in line-search limited-memory methods. The other approach is based on two
new eigenvalue-based norms. The advantage of the new norms is that the trust-region
subproblem is separable and each of the smaller subproblems is easy to solve. We
show that our eigenvalue-based limited-memory trust-region methods are globally

B Oleg Burdakov
oleg.burdakov@liu.se

Lujin Gong
evansgong@tencent.com

Spartak Zikrin
spartak.zikrin@liu.se

Ya-xiang Yuan
yyx@lsec.cc.ac.cn

1 Department of Mathematics, Linköping University, 58183 Linköping, Sweden

2 Tencent, Beijing, China

3 State Key Laboratory of Scientific and Engineering Computing, Institute of Computational
Mathematics and Scientific/Engineering Computing, AMSS, CAS, Beijing 100190, China

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s12532-016-0109-7&domain=pdf

O. Burdakov et al.

convergent. Moreover, we propose improved versions of the existing limited-memory
trust-region algorithms. The presented results of numerical experiments demonstrate
the efficiency of our approach which is competitive with line-search versions of the
L-BFGS method.

Keywords Unconstrained optimization · Large-scale problems · Limited-memory
methods · Trust-region methods · Shape-changing norm · Eigenvalue decomposition

Mathematics Subject Classification 90C06 · 90C30 · 90C53

1 Introduction

We consider the following general unconstrained optimization problem

min
x∈Rn

f (x), (1)

where f is assumed to be at least continuously differentiable. Line-search and trust-
region methods [14,35] represent two competing approaches to solving (1). The cases
when one of them is more successful than the other are problem dependent.

At each iteration of the trust-region methods, a trial step is generated by minimiz-
ing a quadratic model of f (x) within a trust-region. The trust-region subproblem is
formulated, for the k-th iteration, as follows:

min
s∈Ωk

gTk s + 1

2
sT Bks ≡ qk(s), (2)

where gk = ∇ f (xk), and Bk is either the true Hessian in xk or its approximation. The
trust-region is a ball of radius Δk

Ωk = {s ∈ Rn : ‖s‖ ≤ Δk}.

It is usually defined by a fixed vector norm, typically, scaled l2 or l∞ norm. If the
trial step provides a sufficient decrease in f , it is accepted, otherwise the trust-region
radius is decreased while keeping the same model function.

Worth mentioning are the following attractive features of a trust-region method.
First, these methods can benefit from using negative curvature information contained
in Bk . Secondly, another important feature is exhibitedwhen the full quasi-Newton step
−B−1

k gk does not produce a sufficient decrease in f , and the radiusΔk < ‖−B−1
k gk‖

is such that the quadratic model provides a relatively good prediction of f within the
trust-region. In this case, since the accepted trial step provides a better predicted
decrease in f than the one provided by minimizing qk(s) within Ωk along the quasi-
Newton direction, it is natural to expect that the actual reduction in f produced by
a trust-region method is better. Furthermore, if Bk � 0 and it is ill-conditioned, the
quasi-Newton search direction may be almost orthogonal to gk , which can adversely

123

On efficiently combining limited-memory...

affect the efficiency of a line-search method. In contrast, the direction of the vector
s(Δk) that solves (2) approaches the direction of −gk when Δk decreases.

There exists a variety of approaches [14,35,40,44] to approximately solving the
trust-region subproblem defined by the Euclidean norm. Depending on how accurately
the trust-region subproblem is solved, the methods are categorized as nearly-exact or
inexact.

The class of inexact trust-regionmethods includes, e.g., the dogleg method [37,38],
double-dogleg method [15], truncated conjugate gradient (CG) method [39,41],
Newton-Lanczos method [26], subspace CG method [43] and two-dimensional sub-
space minimization method [12].

Faster convergence, in terms of the number of iterations, is generally expected
when the trust-region subproblem is solved more accurately. Nearly-exact methods
are usually based on the optimality conditions, presented by Moré and Sorensen [32]
for the Euclidean norm used in (2). These conditions state that there exists a pair
(s∗, σ ∗) such that σ ∗ ≥ 0 and

(Bk + σ ∗ I)s∗ = −gk,
σ ∗(‖s∗‖2 − Δ) = 0,

Bk + σ ∗ I � 0.
(3)

In these methods, a nearly-exact solution is obtained by iteratively improving σ and
solving in s the linear system

(Bk + σ I)s = −gk . (4)

The class of limited-memory quasi-Newton methods [3,23,24,30,34] is one of the
most effective tools used for solving large-scale problems, especially when the main-
taining and operating with dense Hessian approximation is costly. In these methods,
a few pairs of vectors

si = xi+1 − xi and yi = ∇ f (xi+1) − ∇ f (xi) (5)

are stored for implicitly building an approximation of the Hessian, or its inverse, by
using a low rank update of a diagonal matrix. The number of such pairs is limited by
m � n. This allows for arranging efficient matrix-vector multiplications involving Bk

and B−1
k .

Formost of the quasi-Newton updates, theHessian approximation admits a compact
representation

Bk = δk I + V T
k WkVk, (6)

where δk is a scalar, Wk ∈ Rm̄×m̄ is a symmetric matrix and Vk ∈ Rn×m̄ . This is the
mainproperty thatwill be exploited in this paper. Thevalueof m̄ depends on thenumber
of stored pairs (5) and itmay vary from iteration to iteration. Itsmaximal value depends
on the updating formula and equals, typically, m or 2m. To simplify the presentation

123

O. Burdakov et al.

and our analysis, especially when specific updating formulas are discussed, we shall
assume that the number of stored pairs and m̄ equal to their maximal values.

So far, the most successful implementations of limited-memory methods were
associated with line search. Nowadays, the most popular limited-memory line-search
methods are based on the BFGS-update [35], named after Broyden, Fletcher, Goldfarb
and Shanno. The complexity of computing a search direction in the best implementa-
tions of these methods is 4mn.

Line-search methods often employ the strong Wolfe conditions [42] that require
additional function and gradient evaluations. Thesemethods have a strong requirement
of positive definiteness of the Hessian matrix approximation, while trust-region meth-
ods, as mentioned above, can even gain from exploiting information about possible
negative curvature. Moreover, the latter methods do not require gradient computa-
tion in unacceptable trial points. Unfortunately, any straightforward embedding of
limited-memory quasi-Newton techniques in the trust-region framework deteriorates
the efficiency of the former approach.

The existing refined limited-memory trust-region methods [10,19,20,29] typically
use the limited-memory BFGS updates (L-BFGS) for approximating the Hessian and
the Euclidean norm for defining the trust-region. In the double-dogleg approach by
Kaufman [29], the Hessian and its inverse are simultaneously approximated using the
L-BFGS in a compact representation [11]. The cost of one iteration for this inexact
approach varies from 4mn+O(m2) to O(n) operations depending onwhether the trial
step was accepted at the previous iteration or not. Using the same compact represen-
tation, Burke et al. [10] proposed two versions of implementing the Moré-Sorensen
approach [32] for finding a nearly-exact solution to the trust-region subproblem. The
cost of one iteration varies from 2mn + O(m3) to either 2m2n + 2mn + O(m3) or
6mn + O(m2) operations, depending on how the updating of Bk is implemented.
Recently Erway and Marcia [18–20] proposed a new technique for solving (4), based
on the unrolling formula of L-BFGS [11]. In this case, the cost of one iteration of
their implementation [20] is O(m2n) operations. In the next sections, we describe
the aforementioned limited-memory trust-region methods in more detail and compare
them with those we propose here.

The aim of this paper is to develop new approaches that would allow for effec-
tively combining the limited-memory and trust-region techniques. They should break
awide-spread belief that such combinations are less efficient than the line-search-based
methods.

We focus here on the quasi-Newton updates that admit a compact representation (6).
It should be underlined that a compact representation is available for themost of quasi-
Newton updates, such as BFGS [11], symmetric rank-one (SR1) [11] and multipoint
symmetric secant approximations [8], which contain the Powell-symmetric-Broyden
(PSB) update [38] as a special case. Most recently, Erway and Marcia [21] provided
a compact representation for the entire Broyden convex class of updates.

We begin in Sect. 2 with showing how to efficiently compute, at a cost of O(m̄3)

operations, the eigenvalues of Bk with implicitly defined eigenvectors. This way of
computing andusing the eigenvaluedecompositionof general limited-memoryupdates
(6) was originally introduced in [7,9], and then successfully exploited in [2,21,22].
An alternative way was earlier presented in unpublished doctoral dissertation [31] for

123

On efficiently combining limited-memory...

a special updating, namely, the limited-memory SR1. The difference between these
two ways is discussed in Sect. 2. For the case when the trust-region is defined by the
Euclidean norm, and the implicit eigenvalue decomposition is available, we show in
Sect. 3 how to find a nearly-exact solution to the trust-region subproblem at a cost of
2m̄n + O(m̄) operations. In Sect. 4, we introduce two new norms which leans upon
the eigenvalue decomposition of Bk . The shape of the trust-region defined by these
norms changes from iteration to iteration. The new norms allow for decomposing
the corresponding trust-region subproblem into a set of easy-to-solve quadratic pro-
gramming problems. For one of the new norms, the exact solution to the trust-region
subproblem is obtained in closed form. For the other one, the solution is reduced to
a small m̄-dimensional trust-region subproblem in the Euclidean norm. In Sect. 5, a
generic trust-region algorithm is presented, which is used in the implementation of
our algorithms. In Sect. 6, global convergence is proved for eigenvalue-based limited-
memory methods. In Sects. 2–6, Bk is not required to be positive definite, except
Lemma 3 where the L-BFGS updating formula is considered. The rest of the paper
is focused on specific positive definite quasi-Newton updates, namely, L-BFGS. For
this case, we develop in Sect. 7 an algorithm, in which the computational cost of
one iteration varies from 4mn + O(m3) to 2mn + O(m2) operations, depending on
whether the trial step was accepted at the previous iteration or not. This means that the
highest order term in the computational cost is the same as for computing the search
direction in the line-search L-BFGS algorithms. In Sect. 8, we propose improved ver-
sions of the limited-memory trust-region algorithms [10,29]. The results of numerical
experiments are presented in Sect. 9. They demonstrate the efficiency of our limited-
memory trust-region algorithms.We conclude our work and discuss future direction in
Sect. 10.

2 Spectrum of limited-memory Hessian approximation

Consider the trust-region subproblem (2), in which we simplify notations by dropping
the subscripts, i.e., we consider

min
s∈Ω

gT s + 1

2
sT Bs ≡ q(s). (7)

It is assumed in this paper that the Hessian approximation admits the compact repre-
sentation (6), that is,

B = δ I + VWV T , (8)

where W ∈ Rm̄×m̄ is a symmetric matrix and V ∈ Rn×m̄ . The main assumption here
is that m̄ � n. It is natural to assume that the scalar δ is positive because there are, in
general, no special reasons to base the model q(s) on the hypothesis that the curvature
of f (x) is zero or negative along all directions orthogonal to the columns of V .

Below, we demonstrate how to exploit compact representation (8) and efficiently
compute eigenvalues of B. For trust-regions of a certain type, this will permit us to
easily solve the trust-region subproblem (7).

123

O. Burdakov et al.

Suppose that the Cholesky factorization V T V = RT R is available, where R ∈
Rm̄×m̄ is upper triangular. The rank of V , denoted here by r , is equal to the number
of nonzero diagonal elements of R. Let R† ∈ Rr×m̄ be obtained from R by deleting
the rows that contain zero diagonal elements, and let R‡ ∈ Rr×r be obtained by
additionally deleting the columns of R of the same property. Similarly, we obtain
V† ∈ Rn×r by deleting the corresponding columns of V . Consider the n × r matrix

Q = V†R
−1
‡ . (9)

Its columns form an orthonormal basis for the column space of both V† and V . The
equality

V = QR† (10)

can be viewed as the rank revealing QR (RRQR) decomposition of V [1, Theo-
rem 1.3.4].

By decomposition (10), we have

B = δ I + QR†WRT
† Q

T ,

where the matrix R†WRT
† ∈ Rr×r is symmetric. Consider its eigenvalue decomposi-

tion R†WRT
† = UDUT , where U ∈ Rr×r is orthogonal and D ∈ Rr×r is a diagonal

matrix composed of the eigenvalues (d1, d2, . . . , dr). Denote P‖ = QU ∈ Rn×r . The
columns of P‖ form an orthonormal basis for the column space of V . This yields the
following representation of the quasi-Newton matrix:

B = δ I + P‖DPT‖ .

Let P⊥ ∈ Rn×(n−r) define the orthogonal complement to P‖. Then P = [P‖ P⊥] ∈
Rn×n is an orthogonal matrix. This leads to the eigenvalue decomposition:

B = P

(
Λ 0
0 δ In−r

)
PT , (11)

where Λ = diag(λ1, λ2, . . . , λr) and λi = δ + di , i = 1, . . . , r . From (11), we
conclude that the spectrum of B consists of:

• r eigenvalues λ1, λ2, . . . , λr with the eigenspace defined by P‖;
• (n − r) identical eigenvalues δ with the eigenspace defined by P⊥.

Thus, B has at most r +1 distinct eigenvalues that can be computed at a cost of O(r3)
operations for the available W and RRQR decomposition of V .

In our implementation, we do not explicitly construct the matrix Q, but only the
triangularmatrix R, which is obtained from the aforementionedCholesky factorization
of the m̄×m̄ Grammatrix V T V at a cost of O(m̄3) operations [25]. The complexity can
be decreased to O(m̄2) if the Cholesky factorization is updated after each iteration

123

On efficiently combining limited-memory...

by taking into account that the current matrix V differs from the previous one by
at most two columns. We show in Sect. 7.3 how to update V T V at m̄n + O(m̄2)

operations. Although this will be shown for the L-BFGS update, the same technique
works for the other limited-memory quasi-Newton updates that admit the compact
representation (8). Any matrix-vector multiplications involving Q are implemented
using the representation (9). For similar purposes, we make use of the representation

P‖ = V†R
−1
‡ U. (12)

In contrast to the eigenvalues that are explicitly computed, the eigenvectors are not
computed explicitly. Therefore, we can say that the eigenvalue decomposition of B
(11) is defined implicitly. The matrices P , P‖ and P⊥ will be involved in presenting
our approach, but they are not used in any of our algorithms.

As it was mentioned above, an alternative way of computing the eigenvalue decom-
position of B was presented in unpublished work [31] for the limited-memory SR1
update. For this purpose, the author made use of the eigenvalue decomposition of the
V T V = (Y − δS)T (Y − δS), whereas the Cholesky factorization of V T V is used in
the present paper. In [31], the limited-memory SR1 was combined with a trust-region
technique.

In the next section, we describe how to solve the trust-region subproblem (7) in the
Euclidean norm by exploiting the implicit eigenvalue decomposition of B.

3 Trust-region subproblem in the Euclidean norm

It is assumed here that Ω = {s ∈ Rn : ‖s‖2 ≤ Δ}. To simplify notation, ‖ · ‖ denotes
further the Euclidean vector norm and the induced matrix norm.

The Moré–Sorenson approach [32] seeks for an optimal pair (s∗, σ ∗) that satisfies
conditions (3). If B � 0 and the quasi-Newton step sN = −B−1g ∈ Ω , then sN solves
the trust-region subproblem. Otherwise, its solution is related to solving the equation

φ(σ) = 0, (13)

where φ(σ) = 1/Δ − 1/‖s‖ and s = s(σ) is the solution to the linear system

(B + σ I)s = −g. (14)

In the standard Moré–Sorenson approach, the Cholesky factorization of B + σ I is
typically used for solving (14). To avoid this computationally demanding factorization,
we take advantage of the implicitly available eigenvalue decomposition of B (11),
which yields:

B + σ I = P

(
Λ + σ Ir 0

0 (δ + σ)In−r

)
PT .

123

O. Burdakov et al.

Consider a new n-dimensional variable defined by the orthogonal matrix P as

v = PT s=
(

v‖
v⊥

)
∈ Rn, (15)

where v‖ = PT‖ s ∈ Rr and v⊥ = PT⊥ s ∈ Rn−r . Then Eq. (14) is reduced to

{
(Λ + σ Ir)v‖ = −g‖
(δ + σ)v⊥ = −g⊥

, (16)

where g‖ = PT‖ g ∈ Rr and g⊥ = PT⊥ g ∈ Rn−r . For the values of σ that make this
system nonsingular, we denote its solution by v(σ). Since ‖s‖ = ‖v‖, the function
φ(σ) in (13) can now be defined as φ(σ) = 1/Δ − 1/‖v(σ)‖.

Let λmin stand for the smallest eigenvalue of B. Let Pmin be the set of columns of
P that span the subspace corresponding to λmin. We denote v∗ = PT s∗ and seek now
for a pair (v∗, σ ∗) that solves (16). Conditions (3) require also that

σ ∗(‖v∗‖ − Δ) = 0 and σ ∗ ≥ max (0,−λmin) . (17)

We shall show how to find a pair with the required properties separately for each of
the following two cases.

Case I: λmin > 0 or ‖PT
ming‖ �= 0.

Here if λmin > 0 and ‖v(0)‖ ≤ Δ, we have v∗ = v(0) and σ ∗ = 0. Otherwise,

σ ∗ > max (0,−λmin) . (18)

Then Eq. (13) is solved by Newton’s root-finding algorithm [32], where each iteration
takes the form

σ ← σ − φ(σ)

φ′(σ)
= σ − (‖v(σ)‖ − Δ) · ‖v(σ)‖2

Δ · vT (σ)v′(σ)
. (19)

For this formula, Eq. (16) yields

‖v(σ)‖2 = gT‖ (Λ + σ Ir)
−2g‖ + (δ + σ)−2‖g⊥‖2 (20)

and

vT (σ)v′(σ) = −vT (σ)

(
Λ + σ Ir 0

0 (δ + σ)In−r

)−1

v(σ)

= −gT‖ (Λ + σ Ir)
−3g‖ − (δ + σ)−3‖g⊥‖2. (21)

It is easy to control the iterates from below by making use of the property (18), which
guarantees that the diagonal matrices Λ + σ Ir and (δ + σ)In−r are nonsingular.
In practice, just a pair of iterations (19) are often sufficient for solving (13) to an

123

On efficiently combining limited-memory...

appropriate accuracy [35]. For the obtained approximate value σ ∗, the two blocks that
compose v∗ are defined by the formulas

v∗‖ = −(Λ + σ ∗ Ir)−1g‖, (22)

v∗⊥ = −(δ + σ ∗)−1g⊥. (23)

Case II: λmin ≤ 0 and ‖PT
ming‖ = 0.

Here λmin < 0 may lead to the so-called hard case [32]. Since it was assumed that
δ > 0, we have λmin �= δ. Let r̄ be the algebraic multiplicity of λmin. Suppose that
the eigenvalues are sorted in the way that λmin = λ1 = · · · = λr̄ < λi , for all i > r̄ .
Denote v̄ = (vr̄+1, vr̄+2, . . . , vn)

T . The process of finding an optimal pair (σ ∗, v∗)
is based on a simple analysis of the alternatives in (16), which require that, for all
1 ≤ i ≤ r̄ , either λi + σ = 0 or (v‖)i = 0. It is associated with finding the unique
solution of the following auxiliary trust-region subproblem:

min
v̄∈Ω̄

r∑
i=r̄+1

(
(g‖)i (v‖)i + λi − λmin

2
(v‖)2i

)
+ gT⊥v⊥ + δ − λmin

2
‖v⊥‖2,

where Ω̄ = {v̄ ∈ Rn−r̄ : ‖v̄‖ ≤ Δ}. This subprolem corresponds to the already
considered Case I because its objective function is strictly convex. Let σ̄ ∗ and v̄∗ =
(v∗̄

r+1, v
∗̄
r+2, . . . , v

∗
n)

T be the optimal pair for the auxiliary subproblem. Denote

μ =
{
0, if λmin = 0,√

Δ2 − ‖v̄∗‖2, if λmin < 0.

It can be easily verified that the pair

σ ∗ = −λmin + σ̄ ∗, v∗ = (μ, 0, . . . , 0,︸ ︷︷ ︸
r̄

v∗̄
r+1, . . . , v

∗
n)

T

satisfies the optimality conditions (16) and (17). The vector v∗⊥ is defined by formula
(23), but as one can see below, it is not necessary to compute this vector. The same
refers to v∗⊥ in Case I.

In each of the cases, we compute, first,

g‖ = UT R−T
‡ V T

† g. (24)

It is then used for finding ‖g⊥‖ from the relation

‖g⊥‖2 = ‖g‖2 − ‖g‖‖2, (25)

which follows from the orthogonality of P represented as

P⊥PT⊥ = I − P‖PT‖ . (26)

123

O. Burdakov et al.

The described procedure of finding σ ∗ and v∗‖ produces an exact or nearly-exact
solution to the trust-region subproblem (7). This solution is computed using (15), (23)
and (26) as

s∗ = P‖v∗‖ + P⊥v∗⊥ = P‖v∗‖ − (δ + σ ∗)−1P⊥PT⊥ g

= −(δ + σ ∗)−1g + P‖
(
v∗‖ + (δ + σ ∗)−1g‖

)
. (27)

The presented eigenvalue-based approach to solving the trust-region subproblem
has the following attractive feature. Once the eigenvalues of B are computed, in Case
I, formula (24) requires m̄n + O(m̄2) operations1 and formulas (20) and (21) require
O(m̄) operations per iteration to approximately solve (13). The computation of v∗‖ by
formula (22) requires O(m̄) operations. In Case II, the computation of σ ∗ and v∗‖ has
the same order of complexity. The computation of s∗ by formula (27) requires a few
additional matrix-vector multiplications for P‖ defined by (12). The associated cost is
m̄n + O(m̄2).

In thenext section,we introduce an alternative eigenvalue-based approach to solving
the trust-region subproblem.

4 Trust-region subproblem in eigenvalue-based norms

We consider here the trust-region subproblem (7) defined by the norms introduced
below. All constituent parts of the compact representation (8) are assumed to be avail-
able.

4.1 Eigenvalue-based decomposition of the model function

Observe that the new variable defined by (15) allows us to decompose the objective
function in (7) as

qP (v) ≡ q(Pv) = q(P‖v‖ + P⊥v⊥) = q‖(v‖) + q⊥(v⊥), (28)

where

q‖(v‖) = gT‖ v‖ + 1

2
vT‖ Λv‖ =

r∑
i=1

(
(g‖)i (v‖)i + λi

2
(v‖)2i

)
, (29)

q⊥(v⊥) = gT⊥v⊥ + δ

2
‖v⊥‖2. (30)

It should be noted that when the trust-region is defined by the standard norms like
l2 or l∞, this decomposition does not give any advantage, in contrast to the case of the
new norms proposed below.

1 Here and in other estimates of computational complexity, it is assumed that r = m̄. This corresponds to
the maximal number of arithmetic operations.

123

On efficiently combining limited-memory...

4.2 New norms and related subproblem properties

In this subsection, we introduce two nonstandard norms to define the trust-region. The
new norms enable us to decompose the original trust-region subproblem into a set
of smaller subproblems, which can be easily solved. For one of the new norms, the
solution can be written in closed form.

4.2.1 Shape changing norms

To exploit separability of the objective function, we introduce the following norms:

‖s‖P,∞ ≡ max
(
‖PT‖ s‖∞, ‖PT⊥ s‖

)
, (31)

‖s‖P,2 ≡ max
(
‖PT‖ s‖, ‖PT⊥ s‖

)
. (32)

Recall that ‖ · ‖ stands for the Euclidean norm. It can be easily verified that (31) and
(32) do satisfy the vector norm axioms. Since P changes from iteration to iteration,
we refer to them as shape-changing norms. The following result establishes a norm
equivalence between the new norms and the Euclidean norm with the equivalence
factors not depending on P .

Lemma 1 For any vector x ∈ Rn and orthogonal matrix P = [P‖ P⊥] ∈ Rn×n,
where P‖ ∈ Rn×r and P⊥ ∈ Rn×(n−r), the following inequalities hold:

‖x‖√
r + 1

≤ ‖x‖P,∞ ≤ ‖x‖ (33)

and

1√
2
‖x‖ ≤ ‖x‖P,2 ≤ ‖x‖. (34)

Here, the lower and upper bounds are attainable.

Proof We start by justifying the lower bound in (34). The definition (32) gives
‖PT‖ x‖2 ≤ ‖x‖2P,2 and ‖PT⊥ x‖2 ≤ ‖x‖2P,2. Then we have

‖x‖2 = ‖PT x‖2 = ‖PT‖ x‖2 + ‖PT⊥ x‖2 ≤ 2‖x‖2P,2, (35)

which establishes the first of the bounds (34). Further, the inequality above becomes
an equality for every x that satisfies ‖PT‖ x‖ = ‖P⊥x‖, which shows that this bound
is attainable.

Due to (35), the second inequality in (34) obviously holds. Notice that it holds with
equality for any x that satisfies PT‖ x = 0.

Consider now the norm (31). Since ‖PT‖ x‖∞ ≤ ‖PT‖ x‖, we have ‖x‖P,∞ ≤
‖x‖P,2. Then the upper bound in (33) follows from (34). This bound is attainable for
the same choice of x as above.

123

O. Burdakov et al.

It remains to justify the lower bound in (33). Using the norm definition (31) and
the relations between l2 and l∞ norms, we get

‖x‖2P,∞ ≥ ‖PT‖ x‖2∞ ≥ 1

r
‖PT‖ x‖2,

‖x‖2P,∞ ≥ ‖PT⊥ x‖2.

Due to (35), these inequalities imply

(r + 1)‖x‖2P,∞ ≥ ‖PT‖ x‖2 + ‖PT⊥ x‖2 = ‖x‖2.

This proves the first inequality in (33). It holds with equality for every x that satisfies
‖PT‖ x‖∞ = ‖P⊥x‖. This accomplishes the proof of the lemma. ��

It should be emphasized that the bounds in (33) and (34) do not depend on n.
Moreover, according to Lemma 1, the norm (32), in contrast to the l∞ norm, does not
differ too much from the l2 norm in the sense of their ratio. The same refers to the
other shape-changing normwhen r is sufficiently small. For r = 10, which is a typical
value in our numerical experiments, the norm (31) is not less than approximately one
third of the l2 norm.

4.2.2 Subproblem separability for the new norms

For the norm (31), the trust-region Ω is defined by the inequalities

‖s‖P,∞ ≤ Δ ⇐⇒
{ |(v‖)i | ≤ Δ, i = 1, . . . , r,

‖v⊥‖ ≤ Δ.

By combining this with the separability of the model function (28), (29), (30), we
get the following separability of the trust-region subproblem:

min‖s‖P,∞≤Δ
q(s) =

r∑
i=1

min|(v‖)i |≤Δ

(
(g‖)i (v‖)i + λi

2
(v‖)2i

)

+ min‖v⊥‖≤Δ

(
gT⊥v⊥ + δ

2
‖v⊥‖2

)
. (36)

We can write the solution to each of these subproblems in closed form as

(v∗‖)i =

⎧⎪⎨
⎪⎩

− 1
λi

(g‖)i , if |(g‖)i | ≤ λiΔ, λi > 0;
ζ, if (g‖)i = 0, λi ≤ 0,
− Δ

|(g‖)|i (g‖)i , otherwise.
i = 1, . . . , r; (37)

v∗⊥ = −tg⊥, (38)

123

On efficiently combining limited-memory...

where ζ = ±Δ for λi < 0, ζ ∈ [−Δ,Δ] for λi = 0 and

t =
{

1
δ
, if ‖g⊥‖ ≤ δΔ,
Δ

‖g⊥‖ , otherwise.
(39)

In the original space, the corresponding optimal solution s∗ is calculated as

s∗ = Pv∗ = P‖v∗‖ + P⊥v∗⊥,

where P⊥v∗⊥ = −t P⊥PT⊥ g. Recalling (26), we finally obtain

s∗ = −tg + P‖(v∗‖ + tg‖). (40)

Here the cost of computing v∗‖ by (37) is O(m̄). The formulas for P‖ (12) and
g‖ (24) suggest that the dominant cost in (40) is determined by two matrix-vector
multiplications involving V†. This requires 2m̄n operations. Hence, the overall cost
of solving the trust-region subproblem defined by norm (31) is essentially the same
as for the Euclidean norm (see Sect. 3). The advantage of the new norm (31) over
the Euclidean norm is a decomposition of the trust-region subproblem that yields the
closed-form solution (40) without invoking any iterative procedure.

Consider now the trust-region defined by the norm (32). In this case, the trust-region
subproblem is decomposed into the two subproblems:

min‖s‖P,2≤Δ
q(s)= min‖v‖‖≤Δ

(
gT‖ v‖ + 1

2
vT‖ Λv‖

)
+ min‖v⊥‖≤Δ

(
gT⊥v⊥ + δ

2
‖v⊥‖2

)
. (41)

Here, the first subproblem is a low-dimensional case of problem (7). It can be easily
solved by any standard trust-region method [14], especially because Λ is diagonal. In
case of truncated conjugate gradient method, it requires only a few simple operations
with r -dimensional vectors per one CG iteration. For the dogleg method, it is required
to compute the quasi-Newton step−Λ−1g‖ and the steepest descent step−μ‖g‖,where
μ‖ = gT‖ Λg‖/gT‖ g‖. These operations require O(m̄) multiplications. Moreover, the
procedure described in Sect. 3 can be easily adapted for the purpose of finding a
nearly-exact solution v∗‖ to the first subproblem.

The second subproblem in (41) is the same as in (36) with the optimal solution v∗⊥
defined by formulas (38) and (39). Then one can show, as above, that the solution to
(41) is of the form (40). The same formula is applied to finding an approximate solution
to the trust-region subproblem (41) when v∗‖ represents an approximate solution to the
first subproblem.

5 Algorithm

In Algorithm 1, we present a generic trust-region framework [14] in the form close
to our implementation (see Sect. 9 for details). In this algorithm, the trust-region
subproblem (2) is assumed to be defined by a vector norm ‖ · ‖k . This norm may differ

123

O. Burdakov et al.

from the Euclidean norm, and moreover, it may change from iteration to iteration, like
the norms (31) and (32).

We say that the trust-region subproblem is solved with sufficient accuracy, if there
exists a scalar 0 < c < 1 such that

qk(sk) ≤ −c‖gk‖2 min

(
1

‖Bk‖ ,
Δ

‖gk‖k
)

, ∀k ≥ 0. (42)

In other words, the model decrease is at least a fixed fraction of that attained by the
Cauchy point [14]. The sufficient accuracy property plays an important role in proving
global convergence of inexact trust-region methods.

Algorithm 1 Trust-region method
Require: x0 ∈ Rn , Δ0 > 0, ε > 0, δ0 > 0, 0 ≤ τ1 < τ2 < 0.5 < τ3 < 1,
0 < η1 < η2 ≤ 0.5 < η3 < 1 < η4
Compute g0 and B0 = δ0 I
for k = 0, 1, 2, . . . do

if ‖gk‖ ≤ ε then
return

end if
Find sk that solves (2) with sufficient accuracy (42)

Compute the ratio ρk = f (xk+sk)− f (xk)
qk (sk)

if ρk≥ τ1 then
xk+1 = xk + sk
Compute gk+1 and update Bk+1

else
xk+1 = xk

end if
if ρk < τ2 then

Δk+1 = min (η1Δk , η2‖sk‖k)
else

if ρk ≥ τ3 and ‖sk‖k ≥ η3Δk then
Δk+1 = η4Δk

else
Δk+1 = Δk

end if
end if

end for

6 Convergence analysis

In Algorithm 1, we assume that if the norm is defined by (31), then the exact solution
is found as described in Sect. 4.2.2. In case of norm (32), we assume that the first
subproblem in (41) is solved with sufficient accuracy and the second subproblem
is solved exactly. This, according to the following result, guarantees that the whole
trust-region subproblem is solved with sufficient accuracy.

123

On efficiently combining limited-memory...

Lemma 2 Let v = (v‖, v⊥)T be a solution to the trust-region subproblem (41), such
that

q‖(v‖) ≤ −c0‖g‖‖min

(‖g‖‖
‖Λ‖ ,Δ

)
(43)

for some 0 < c0 < 1 and v⊥ is the exact solution to the second subproblem defined
by (38) and (39). Suppose that g �= 0, then

qP (v) ≤ −c‖g‖2 min

(
1

‖B‖ ,
Δ

‖g‖P,2

)
, (44)

where c = min(c0, 1
2).

Proof Since v⊥ is the Cauchy point for the second subproblem, the following inequal-
ity holds (see, e.g., [35, Lemma 4.3]):

q⊥(v⊥) ≤ −1

2
‖g⊥‖min

(‖g⊥‖
|δ| ,Δ

)
. (45)

Since P is orthogonal, the eigenvalue decomposition of B (11) implies

‖B‖ =
∥∥∥∥Λ 0
0 δ In−r

∥∥∥∥ = max (‖Λ‖, |δ|) . (46)

By the norm definition (32), we have ‖g‖P,2 = max(‖g‖‖, ‖g⊥‖). This formula along
with (43), (45) and (46) yield

q‖(v‖) ≤ −c‖g‖‖min

(‖g‖‖
‖B‖ ,Δ

‖g‖‖
‖g‖P,2

)
= −c‖g‖‖2 min

(
1

‖B‖ ,
Δ

‖g‖P,2

)
,

q⊥(v⊥) ≤ −c‖g⊥‖min

(‖g⊥‖
‖B‖ ,Δ

‖g⊥‖
‖g‖P,2

)
= −c‖g⊥‖2 min

(
1

‖B‖ ,
Δ

‖g‖P,2

)
.

Combining these inequalities with (25), we finally obtain the inequality

q‖(v‖) + q⊥(v⊥) ≤ −c‖g‖2 min

(
1

‖B‖ ,
Δ

‖g‖P,2

)
.

Then the trust-region decomposition (28) implies (44). This accomplishes the proof.
��

Corollary 1 If inequality (43) holds for all k ≥ 0, where c0 does not depend on k,
then the trust-region subproblem (41) is solved with sufficient accuracy.

Although the shape of the trust-region defined by the new norms changes from
iteration to iteration, it turns out that Algorithm 1, where the trust-region subproblem
is solved as proposed in Sect. 4.2.2, converges to a stationary point. This fact is justified
by the following result.

123

O. Burdakov et al.

Theorem 1 Let f : Rn → R be twice-continuously differentiable and bounded from
below on Rn. Suppose that there exists a scalar c1 > 0 such that

‖∇2 f (x)‖ ≤ c1

for all x ∈ Rn. Consider the infinite sequence {xk} generated by Algorithm 1, in which
the norm ‖ · ‖k is defined by any of the two formulas (31) or (32), and the stopping
criterion is suppressed. Suppose also that there exists a scalar c2 > 0 such that

‖Bk‖ ≤ c2, ∀k ≥ 0. (47)

Then

lim
k→∞ ‖∇ f (xk)‖ = 0. (48)

Proof By Lemma 1, there holds the equivalence between the norms ‖ · ‖k and the
Euclidean norm where the coefficients in the lower and upper bounds do not depend
on k. Moreover, Algorithm 1 explicitly requires that the trust-region subproblem is
solved with sufficient accuracy. All this and the assumptions of the theorem allow us
to apply here Theorem 6.4.6 in [14] which proves the convergence (48). ��

In the case of convex f (x), Theorem 1 holds for the L-BFGS updates due to the
boundedness of Bk established, e.g., in [34].

Suppose now that f (x) is not necessarily convex. Consider the boundedness of
Bk for the limited-memory versions of BFGS, SR1 and stable multipoint symmet-
ric secant updates [4–6,8]. Let Kk denote the sequence of the iteration indexes of
those pairs {si , yi } that are involved in generating Bk starting from an initial Hessian
approximation B0

k . The number of such pairs is assumed to be limited by m, i.e.

|Kk | ≤ m. (49)

In L-BFGS, the positive definiteness of Bk can be enforced by composing Kk of
only those indexes of the recently generated pairs {si , yi } that satisfy the inequality

sTi yi > c3‖si‖‖yi‖ (50)

for a positive constant c3 (see [35]). This requirement permits us to show in the
following lemma that the boundedness of Bk , and hence Theorem 1, hold in the
nonconvex case.

Lemma 3 Suppose that the assumptions of Theorem 1 concerning f (x) are satisfied.
Let all Bk be generated by the L-BFGS updating formula. Let the updating start at
each iteration from B0

k and involve the pairs {si , yi }i∈Kk , whose number is limited in
accordance with (49). Suppose that there exists a constant c3 ∈ (0, 1) such that, for

123

On efficiently combining limited-memory...

all k, (50) is satisfied. Suppose also that there exists a constant c4 > 0 such that the
inequality

‖B0
k ‖ ≤ c4, ∀k ≥ 0, (51)

holds with the additional assumption that B0
k is positive semi-definite. Then there exists

a constant c2 > 0 such that (47) holds.

Proof For each i ∈ Kk , the process of updating by the L-BFGS formula the current
Hessian approximation B (initiated with B0

k) can be presented as follows

Bnew = B
1
2

(
I − B

1
2 si sTi B

1
2

‖B 1
2 si‖2

)
B

1
2 + yi yTi

sTi yi
.

This equation along with inequality (50) give

‖Bnew‖ ≤ ‖B‖ + ‖yi‖
c3‖si‖ ,

where in accordance with the boundedness of ∇xx f (x) we have ‖yi‖ ≤ c1‖si‖. After
summing these inequalities over all i ∈ Kk , we obtain the inequality

‖Bk‖ ≤ ‖B0
k ‖ + mc1/c3,

which, due to (51), finally proves inequality (47) for c2 = c4 + mc1/c3. ��
The boundedness of Bk generated by SR1 and stable multipoint symmetric secant

updates will be proved in a separate paper, which will be focused on the case of
nonconvex f (x).

To guarantee the boundedness of Bk generated by the limited-memory version
of SR1, we require that the pairs {si , yi }i∈Kk satisfy, for a positive constant c3, the
inequality

|sTi (yi − Bsi)| > c3‖si‖‖yi − Bsi‖,

where B is the intermediate matrix to be updated based on the pair {si , yi } in the
process of generating Bk . This makes the SR1 updates well defined (see [13,35]).

The stable multipoint symmetric secant updating process is organized in the way
that a uniform linear independence of the vectors {si }i∈Kk is maintained. The Hessian
approximations Bk are uniquely defined by the equations

sTi Bks j = sTi y j , pT Bksl = pT yl , pT Bk p = pT B0
k p, (52)

which hold for all i, j, l ∈ Kk , i < j , and also for all p ∈ Rn , such that pT st = 0
for all t ∈ Kk . The boundedness of the generated approximations Bk in the case of
nonconvex f (x) follows from the mentioned uniform linear independence and Eq.
(52).

123

O. Burdakov et al.

7 Implementation details for L-BFGS

In this section, we consider theHessian approximation B in (7) defined by the L-BFGS
update [11]. It requires storing at most m pairs of vectors {si , yi } obtained at those of
the most recent iterations for which (50) holds. As was mentioned above, the number
of stored pairs is assumed, for simplicity, to be equal tom. The compact representation
(8) of the L-BFGS update has the form

B = δ I − [S Y]
[
ST S/δ L/δ

LT /δ −E

]−1 [
ST

Y T

]
, (53)

in which case m̄ = 2m. In terms of (8), the matrix V = [S Y] is composed of the
stored pairs (5) in the way that the columns of S = [. . . , si , . . .] and Y = [. . . , yi , . . .]
are sorted in increasing iteration index i . The sequence of these indexes may have
some gaps that correspond to the cases, in which (50) is violated. The matrix W is
the inverse of a 2m × 2m-matrix, which contains a strictly lower triangular part of the
matrix ST Y , denoted in (53) by L , and the main diagonal of ST Y , denoted by E .

At iteration k of L-BFGS, the Hessian approximation of Bk is determined by the
stored pairs {si , yi } and the initialHessian approximation δk I . Themost popular choice
of the parameter δk is defined, like in [35], by the formula

δk = yTk yk

sTk yk
, (54)

which represents the most recent curvature information about the function.

7.1 Uniform representation of eigenvalue-based solutions

Recall that the approaches presented above rely on the implicitly defined RRQR
decomposition of V and eigenvalue decomposition of B. In this section, we show
that each of the eigenvalue-based solutions of the considered trust-region subprob-
lems (7) can be presented as

s∗ = −αg+V† p, (55)

where α is a scalar and

p = R−1
‡ U (v∗‖ + g‖).

The specific values of α and v∗‖ are determined by the norm defining the trust-region
and the solution to the trust-region subproblem.

Let us first consider the trust-region subproblem defined by the Euclidean norm.
Due to (12), we can rewrite formula (27) for a nearly-exact solution s∗ in the form
(55), where α = (δ + σ ∗)−1.

123

On efficiently combining limited-memory...

Consider now the trust-region subproblem (36) definedby thenorm (31). Its solution
can be represented in the form (55),whereα stands for t defined by (39).Note that since
the Hessian approximations generated by the L-BFGS update are positive definite, the
case ofλi≤0 in (37) is excluded. Therefore, the optimal solution to the first subproblem
in (36) is computed as v∗‖ = −Ag‖, where A ∈ Rr×r is a diagonal matrix defined as

Aii =
{

1
λi

, if |(g‖)i | ≤ λiΔ,
Δ

|(g‖)i | , otherwise.

When the trust-region subproblem (41) is defined by the norm (32) and v∗‖ is an
approximate solution to the first subproblem in (41), formula (55) holds for the same
α = t .

In each of the considered three cases, the most expensive operations, 4mn, are the
two matrix-vector multiplications V T

† g and V† p. The linear systems involving the

triangular matrix R can be solved at a cost of O(m2) operations.

7.2 Model function evaluation

In Algorithm 1, the model function value is used to decide whether to accept the trial
step. Let s∗ denote a nearly-exact or exact solution to the trust-region subproblem. In
this subsection, we show how to reduce the evaluation of q(s∗) to cheapmanipulations
with the available low-dimensional matrix V T V and vector V T g. It is assumed that
‖g‖2 has also been calculated before the model function evaluation.

Consider, first, the trust-region subproblemdefined by theEuclidean norm. Suppose
that s∗ is of the form (55) and satisfies (14) for σ ∗ ≥ 0. Then

q(s∗) = gT s∗ − 1

2
(g + σ ∗s∗)T s∗ = 1

2

(
gT s∗−σ ∗‖s∗‖2

)

= 1

2

(
−α‖g‖2 + pT (V T

† g)−σ ∗‖s∗‖2
)

, (56)

where ‖s∗‖2 is calculated by the formula

‖s∗‖2 = α2‖g‖2−2αpT (V T
† g) + pT (V T

† V†)p.

Thus, the most expensive operation in calculating q(s∗) is the multiplication of the
matrix V T

† V† by the vector p at a cost of O(m2) operations. Note that this does not
depend on whether the eigenvalue decomposition is used for computing s∗.

Consider now the trust-region subproblem defined by any of our shape-changing
norms. Let v∗‖ be the available solution to the first of the subproblems in (36) or (41),
depending on which norm, (31) or (32), is used. The separability of the model function
(28) and formulas (25), (38) give

q(s∗) = (g‖)T v∗‖ + 1

2
(v∗‖)TΛv∗‖ +

(
t2δ/2 − t

) (
‖g‖2 − ‖g‖‖2

)
.

123

O. Burdakov et al.

One can see that only cheap operations with r -dimensional vectors are required for
computing q(s∗).

In the next subsection, we show how to exploit the uniform representation of the
trust-region solution (55) for efficiently implementing the L-BFGS update once the
trial step is accepted.

7.3 Updating Hessian approximation

The updating of the Hessian approximation B is based on updating the matrices ST S,
L and E in (53), which, in turn, is based on updating the matrix V T V . Restoring
the omitted subscript k, we note that the matrix Vk+1 is obtained from Vk by adding
the new pair {sk, yk}, provided that (50) holds, and possibly removing the oldest one
in order to store at most m pairs. Hence, the updating procedure for V T

k Vk requires
computing V T

k sk and V T
k yk after computing sk . The straightforward implementation

would require 4mn operations. It is shownbelowhow to implement thesematrix-vector
products more efficiently.

Assuming that V T g, V T V and p have already been computed, we conclude from
formula (55) that the major computational burden in

V T
k sk = V T s = −αV T g+V T V† p (57)

is associated with computing (V T V†) · p at a cost of 4m2 multiplications. Recalling
that yk = gk+1 − gk , we observe that

V T
k yk = V T

k gk+1 − V T
k gk (58)

is a difference between two 2m-dimensional vectors, of which V T
k gk(=V T g) is avail-

able and V T
k gk+1 is calculated at a cost of 2mn operations. Then at the next iteration,

the vector V T
k+1gk+1 can be obtained from V T

k gk+1 at a low cost, because these two
vectors differ only in two components.

Thus, V T
k sk and V T

k yk can be computed by formulas (57) and (58) at a cost in which
2mn is a dominating term. This cost is associated with computing V T

k gk+1 and allows
for saving on the next iteration the same 2mn operations on computing V T

k+1gk+1.
In the next subsection, we discuss how to make the implementation of our

approaches more numerically stable.

7.4 Numerical stability

Firstly, in our numerical experiments we observed that the Grammatrix V T V updated
according to (57) and (58) was significantly more accurate if we used normalized vec-
tors s/‖s‖ and y/‖y‖ instead of s and y, respectively. More importantly, the columns
of R produced by the Cholesky factorization are, in this case, also of unit length. This
is crucial for establishing rank deficiency of V in the way described below. It can be

123

On efficiently combining limited-memory...

easily seen that the compact representation of B (53) takes the same form for V com-
posed of the normalized vectors. To avoid 2n operations, the normalized vectors are
actually never formed, but the matrix-vector multiplications involving V are preceded
by multiplying the vector by a 2m × 2m diagonal matrix whose diagonal elements are
of the form 1/‖s‖, 1/‖y‖.

Secondly, at thefirst 2m iterations, thematrixV is rank-deficient, i.e., r =rank(V) <

2m. The same may hold at the subsequent iterations. To detect linear dependence of
the columns of V , we used the diagonal elements of R. In the case of normalized
columns, Rii is equal to sinψi , where ψi is the angle between the i-th column of V
and the linear subspace, generated by the columns 1, 2, . . . , i − 1. We introduced a
threshold parameter ν ∈ (0, 1). It remains fixed for all k, and only those parts of V and
R, namely, V†, R† and R‡, which correspond to |Rii | > ν, were used for computing
s∗.

7.5 Computational complexity

The cost of one iteration is estimated as follows. The Cholesky factorization of V T V ∈
R2m×2m requires O(m3) operations, or only O(m2) if it is taken into account that the
new V differs from the old one in a few columns. Computing R†WRT

† ∈ R2m×2m ,

whereW is the inverse of a 2m × 2m matrix, takes O(m3) operations. The eigenvalue

decomposition for R†WRT
† costs O(m3). Note that O(m3) =

(
m2

n

)
O(mn) is only a

small fraction ofmn operationswhenm � n. SinceV T g is available from the updating
of B at the previous iteration, the main cost in (55) for calculating s∗ is associated with
the matrix-vector product V† p at a cost of 2mn operations. The Gram matrix V T V is
updated by formulas (57) and (58) at a cost of 2mn + O(m2) operations. Thus, the
dominating term in the overall cost is 4mn, which is the same as for the line-search
versions of the L-BFGS.

7.6 Computing the quasi-Newton step

In our numerical experiments, we observed that, for the majority of the test problems,
the quasi-Newton step sN = −B−1g was accepted at more than 75 % of iterations.
If the trust-region is defined by the Euclidean norm, we can easily check if this step
belongs to the trust-region without calculating sN or the eigenvalues of B. Indeed,
consider the following compact representation of the inverse Hessian approximation
[11]:

B−1 = γ I + [S Y]M
[
ST

Y T

]
. (59)

Here γ = δ−1 and the symmetric matrix M ∈ R2m×2m is defined as

M =
[
T−T (E + γY T Y)T−1 −γ T−T

−γ T−T 0

]
,

123

O. Burdakov et al.

where the matrix T = ST Y − L is upper-triangular. Then, since Y T Y and T are parts
of V T V , the norm of the quasi-Newton step can be computed as

‖sN‖2 = γ 2‖g‖2 + 2γ (V T g)T MV T g + ‖V MV T g‖2. (60)

The operations that involve the matrix M can be efficiently implemented as described
in [11,29]. Formula (60) requires only O(m2) operations because V T g and ‖g‖ have
already been computed. If ‖sN‖ ≤ Δ, the representation (59) of B−1 allows for
directly computing sN without any extra matrix factorizations. The dominating term
in the cost of this operation is 4mn. The factorizations considered above are used only
when the quasi-Newton step is rejected and it is then required to solve the trust-region
subproblem.

When sN is used as a trial step, the saving techniques discussed in Sects. 7.2 and
7.3 can be applied as follows. The uniform representation (55) holds for sN with V†
replaced by V , and

α = γ and p = −MVT g.

This allows for evaluating the model function in a cheap way by formula (56), where
σ ∗ = 0. Moreover, V T sN can be computed by formula (57), which saves 2mn oper-
ations.

Note that if ‖sN‖ ≤ Δ in the Euclidean norm, then, by Lemma 1, sN belongs to the
trust-region defined by any of our new norms. This permits us to use formula (60) for
checking if sN is guaranteed to belong to the trust-region in the corresponding norm.

8 Alternative limited-memory trust-region approaches, improved
versions

In this section, we describe in more detail some of those approaches mentioned in
Sect. 1, which combine limited-memory and trust-region techniques, namely, the
algorithms proposed in [10,29]. They both use the L-BFGS approximation and the
Euclidean norm. We propose below improved versions of these algorithms. They do
not require the eigenvalue decomposition. The purpose of developing the improved
versions was to compare them with our eigenvalue-based algorithms. A comparative
study is performed in Sect. 9.

8.1 Nearly-exact trust-region algorithm

A nearly-exact trust-region algorithm was proposed by Burke et al. [10]. It does not
formally fall into the conventional trust-region scheme, because at each iteration, the
full quasi-Newton step is always computed at a cost of 4mn operations like in [11]
and used as a trial step independently of its length. If it is rejected, the authors exploit
the Sherman–Morrison–Woodbury formula and obtain the following representation:

123

On efficiently combining limited-memory...

(B + σ I)−1 = (δ + σ)−1
(
I − V

(
(δ + σ)−1W−1 + V T V

)−1
V T

)
.

Furthermore, by exploiting a special structure of W for the BFGS update (53), a tri-
angular factorization of a 2m × 2m matrix (δ + σ)−1W−1 + V T V is computed using
Cholesky factorizations of twom × mmatrices. This allows for efficiently implement-
ing Newton’s iterations in solving (13), which, in turn, requires solving in u, w ∈ R2m

the following system of linear equations:

{(
(δ + σ)W−1+V T V

)
u = V T g(

(δ + σ)W−1+V T V
)
w = W−1u

. (61)

Then, a new trial step

s∗ = −(δ + σ ∗)−1
(
g−V

(
(δ + σ ∗)W−1+V T V

)−1
V T g

)
(62)

is computed at an additional cost of 2mn + O(m3) operations. The authors proposed
also to either update ST S and L after each successful iteration at a cost of 2mn
operations or, alternatively, compute, if necessary, these matrices at 2m2n operations
only. Thus, the worst case complexity of one iteration is 6mn + O(m2) or 2m2n +
2mn + O(m3).

We improve the outlined algorithm as follows. The full quasi-Newton step sN is not
computed first, but only ‖sN‖ by formula (60) at a cost of 2mn + O(m2) operations,
which allows to check if sN ∈ Ω . Then only one matrix-vector multiplication of the
additional cost 2mn is required to compute the trial step, independently onwhether it is
the full quasi-Newton step. The matrices ST S and L are updated after each successful
iteration at a cost of O(m2) operations as it was proposed in Sect. 7.3, because formula
(62) can be presented in the form (55) with V† replaced by V , and

α = (δ + σ ∗)−1 and p = (δ + σ ∗)−1
(
(δ + σ ∗)W−1+V T V

)−1
V T g.

The cost of the model function evaluation is estimated in Sect. 7.2 as O(m2). The
proposed modifications allow us to reduce the cost of one iteration to 4mn + O(m3)

operations.

8.2 Inexact trust-region algorithm

The ways of solving trust-region subproblems considered so far in this paper were
either exact or nearly-exact. In this subsection, we consider inexact algorithms pro-
posed by Kaufman in [29], where the trust-region subproblem is approximately solved
with the help of the double-dogleg approach [15]. At each iteration of the algo-
rithms, theHessian and its inverse are simultaneously approximated using the L-BFGS
updates. Techniques, similar to those presented in Sect. 7.3 are applied. The main fea-
ture of these algorithms is that the parameter δ is fixed, either for a series of iterations

123

O. Burdakov et al.

followed by a restart, or for all iterations. Here the restart means removing all stored
pairs {si , yi }. The reason for fixing δ is related to author’s intention to avoid com-
putational complexity above O(m2) in manipulations with small matrices. As it was
mentioned in [29], the performance of the algorithms is very sensitive to the choice of
δ. In the line-search L-BFGS algorithms, the parameter δ is adjusted after each itera-
tion, which is aimed at estimating the size of the true Hessian along the most recent
search direction. This explains why a good approximation of the Hessian matrix in
[29] requires larger values of m than in the case of the line-search L-BFGS.

We propose here the following algorithm based on the double-dogleg approachwith
δ changing at each iteration. It combines our saving techniques with some of those
used in [29]. The Gram matrix V T V is updated like in Sect. 7.3. In accordance with
the double-dogleg approach, an approximate solution to the trust-region subproblem
is found by minimizing the model function along a piecewise linear path that begins
in s = 0, ends in the quasi-Newton step and has two knots. One of them is the Cauchy
point

sC = −min

(‖g‖2
gT Bg

,
Δ

‖g‖
)
g ≡ −μg.

The other knot is the point τ sN on the quasi-Newton direction, where τ ∈ (0, 1) is
such that q(τ sN) < q(sC) and ‖τ sN‖ > ‖sC‖. Since q(s) and ‖s‖ are monotonically
decreasing and increasing, respectively, along the double-dogleg path, the minimizer
of q(s) on the feasible segment of the path is the endpoint of the segment. Thus,

s =
⎧⎨
⎩
sN , if ‖sN‖ ≤ Δ,

(Δ/‖sN‖)sN , if ‖τ sN‖ ≤ Δ < ‖sN‖,
sC + θ(τ sN − sC), otherwise,

(63)

where θ ∈ [0, 1) is such that ‖s‖ = Δ. In our implementation, we used

τ = 0.2 + 0.8‖g‖4/
(
(gT B−1g)(gT Bg)

)
,

as suggested in [15].
At each iteration, we first compute the full quasi-Newton step using (59) and its

norm by (60). If this step belongs to the trust-region, it is then used as a trial point.
Otherwise, the Cauchy point and τ are computed, which requires O(m) operations
for calculating

gT B−1g = γ ‖g‖2 + (V T g)T (MVT g),

where the 2m-dimensional vectors V T g and MVT g have already been computed for
sN . The additional O(m3) operations are required for calculating

gT Bg = δ‖g‖2 + (V T g)T W (V T g),

123

On efficiently combining limited-memory...

where W is the inverse of a 2m × 2m matrix. Note that in our implementation the
multiplication of the matrix W by the vector V T g is done as in [11]. This cannot
be implemented at a cost of O(m2) operations like in [29], because δ is updated by
formula (54) after each successful iteration. Note that θ in (63) can be computed at a
cost of O(1) operations. To show this, denote ŝ = τ sN − sC . Then

θ = β

ψ + √
ψ2 + ‖ŝ‖2β ,

where β = Δ2 − ‖sC‖2 and ψ = ŝT sC . Observing that

‖sC‖ = μ‖g‖ = min

(‖g‖3
gT Bg

,Δ

)
,

ψ = τ sTN sC − ‖sC‖2 = τμgT B−1g − ‖sC‖2,
‖ŝ‖2 = τ 2‖sN‖2 − 2τ sTC sN + ‖sC‖2 = τ 2‖sN‖2 − 2ψ − ‖sC‖2,

one can see that the computation of θ involves just a few scalar operations.
For estimating the cost of computing the double-dogleg solution, consider sepa-

rately the two cases depending on whether the trial step was accepted at the previous
iteration, or not. In the former case, the major computational burden in finding s by
formula (63) is related to computing the quasi-Newton step sN at a cost of 4mn oper-
ations. Otherwise, the new trial step requires only O(n) operations, because sN is
available and sC is updated for the new Δ at this cost.

According to (63), the double-dogleg solution is a linear combination of the gradient
and the quasi-Newton step, i.e., s = α1g + α2sN , where α1, α2 are scalars. Then the
model function in the trial point is computed by the formula

q(α1g + α2sN) = α1‖g‖2 − α2g
T B−1g + (α1g + α2sN)T B(α1g + α2sN)/2

= α1‖g‖2 − α2g
T B−1g + (α2

1g
T Bg − 2α1α2‖g‖2+α2

2g
T B−1g)/2

= (α1 − α1α2)‖g‖2 − (α2 − α2
2/2)g

T B−1g + (α2
1/2)g

T BT g

at a cost of O(1) operations.
As it was shown in Sect. 7.6, the representation (55) holds for the quasi-Newton

step sN . The same obviously refers to the second alternative in formula (63). In the
case of the third alternative in (63), representation (55) holds with V† replaced by V ,
and

α = (1 − θ)μ + θτγ and p = −θτMVT g.

This allows for applying the saving techniques presented in Sects. 7.2 and 7.3.
Therefore, the worst case complexity of one iteration of our inexact algorithm is
4mn + O(m3). It is the same as for the proposed above exact and nearly-exact algo-
rithms. However, the actual computational burden related to the term O(m3) and
required for implementing the product W · (V T g) in accordance with [11] is lower

123

O. Burdakov et al.

for our double-dogleg algorithm because it comes from one Cholesky factorization of
a smaller m × m matrix. Moreover, if in our algorithm the trial step is rejected, the
calculation of the next trial step requires, as mentioned earlier, only O(n) operations,
whereas the same requires at least 2mn operations in the other algorithms proposed
above.

9 Numerical tests

The developed here limited-memory trust-region algorithms were implemented in
matlab R2011b. The numerical experiments were performed on a Linux machine
HP Compaq 8100 Elite with 4 GB RAM and quad-core processor Intel Core i5-650
(3.20 GHz).

All our implementations of the trust-region approach were based on Algorithm 1
whose parameters were chosen as δ0 = 1, τ1 = 0, τ2 = 0.25, τ3 = 0.75, η1 = 0.25,
η2 = 0.5, η3 = 0.8, η4 = 2. The very first trial step was obtained by a backtracking
line search along the steepest descent direction, where the trial step-size was increased
or decreased by factor two. For a fairer comparison with line-search algorithms, the
number of accepted trial steps was counted as the number of iterations. In such a case,
each iteration requires at most two gradient evaluations (see below for details). To
take into account the numerical errors in computing ρk , we adopted the techniques
discussed in [14,28] by setting ρk = 1 whenever

| f (xk + sk) − f (xk)| ≤ 10−11 · | f (xk)|. (64)

This precaution may result in a small deterioration of the objective function value, but
it helps to prevent from stopping because of a too small trust-region. The most recent
pair {sk, yk} was not stored if

sTk yk ≤ 10−8 · ‖sk‖ · ‖yk‖.

The stopping criterion in Algorithm 1 was

‖gk‖ ≤ 10−5 · max (1, ‖x‖) .

We also terminated algorithm and considered it failed when the trust-region radius
was below 10−15 or the number of iterations exceeded 100,000.

Algorithms were evaluated on 62 large-scale (1000 ≤ n ≤10,000) CUTEr test
problems [27] with their default parameters. The version of CUTEr is dated January
8th, 2013. The average run time of algorithm on each problem was calculated on
the base of ten runs. The following problems were excluded from the mentioned set:
PENALTY2, SBRYBND,SCOSINE, SCURLY10, SCURLY20, SCURLY30, because
all tested algorithms failed; CHAINWOO, because the algorithms converged to local
minima with different objective function values; FLETCBV2, because it satisfied the
stopping criterion in the starting point; FMINSURF, because we failed to decode it.

123

On efficiently combining limited-memory...

One of the features of CUTEr is that it is computationally faster to make simulta-
neous evaluation of function and gradient in one call instead of two separate calls. In
Algorithm 1, the function is evaluated in all trial points, while the gradient is evaluated
in accepted trial points only.We observed that, for themajority of the test problems, the
quasi-Newton step was accepted at more than 75 % of iterations. Then we decided to
simultaneously evaluate f (x) and ∇ f (x) in one call whenever the quasi-Newton step
belongs to the trust-region, independently on whether the corresponding trial point is
subsequently accepted.

We used performance profiles [16] to compare algorithms. This is done as follows.
For each problem p and solver s, denote

tp,s = the result gained in solving problem p by solver s,

which can be, e.g., the CPU time, the number of iterations, or the number of function
evaluations. The performance ratio is defined as

πp,s = tp,s
min
l

tp,l
.

For each solver, we plot the distribution function of a performance metric

ρs(τ) = 1

n p
card{p : πp.s ≤ τ },

where n p is the total number of test problems. For given τ > 1, the function ρs(τ)

returns the portion of problems that solver s could solve within a factor τ of the best
result.

We shall refer to the trust-region algorithm based on the shape-changing norm (31)
asEIG(∞, 2).Weused it as a reference algorithm for comparingwith other algorithms,
because EIG(∞, 2) was one of the most successful. We studied its performance for
the parameter values m = 5, 10 and 15, which means storing at most 5, 10 and 15
pairs {sk, yk}, respectively. We performed numerical experiments for various values
of the threshold parameter ν introduced in Sect. 7.4 for establishing rank-deficiency
of V . Since the best results were obtained for ν = 10−7, we used this value in our
algorithms. In some test problems,we observed that computing V T

k sk according to (57)
could lead to numerical errors in V T

k Vk . To easily identify such cases we computed
a relative error in sTk−1sk , and if the error was larger than 10−4, a restart was applied
meaning to store only the latest pair {sk, yk}. This test was implemented in all our
eigenvalue-based trust-region algorithms. An alternative could be to recompute V T

k Vk
but it is computationally more expensive, and in our experiments, it did not sufficiently
decrease the number of iterations.

In Fig. 1a, one can see that the memory size m = 15 corresponds to the fewest
number of iterations. This is a typical behavior of limited-memory algorithms, because
larger memory allows for using more complete information about the Hessian matrix,
carried by the pairs {sk, yk}, which tends to decrease the number of iterations. On

123

O. Burdakov et al.

1 1.2 1.4 1.6 1.8 2 2.2
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

τ

ρ s
(τ
)

m=5
m=10
m=15

(a)

1 1.5 2 2.5 3 3.5 4

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

τ

ρ s
(τ
)

m=5
m=10
m=15

(b)

Fig. 1 Performance profile for EIG(∞, 2) for m = 5, 10, 15. a Number of iterations. b CPU time

the other hand, each iteration becomes computationally more expensive. For each test
problem there exists its own best value of m that reflects a tradeoff. Figure 1b shows
that the fastest for the most of the test problems was the case of m = 5. A similar
behavior was demonstrated by the trust-region algorithms based on the Euclidean
norm and shape-changing norm (32). This motivates the use ofm = 5 in our numerical
experiments.

We implemented in matlab three versions of the line-search L-BFGS. Two of
them use the Moré–Thuente line search [33] implemented in matlab by Dianne
O’Leary [36] with the same line-search parameter values as in [30]. The difference
is in computing the search direction, which is based either on the two-loop recursion
[30,34] or on the compact representation of the inverse Hessian approximation [11]
presented by formula (59). These two line-search versions have the same theoretical
properties, namely, they generate identical iterates and have the same computational
complexity, 2mn. Nevertheless, owing to the efficient matrix operations in matlab,
the former version was faster.

In the third version, the search direction is computed with the use of the compact
representation. We adapted here Algorithm 1 to make a fairer comparison with our
trust-region algorithms under the same choice of parameter values. The trial step in this
version is obtained by minimizing the same model function along the quasi-Newton
direction bounded by the trust-region. Like in our trust-region algorithms, it is accepted
whenever (64) holds, which makes the line search non-monotone. This version of L-
BFGS was superior to the other two line-search versions in every respect. The success
can be explained as follows. In comparison to the Wolve conditions, it required less
number of function and gradient evaluations for satisfying the acceptance conditions
of Algorithm 1. Furthermore, the aforementioned possible non-monotonicity due to
(64) made the third version more robust. We shall refer to it as L-BFGS. Only this
version is involved in our comparative study of the implemented algorithms.

As one can see in Fig. 2a, algorithm EIG(∞, 2) performed well in terms of the
number of iterations. In contrast to L-BFGS, it was able to solve all the test problems,
which is indicative of its robustness and better numerical stability. The performance
profiles for the number of gradient evaluations were almost identical to those for the

123

On efficiently combining limited-memory...

1 1.5 2 2.5 3 3.5 4 4.5

0.5

0.6

0.7

0.8

0.9

1

τ

ρ s
(τ
)

EIG(∞,2)
L−BFGS

(a)

1 1.5 2 2.5

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

τ

ρ s
(τ
)

EIG(∞,2)
L−BFGS

(b)

Fig. 2 Performance profile for EIG(∞, 2) and L-BFGS. a Number of iterations. b CPU time

1 1.5 2 2.5 3 3.5 4 4.5

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

τ

ρ s
(τ
)

EIG(∞,2)
L−BFGS

(a)

1 1.5 2 2.5

0.4

0.5

0.6

0.7

0.8

0.9

1

τ

ρ s
(τ
)

EIG(∞,2)
L−BFGS

(b)

Fig. 3 Performance profile for EIG(∞, 2) and L-BFGS on problems with the step-size one rejected in, at
least, 30 % of iterations. a Number of iterations. b CPU time

number of iterations. Note that, owing to the automatic differentiation, the gradients
are efficiently calculated in the CUTEr. This means that if the calculation of gradients
weremuchmore time consuming, the performance profiles for the CPU time in Fig. 3b
would more closely resemble those in Fig. 2a.

We observed that, for each CUTEr test problem, the step-size one was used for, at
least, 60 % of iterations of L-BFGS. To demonstrate the advantage of the trust-region
framework over the line search, we selected all those test problems (10 in total), where
the step-size one was rejected by L-BFGS in, at least, 30 % of iterations. At each of
these iterations, the line-search procedure computed function values more than once.
The corresponding performance profiles are given in Fig. 3 (the only figure where the
profiles are presented for the reduced set of problems). Algorithm L-BFGS failed on
one of these problems, and it was obviously less effective than EIG(∞, 2) on the rest
of them, both in terms of the number of iterations and the CPU time.

Our numerical experiments indicate that algorithm EIG(∞, 2) is, at least, compet-
ing with L-BFGS. It is natural to expect that EIG(∞, 2) will be dominating in those
of the problems originating from simulation-based applications and industry, where

123

O. Burdakov et al.

1 1.5 2 2.5 3

0.5

0.6

0.7

0.8

0.9

1

τ

ρ s
(τ
)

EIG(∞,2)
EIG−MS
EIG−MS(2,2)

(a)

1 1.5 2 2.5 3
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

τ

ρ s
(τ
)

EIG(∞,2)
EIG−MS
EIG−MS(2,2)

(b)

Fig. 4 Performance profile for EIG(∞, 2), EIG-MS and EIG-MS(2,2). a Number of iterations. b CPU
time

the cost of function and gradient evaluations is much more expensive than computing
a trial step.

We compared EIG(∞, 2) also with some other eigenvalue-based limited-memory
trust-region algorithms. In one of them, the trust-region is defined by the Euclidean
norm, and the other algorithm uses the shape-changing norm (32). We refer to them as
EIG-MS and EIG-MS(2,2), respectively. In EIG-MS, the trust-region subproblem is
solved by the Moré-Sorenson approach. We used the same approach in EIG-MS(2,2)
for solving the first subproblem in (41) defined by the Euclidean norm in a lower-
dimensional space. Notice that since BFGS updates generate positive definite Hessian
approximation, the hard case is impossible. In all our experiments, the tolerance of
solving (13) was defined by the inequality

∣∣∣‖s‖ − Δ

∣∣∣ ≤ Δ · 10−1,

which almost always required to perform from one to three Newton iterations (19).We
observed also that the higher accuracy increased the total computational time without
any noticeable improvement in the number of iterations.

Figure 4 shows that EIG(∞, 2) and EIG-MS(2,2) were able to solve all the test
problems, whereas EIG-MS(2,2) failed on one of them. Algorithm EIG(∞, 2) often
required the same or even fewer number of iterations than the other two algorithms.
The behavior of EIG-MS(2,2) was very similar to EIG-MS, which can be explained
as follows.

In our numerical experiments with L-BFGS updates, we observed that

‖g⊥‖ � ‖g‖‖ ≈ ‖g‖. (65)

Our intuition about this property is presented in the next paragraph. For s that solves
the trust-region subproblem, (65) results in ‖PT⊥ s‖ � ‖PT‖ s‖, i.e., the component
of s that belongs to the subspace defined by P⊥ is often vanishing, and therefore,

123

On efficiently combining limited-memory...

the shape-changing norm (32) of s is approximately the same as its Euclidean norm.
This is expected to result, for the double-dogleg approach, in approximately the same
number of iterations in the case of the two norms, because the Cauchy vectors are
approximately the same for these norms. However, it is unclear how to make the
computational cost of one iteration for the norm (32) lower than for the Euclidean
norm in Rn . This is the reason why our combination of the double-dogleg approach
with the norm (32) was not successful.

One of the possible explanations why (65) is typical for L-BFGS originates from
its relationship with CG. Recall that, in the case of quadratic f (x), the first m iterates
generated by L-BFGS with exact line search are identical to those generated by CG.
Furthermore, CG has the property that gk belongs to the subspace spanned by the
columns of Sk and Yk , i.e., g⊥ = 0. The numerical experiments show that L-BFGS
inherits this property in an approximate form when f (x) is not quadratic.

We implemented also our ownversion of the limited-memory trust-region algorithm
by Burke et al. [10]. This version was presented in Sect. 8.1, and it will be referred to
as BWX-MS. It has much better performance than its original version. We compare
it with EIG(∞, 2). Note that BWX-MS requires two Cholesky factorizations of m ×
m matrices for solving (61) at each Newton’s iteration (19) (see [10]). Algorithm
EIG(∞, 2) requires one Cholesky factorization of a (2m) × (2m) matrix and one
eigenvalue decomposition for a matrix of the same size, but in contrast to BWX-MS,
this is to be done only once when xk+1 �= xk , and this is not required to be done
for a decreased trust-region radius when the trial point is rejected. This explains why
the performance profile demonstrated in Fig. 5 is obviously better for our eigenvalue-
based approach than for our improved version of the one proposed in [10]. In our
numerical experiments, the advantage in performance was getting more significant
when a higher accuracy of solving the trust-region subproblem was set. Algorithm
EIG(∞, 2) is particularly more efficient than BWX-MS in problems where the trial
step is often rejected.

It should bementioned here an alternative approach developed byErway andMarcia
[18–20] for solving the trust-region subproblem for the L-BFGSupdates. The available

1 1.5 2 2.5 3

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

τ

ρ s
(τ
)

EIG(∞,2)
BWX−MS

(a)

1 1.5 2 2.5 3

0.5

0.6

0.7

0.8

0.9

1

τ

ρ s
(τ
)

EIG(∞,2)
BWX−MS

(b)

Fig. 5 Performance profile for EIG(∞, 2) and BWX-MS. a Number of iterations. b CPU time

123

O. Burdakov et al.

1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

τ

ρ s
(τ
)

EIG(∞,2)
D−DOGL

(a)

1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

τ

ρ s
(τ
)

EIG(∞,2)
D−DOGL

(b)

Fig. 6 Performance profile for EIG(∞, 2) and D-DOGL. a Number of iterations. b CPU time

version of their implementation [20], calledMSS,was far less efficient in our numerical
experiments than EIG(∞, 2).

We implemented the original version of the double-dogleg algorithm proposed in
[29] and outlined in Sect. 8.2. This inexact limited-memory trust-region algorithm
failed on 12 of the CUTEr problems, and it was far less efficient than EIG(∞, 2) on
the rest of the problems.

We implemented also our own version of the double-dogleg approach presented
in Sect. 8.2. We refer to it as D-DOGL. The performance profiles for D-DOGL and
EIG(∞, 2) are presented in Fig. 6. It shows that D-DOGL generally required more
iterations than EIG(∞, 2), because the trust-region subproblem was solved to a low
accuracy. However, it was often faster unless it took significantly more iterations to
converge. This algorithm does not require eigenvalue decomposition of B and when
the trial step is rejected, computes the new one only at a cost of O(n) operations.
We should note that, as it was observed earlier, e.g., in [17], the CUTEr collection of
large-scale test problems is better suited for applying inexact trust-region algorithms
like D-DOGL. But such algorithms are not well suited for problems where a higher
accuracy of solving trust-region subproblem is required for a better total computational
time and robustness.

An alternative approach to approximately solving trust-region subproblem is related
to the truncated conjugate gradients [39]. We applied it to solving the first subproblem
in (41). Since this CG-based algorithm produces approximate solutions, the number of
external iterations was, in general, larger than in the case of the algorithms producing
exact or nearly-exact solutions to the trust-region subproblem. The cost of one iteration
was not low enough to compete in computational timewith the fastest implementations
considered in this section.

10 Conclusions

We have developed efficient combinations of limited-memory and trust-region tech-
niques. The numerical experiments indicate that our limited-memory trust-region

123

On efficiently combining limited-memory...

algorithms are competitive with the line-search versions of the L-BFGS method. Our
eigenvalue-based approach, originally presented in [9] and further developed in the
earlier version of this paper [7], has already been successfully used in [2,21,22].

The future aim is to extend our approaches to limited-memory SR1 and multipoint
symmetric secant approximations. In case of indefinite matrix, we are going to exploit
the useful information about negative curvature directions along which the objective
function is expected to decrease most rapidly.

Furthermore, the proposed here computationally efficient techniques, including the
implicit eigenvalue decomposition, could be considered for improving the perfor-
mance of limited-memory algorithms used, e.g., for solving constrained and bound
constrained optimization problems.

Acknowledgments Part of this work was done during Oleg Burdakov’s and Spartak Zikrin’s visits to
the Chinese Academy of Sciences, which were supported by the Swedish Foundation for International
Cooperation in Research and Higher Education (STINT) and the Sparkbanksstiftlesen Alfa’s scholarship
through Swedbank Linköping, respectively. Ya-xiang Yuan was supported by NSFC Grant 11331012.

References

1. Björk, Å.: Numerical Methods for Least Squares Problems. SIAM, Philadelphia (1996)
2. Brust, J., Erway, J.B., Marcia, R.F.: On solving L-SR1 trust-region subproblems. arXiv:1506.07222

(2015)
3. Buckley, A., LeNir, A.: QN-like variable storage conjugate gradients. Math. Program. 27(2), 155–175

(1983)
4. Burdakov, O.P.: Methods of the secant type for systems of equations with symmetric Jacobian matrix.

Numer. Funct. Anal. Optim. 6, 183–195 (1983)
5. Burdakov, O.P.: Stable versions of the secant method for solving systems of equations. USSR Comput.

Math. Math. Phys. 23(5), 1–10 (1983)
6. Burdakov, O.P.: On superlinear convergence of some stable variants of the secant method. Z. Angew.

Math. Mech. 66(2), 615–622 (1986)
7. Burdakov, O., Gong, L., Zikrin, S., Yuan, Y.: On efficiently combining limitedmemory and trust-region

techniques. Tech. rep. 2013:13, Linköping University (2013)
8. Burdakov, O.P., Martínez, J.M., Pilotta, E.A.: A limited-memory multipoint symmetric secant method

for bound constrained optimization. Ann. Oper. Res. 117, 51–70 (2002)
9. Burdakov, O., Yuan, Y: On limited-memorymethods with shape changing trust-region. In: Proceedings

of the first international conference on optimization methods and software, Huangzhou, China, p. 21
(2002)

10. Burke, J.V., Wiegmann, A., Xu, L.: Limited memory BFGS updating in a trust-region framework.
Tech. rep., University of Washington (2008)

11. Byrd, R.H., Nocedal, J., Schnabel, R.B.: Representations of quasi-Newton matrices and their use in
limited memory methods. Math. Program. 63, 129–156 (1994)

12. Byrd, R.H., Schnabel, R.B., Shultz, G.A.: Approximate solution of the trust-region problem by mini-
mization over two-dimensional subspaces. Math. Program. 40(1–3), 247–263 (1988)

13. Conn, A.R., Gould, N.I.M., Toint, P.L.: Convergence of quasi-Newton matrices generated by the
symmetric rank one update. Math. Program. 50(1–3), 177–195 (1991)

14. Conn, A.R., Gould, N.I.M., Toint, P.L.: Trust-region methods. MPS/SIAM Ser. Optim. 1, SIAM,
Philadelphia (2000)

15. Dennis Jr., J.E., Mei, H.H.W.: Two new unconstrained optimization algorithms which use function and
gradient values. J. Optim. Theory Appl. 28(4), 453–482 (1979)

16. Dolan, E.D., Moré, J.J.: Benchmarking optimization software with performance profiles. Math. Pro-
gram. 91, 201–213 (2002)

17. Erway, J.B., Gill, P.E., Griffin, J.: Iterative methods for finding a trust-region step. SIAM J. Optim.
20(2), 1110–1131 (2009)

123

http://arxiv.org/abs/1506.07222

O. Burdakov et al.

18. Erway, J.B., Jain, V., Marcia, R.F.: Shifted L-BFGS systems. Optim. Methods Softw. 29(5), 992–1004
(2014)

19. Erway, J.B.,Marcia, R.F.: Limited-memoryBFGS systemswith diagonal updates. LinearAlgebr. Appl.
437(1), 333–344 (2012)

20. Erway, J.B., Marcia, R.F.: Algorithm 943: MSS: MATLAB Software for L-BFGS trust-region sub-
problems for large-scale optimization. ACM Trans. Math. Softw. 40(4), 28:1–28:12 (2014)

21. Erway, J.B., Marcia, R.F.: On efficiently computing the eigenvalues of limited-memory quasi-Newton
matrices. SIAM J. Matrix Anal. Appl. 36(3), 1338–1359 (2015)

22. Erway, J.B., Marcia, R.F.: On solving limited-memory quasi-Newton equations. arXiv:1510.06378
(2015)

23. Gilbert, J.C., Lemaréchal, C.: Some numerical experiments with variable-storage quasi-Newton algo-
rithms. Math. Program. 45(1–3), 407–435 (1989)

24. Gill, P.E., Leonard, M.W.: Limited-memory reduced-Hessian methods for large-scale unconstrained
optimization. SIAM J. Optim. 14, 380–401 (2003)

25. Golub, G., Van Loan, C.: Matrix Computations, 4th edn. Johns Hopkins University Press, Baltimore
(2013)

26. Gould,N.I.M., Lucidi, S., Roma,M., Toint, P.L.: Solving the trust-region subproblemusing theLanczos
method. SIAM J. Optim. 9(2), 504–525 (1999)

27. Gould, N.I.M., Orban, D., Toint, P.L.: CUTEr and SifDec: a constrained and unconstrained testing
environment, revisited. ACM Trans. Math. Softw. 29(4), 373–394 (2003)

28. Hager, W., Zhang, H.: A new conjugate gradient method with guaranteed descent and an efficient line
search. SIAM J. Optim. 16(1), 170–192 (2005)

29. Kaufman, L.: Reduced storage, quasi-Newton trust-region approaches to function optimization. SIAM
J. Optim. 10(1), 56–69 (1999)

30. Liu, D.C., Nocedal, J.: On the limited memory BFGS method for large scale optimization. Math.
Program. 45(1–3), 503–528 (1989)

31. Lu, X: A study of the limitedmemory SR1method in practice. Doctoral Thesis, University of Colorado
at Boulder (1996)

32. Moré, J.J., Sorensen, D.: Computing a trust-region step. SIAM J. Sci. Stat. Comput. 4(3), 553–572
(1983)

33. Moré, J.J., Thuente, D.J.: Line search algorithms with guaranteed sufficient decrease. ACM Trans.
Math. Softw. 20(3), 286–307 (1994)

34. Nocedal, J.: Updating quasi-Newton matrices with limited storage. Math. Comp. 35(151), 773–782
(1980)

35. Nocedal, J., Wright, S.J.: Numerical Optimization, 2nd edn. Springer Ser. Oper. Res. Springer, New
York (2006)

36. O’Leary, D.: A Matlab implementation of a MINPACK line search algorithm by Jorge J. Moré and
David J. Thuente (1991). https://www.cs.umd.edu/users/oleary/software/. Accessed 1 November 2012

37. Powell, M.J.D.: A hybrid method for nonlinear equations. In: Rabinowitz, P. (ed.) Numerical Methods
for Nonlinear Algebraic Equations, pp. 87–114. Gordon and Breach, London (1970)

38. Powell, M.J.D.: A new algorithm for unconstrained optimization. In: Rosen, O.L.M.J.B., Ritter, K.
(eds.) Nonlinear Programming. Academic Press, New York (1970)

39. Steihaug, T.: The conjugate gradient method and trust-regions in large scale optimization. SIAM J.
Numer. Anal. 20(3), 626–637 (1983)

40. Sun,W., Yuan, Y.: Optimization Theory andMethods. Nonlinear Programming, Springer Optimization
and Its Applications 1, Springer, New York (2006)

41. Toint, P.L.: Towards an efficient sparsity exploiting Newton method for minimization. In: Duff, I.S.
(ed.) Sparse Matrices and Their Uses, pp. 57–88. Academic Press, London (1981)

42. Wolfe, P.: Convergence conditions for ascent methods. SIAM Rev. 11(2), 226–235 (1969)
43. Yuan, Y., Stoer, J.: A subspace study on conjugate gradient algorithms. ZAMMZ.Angew.Math.Mech.

75(1), 69–77 (1995)
44. Yuan, Y.: Recent advances in trust-region algorithms. Math. Program. 151(1), 249–281 (2015)

123

http://arxiv.org/abs/1510.06378
https://www.cs.umd.edu/users/oleary/software/

	On efficiently combining limited-memory and trust-region techniques
	Abstract
	1 Introduction
	2 Spectrum of limited-memory Hessian approximation
	3 Trust-region subproblem in the Euclidean norm
	4 Trust-region subproblem in eigenvalue-based norms
	4.1 Eigenvalue-based decomposition of the model function
	4.2 New norms and related subproblem properties
	4.2.1 Shape changing norms
	4.2.2 Subproblem separability for the new norms

	5 Algorithm
	6 Convergence analysis
	7 Implementation details for L-BFGS
	7.1 Uniform representation of eigenvalue-based solutions
	7.2 Model function evaluation
	7.3 Updating Hessian approximation
	7.4 Numerical stability
	7.5 Computational complexity
	7.6 Computing the quasi-Newton step

	8 Alternative limited-memory trust-region approaches, improved versions
	8.1 Nearly-exact trust-region algorithm
	8.2 Inexact trust-region algorithm

	9 Numerical tests
	10 Conclusions
	Acknowledgments
	References

