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Abstract

In this paper, we propose a class of penalty methods with stochastic approximation for solving
stochastic nonlinear programming problems. We assume that only noisy gradients or function
values of the objective function are available via calls to a stochastic first-order or zeroth-order
oracle. In each iteration of the proposed methods, we minimize an exact penalty function which
is nonsmooth and nonconvex with only stochastic first-order or zeroth-order information avail-
able. Stochastic approximation algorithms are presented for solving this particular subproblem.
The worst-case complexity of calls to the stochastic first-order (or zeroth-order) oracle for the
proposed penalty methods for obtaining an ε-stochastic critical point is analyzed.
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1 Introduction

In this paper, we consider the following stochastic nonlinear programming (SNLP) problem:

min
x∈Rn

f(x)

s.t. c(x) := (c1(x), . . . , cq(x))T = 0,
(1.1)

where both f : Rn → R and c : Rn → Rq are continuously differentiable but possibly nonconvex.
We assume that the function values and gradients of ci(x), i = 1, . . . , q, can be obtained exactly.
However, we assume that only the noisy function values or gradients of f are available. Specifically,
the noisy gradients (resp. function values) of f are obtained via subsequent calls to a stochastic
first-order oracle (SFO) (resp. stochastic zeroth-order oracle (SZO)). The problem (1.1) arises in
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many applications, such as machine learning [23], simulation-based optimization [10], mixed logit
modeling problems in economics and transportation [1, 4, 18]. Besides, many two-stage stochastic
programming problems can be formulated as (1.1) (see, e.g., [3]). Many problems in these fields
have the following objective functions:

f(x) =

∫
Ξ
F (x, ξ)dP (ξ) or f(x) = Eξ[F (x, ξ)],

where ξ denotes the random variable whose distribution P is supported on Ξ and Eξ[·] means that
the expectation is taken with respect to ξ. Due to the fact that the integral is difficult to evaluate,
or function F (·, ξ) is not given explicitly, the function values and gradients of f are not easily
obtainable and only noisy information of f is available.

Stochastic programming has been studied for several decades. Robbins and Monro [32] proposed
a stochastic approximation (SA) algorithm for solving convex stochastic programming problems.
Various methods on SA have been proposed after [32], such as [6, 9, 11, 33, 34] and so on. By
incorporating the averaging technique, Polyak [30] and Polyak and Juditsky [31] suggested SA
methods with longer stepsizes and the asymptotically optimal rate of convergence is exhibited.
Interested readers are referred to [3, 35] for more details on stochastic programming. Recently,
following the development of the complexity theory in convex optimization [26], the convergence
and complexity properties of SA methods were explored. Nemirovski et al. [25] proposed a mirror
descent SA method for the nonsmooth convex stochastic programming problem x∗ := argmin{f(x) |
x ∈ X} and showed that the algorithm returns x̄ ∈ X with E[f(x̄)−f(x∗)] ≤ ε in O(ε−2) iterations,
where X is the constraint set and E[y] denotes the expectation of random variable y. Nemirovski
and Rubinstein [24] proposed an efficient SA method for convex-concave stochastic saddle point
problem in the form of minx∈X maxy∈Y φ(x, y). It is assumed that both X and Y are convex
sets and φ is convex in x ∈ X and concave in y ∈ Y . Under certain assumptions, they showed
that the proposed method returns (x̄, ȳ) ∈ X × Y with E[maxy∈Y φ(x̄, y) − minx∈X φ(x, ȳ)] ≤ ε
in O(ε−2) iterations. Recently, Wang and Bertsekas [36] proposed an SA method with constraint
projection for nonsmooth convex optimization, whose constraint set is the intersection of a finite
number of convex sets. Other relevant works on the complexity analysis of SA algorithms for convex
optimization include [13,14,19–22].

SA algorithms for nonconvex stochastic programming and their complexity analysis, however,
have not been investigated thoroughly yet. In [15], Ghadimi and Lan proposed an SA method for
the nonconvex stochastic optimization problem min{f(x) | x ∈ Rn}. Their algorithm returns x̄
with E[‖∇f(x̄)‖2] ≤ ε after at most O(ε−2) iterations. In [17], Ghadimi et al. studied the following
nonconvex composite stochastic programming problem

min
x∈X

f(x) + `(x), (1.2)

where X ⊆ Rn is a closed convex set, f is nonconvex and ` is a simple convex function with certain
special structure. They proposed a proximal-gradient like SA method for solving (1.2) and analyzed
its complexity. Dang and Lan [7] studied several stochastic block mirror descent methods for large-
scale nonsmooth and stochastic optimization by combining the block-coordinate decomposition and
an incremental block average scheme. In [16], Ghadimi and Lan generalized Nesterov’s accelerated
gradient method [27] to solve the stochastic composite optimization problem (1.2) with X := Rn.
However, to the best of our knowledge, there has not been any SA method proposed for solving
SNLP (1.1) with nonconvex objective functions and nonconvex constraints. In this paper, we will
focus on studying such methods and analyzing their complexity properties.

When the exact gradient of f in (1.1) is available, a classical way to solve (1.1) is using penalty
methods. In a typical iteration of a penalty method for solving (1.1), an associated penalty function
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is minimized for a fixed penalty parameter. The penalty parameter is then adjusted for the next
iteration. For example, the exact penalty function Φρ(x) = f(x)+ρ‖c(x)‖2 is widely used in penalty
methods (see, e.g., [5]). Note that Φρ is the summation of a differentiable term and a nonsmooth
term, and the nonsmooth term itself is the composition of the convex nonsmooth function ρ‖·‖2 and
a nonconvex differentiable function c(x). In [5], an exact penalty algorithm is proposed for solving
(1.1) which minimizes Φρ(x) in each iteration with varying ρ, and its function-evaluation worst-case
complexity is analyzed. We refer the interested readers to [29] for more details on penalty methods.

Motivated by the work in [5], we shall propose a class of penalty methods with stochastic
approximation in this paper for solving SNLP (1.1). In our methods, we minimize a penalty
function f(x) + ρ‖c(x)‖2 in each iteration with varying ρ. Note that the difference is that now
we only have access to inexact information to f through SFO or SZO calls. We shall show that
our proposed methods can return an ε-stochastic critical point (will be defined later) of (1.1), and
analyze the worst-case complexity of SFO (or SZO) calls to obtain such a solution.

Contributions. Our contributions in this paper lie in the following folds. First, we propose a
penalty method with stochastic first-order information for solving (1.1). In each iteration of this
algorithm, we solve a nonconvex stochastic composite optimization problem as a subproblem. An
SA algorithm for solving this subproblem is also given. The SFO-calls worst-case complexity of
this penalty method to obtain an ε-stochastic critical point is analyzed. Second, for problem (1.1)
with only stochastic zeroth-order information (i.e., noisy function values) available, we also present
a penalty method for solving them and analyze their SZO-calls worst-case complexity.

Notation. We adopt the following notation throughout the paper. ∇f(x) denotes the gradient
of f and J(x) := ∇c(x) = (∇c1(x), . . . ,∇cq(x))T denotes the Jacobian matrix of c. The subscript

k refers to the iteration number in an algorithm, e.g., xk is the k-th x iterate. xT y denotes the
Euclidean inner product of vectors x and y in Rn. Without specification, ‖ · ‖ represents the
Euclidean norm ‖ · ‖2 in Rn.

Organization. The rest of this paper is organized as follows. In Section 2, we propose an
SA algorithm with stochastic first-order information for solving a nonconvex stochastic composite
optimization problem (2.1), which is the subproblem in our penalty methods for solving (1.1). In
Section 3, we propose a penalty method with stochastic first-order information for solving the SNLP
problem (1.1) and analyze its SFO-calls worst-case complexity to obtain an ε-stochastic critical
point. In Section 4, we present a penalty method with SA for solving (1.1) using only stochastic
zeroth-order information of f and analyze its SZO-calls worst-case complexity. Finally, we draw
some conclusions in Section 5.

2 A stochastic first-order approximation method for a nonconvex
stochastic composite optimization

Before we present the penalty methods for solving SNLP (1.1), we consider the following nonconvex
stochastic composite optimization (NSCO) problem in this section, which is in fact the subproblem
in our penalty methods for solving (1.1):

min
x∈Rn

Φh(x) := f(x) + h(c(x)), (2.1)

where f and c are both continuously differentiable and possibly nonconvex, and h is a nonsmooth
convex function. We assume that both the exact zeroth-order and first-order information (function
value and Jacobian matrix) of c is available, but only noisy gradient information of f is available
via SFO calls. Namely, for the input x, SFO will output a stochastic gradient G(x, ξ) of f , where
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ξ is a random variable whose distribution is supported on Ξ ⊆ Rd (note that Ξ does not depend on
x).

NSCO (2.1) is quite different from (1.2) considered by Ghadimi et al. in [17]. In (1.2), the sec-
ond term in the objective function must be convex. However, we allow c(x) to be nonconvex which
implies that the second term h(c(x)) in (2.1) is nonconvex. For solving (2.1) under deterministic
settings, i.e., when exact zeroth-order and first-order information of f is available, there have been
some relevant works. Cartis et al. [5] proposed a trust region approach and a quadratic regular-
ization approach for solving (2.1), and explored their function-evaluation worst-case complexity.
Both methods need to take at most O(ε−2) function-evaluations to reduce a first-order criticality
measure below ε. Garmanjani and Vicente [12] proposed a smoothing direct-search method for
nonsmooth nonconvex but Lipschitz continuous unconstrained optimization. They showed that the
method takes at most O(ε−3 log ε−1) function-evaluations to reduce both the smoothing parameter
and the first-order criticality of the smoothing function below ε. Bian and Chen [2] studied the
worst-case complexity of a smoothing quadratic regularization method for a class of nonconvex,
nonsmooth and non-Lipschitzian unconstrained optimization problems. Specifically, by assuming
h(c(x)) :=

∑n
i=1 φ(|xi|p) in (2.1), where 0 < p ≤ 1 and φ is some continuously differentiable func-

tion, it was shown in [2] that the function-evaluation worst-case complexity to reach an ε scaled
critical point is O(ε−2). However, to the best of our knowledge, there has not been any work
studying NSCO (2.1).

The following assumptions are made throughout this paper.

AS.1 f, ci ∈ C1(Rn) 1, i = 1, . . . , q. f(x) is lower bounded by a real number f low for any x ∈ Rn.
∇f and J are Lipschitz continuous with Lipschitz constants Lg and LJ respectively.

AS.2 h is convex and Lipschitz continuous with Lipschitz constant Lh.

AS.3 Φh(x) is lower bounded by a real number Φlow
h for all x ∈ Rn.

AS.4 For any k, we have

a) E [G(xk, ξk)] = ∇f(xk),

b) E
[
‖G(xk, ξk)−∇f(xk)‖2

]
≤ σ2,

where σ > 0.

We now describe our SA algorithm for solving NSCO (2.1) in Algorithm 2.1. For ease of
presentation, we denote

ψγ(x, g, u) := gT (u− x) + h(c(x) + J(x)(u− x)) +
1

2γ
‖u− x‖2. (2.2)

1f ∈ C1(Rn) means that f : Rn → R is continuously differentiable.
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Algorithm 2.1 Stochastic approximation algorithm for NSCO (2.1)

Input: Given x1 ∈ Rn, maximum iteration number Nin, stepsizes {γk} with γk > 0, k ≥ 1, the
batch sizes {mk} with mk > 0, k ≥ 1. Let R be a random variable following probability
distribution PR which is supported on {1, . . . , Nin}.

Output: xR.
1: for k = 1, 2, . . . , R− 1 do
2: Call SFO mk times to obtain G(xk, ξk,i), i = 1, . . . ,mk, then set

Gk =
1

mk

mk∑
i=1

G(xk, ξk,i).

3: Compute
xk+1 = argmin

u∈Rn
ψγk(xk, Gk, u). (2.3)

4: end for

The most significant difference between our strategy to update iterates in (2.3) and the one
in [17] is the way that we deal with the structured nonsmooth term h(c(x)). Since it is the
composition of the nonsmooth convex function h and the nonconvex differentiable function c, we
apply the first-order approximation of c in (2.3). Due to the convexity of h, ψγ is strongly convex
with respect to u. Hence, xk+1 is well-defined in (2.3).

Let us define

Pγ(x, g) :=
1

γ
(x− x+), (2.4)

where x+ is defined as
x+ = argmin

u∈Rn
ψγ(x, g, u). (2.5)

From the optimality conditions for (2.5), it follows that there exists p ∈ ∂h(c(x) + J(x)(x+ − x))
such that Pγ(x, g) = g + J(x)T p. Thus, if Pγ(x,∇f(x)) = 0, then x is a first-order critical point of
(2.1). Therefore, ‖Pγ(x,∇f(x))‖ can be adopted as the criticality measure for (2.1). In addition,
we denote the generalized gradients

g̃k := Pγk(xk,∇f(xk)) and g̃rk := Pγk(xk, Gk). (2.6)

The following results give estimates to E[‖g̃R‖2] and E[‖g̃rR‖2].
As the analysis in this section essentially follows from [17], for simplicity we only state the

results here and their proofs are given in Appendix A. The first theorem provides an upper bound
for the expectation of the generalized gradient at xR, the output of Algorithm 2.1.

Theorem 2.1. Let AS.1-4 hold. We assume that the stepsizes {γk} in Algorithm 2.1 are chosen
such that 0 < γk ≤ 2/L with γk < 2/L for at least one k, where L := Lg+LhLJ . Moreover, suppose
that the probability mass function PR is chosen such that for any k = 1, . . . , Nin,

PR(k) := Prob{R = k} =
γk − Lγ2

k/2∑Nin
k=1(γk − Lγ2

k/2)
. (2.7)

Then for any Nin ≥ 1, we have

E[‖g̃rR‖2] ≤
DΦh + σ2

∑Nin
k=1(γk/mk)∑Nin

k=1(γk − Lγ2
k/2)

, (2.8)
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where the expectation is taken with respect to R and ξ[Nin] := (ξ1, . . . , ξNin) with ξk := (ξk,1, . . . , ξk,mk)
in Algorithm 2.1, and the real number DΦh is defined as

DΦh = Φh(x1)− Φlow
h . (2.9)

By specializing the settings of Algorithm 2.1, we obtain the following complexity result.

Theorem 2.2. Let AS.1-4 hold. Suppose that in Algorithm 2.1, γk = 1/L where L := Lg +LhLJ
and the probability mass function is chosen as in (2.7). For any given ε > 0, we assume that the
total number of SFO-calls N̄ in Algorithm 2.1 satisfies

N̄ ≥ max

{
(DΦhC2 + LC3)2

ε2
+

32LDΦh

ε
,
C1

L2

}
, (2.10)

where
C1 = σ2/D̃, C2 = 8σ/

√
D̃ and C3 = 6σ

√
D̃ (2.11)

with some problem-independent positive constant D̃. We further assume that the batch size mk,
k = 1, . . . , Nin, satisfies

mk = m :=

min

N̄ ,max

1,
σ

L

√
N̄

D̃



 , (2.12)

Then we have
E[‖g̃R‖2] ≤ ε and E[‖g̃rR‖2] ≤ ε, (2.13)

where the expectations are taken with respect to R and ξ[Nin]. Thus, it follows that the number of
SFO-calls required by Algorithm 2.1 to achieve E[‖g̃R‖2] ≤ ε and E[‖g̃rR‖2] ≤ ε is in the order of
O(ε−2).

Remark 2.1. Theorems 2.1-2.2 are similar to the theoretical results obtained in [17]. The only
difference is that we allow the nonsmooth term of the objective to be nonconvex, while the results
in [17] require the nonsmooth term to be convex.

Remark 2.2. Instead of choosing a random iterate as the output, we can use a deterministic
termination condition, i.e., choosing the iterate x̂ that has the smallest norm of the exact gradient
among all iterates as the output of the algorithm. Following the analysis in Theorems 2.1-2.2, we
can obtain a similar bound on the expectation of the squared norm of the gradient at x̂ and obtain
the same complexity result O(ε−2). However, this deterministic termination condition requires to
compute the exact gradients at all iterates, which is impractical for stochastic programming.

3 A penalty method with stochastic first-order approximation for
SNLP (1.1)

We now return to the SNLP problem (1.1), in which only stochastic gradient information of f
is available via SFO-calls. In this section, we shall propose a penalty method with stochastic
first-order approximation for solving (1.1) and study its SFO-calls worst-case complexity.

In deterministic settings, one would expect to find the KKT point of (1.1), which is defined as
follows (see [29] for reference).
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Definition 3.1. x∗ is called a KKT point of (1.1), if there exists λ∗ ∈ Rq such that

∇f(x∗) + J(x∗)Tλ∗ = 0, and c(x∗) = 0.

When solving nonlinear programming problems, however, it is possible that one algorithm fails
to output a feasible point. For example, the constraints c(x) = 0 may not be realized for any
x ∈ Rn. In this case, the best one can hope is to find x such that ‖c(x)‖ is minimized, or in other
words, the constraint violation ‖c(x)‖ could not be improved any more in a neighborhood of x.
Therefore, Cartis, Gould and Toint [5] introduced the following definition of ε-approximate critical
point of (1.1).

Definition 3.2. x is called an ε-approximate critical point of (1.1), if there exists λ ∈ Rq such
that the following two inequalities hold:

‖∇f(x) + J(x)Tλ‖ ≤ ε, and θ(x) ≤ ε,

where θ(x) is defined as
θ(x) = ‖c(x)‖ − min

‖s‖≤1
‖c(x) + J(x)s‖. (3.1)

Note that x̄ is a critical point of the problem {min ‖c(x)‖}, if θ(x̄) = 0 (see e.g. [5, 37]).
In stochastic settings, any specific algorithm for solving (1.1) is a random process and the output

is a random variable. We thus modify Definition 3.2 and define the ε-stochastic critical point of
(1.1) as follows.

Definition 3.3. Let ε be any given positive constant and x ∈ Rn be output of a random process.
x is called an ε-stochastic critical point of (1.1), if there exists λ ∈ Rq such that

E[‖∇f(x) + J(x)Tλ‖2] ≤ ε, (3.2)

E[θ(x)] ≤
√
ε. (3.3)

We now make a few remarks regarding to this definition. In the deterministic setting, (3.2) and
(3.3) reduce respectively to ‖∇f(x)+J(x)Tλ‖ ≤

√
ε and θ(x) ≤

√
ε, which are both worse than the

conditions in Definition 3.2. In (3.2) we use E[‖∇f(x)+J(x)Tλ‖2] instead of E[‖∇f(x)+J(x)Tλ‖],
because for the subproblem NSCO (2.1) we are only able to analyze the former term. It is worth
noting that by Jensen’s inequality, we have ‖E[∇f(x)+J(x)Tλ]‖2 ≤ E[‖∇f(x)+J(x)Tλ‖2], and are
able to bound ‖E[∇f(x) + J(x)Tλ]‖. However, our analysis is directly for E[‖∇f(x) + J(x)Tλ‖2],
and replacing it by ‖E[∇f(x) + J(x)Tλ]‖ in Definition 3.3 will loosen the bound. Admittedly, the
bounds in Definition 3.3 are loose compared with the ones in Definition 3.2. However, note that
Definition 3.3 is for SNLP (1.1) in the stochastic setting, and that is the price we need to pay when
we define the ε-stochastic critical point.

We now give our penalty method with stochastic first-order approximation for solving SNLP
(1.1). Similar as the deterministic penalty method in [5], we minimize, at each iteration, the
following penalty function with varying penalty parameter ρ:

min
x∈Rn

Φρ(x) = f(x) + ρ‖c(x)‖. (3.4)

Notice that (3.4) is a special case of NSCO (2.1) with h(·) := ρ‖ · ‖. Hence, h is convex and
Lipschitz continuous with Lipschitz constant Lh = ρ. AS.2 thus holds naturally. Moreover, if
AS.1 is assumed to be true, then for any ρ > 0, there exists Φlow

ρ ≥ f low such that Φρ(x) ≥ Φlow
ρ
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for all x ∈ Rn. Therefore, AS.3 holds as well with h(·) := ρ‖ · ‖ and Φlow
h := Φlow

ρ . Our penalty
method for solving (1.1) is described in Algorithm 3.1.

Algorithm 3.1 Penalty method with stochastic first-order approximation for (1.1)

Input: Given N as the maximum iteration number, tolerance ε ∈ (0, 1), steering parameter ξ ∈
(0, 1), initial iterate x1 ∈ Rn, G1 ∈ Rn, penalty parameter ρ0 ≥ 1, minimal increase factor
τ > 0. Set k := 1.

Output: xN .
1: for k = 1, 2, . . . , N − 1 do
2: Step (a): Find ρ := ρk ≥ ρk−1 + τ satisfying

φρ(xk) ≥ ρξθ(xk), (3.5)

where θ(x) is defined in (3.1) and

φρ(xk) = ρ‖c(xk)‖ − min
‖s‖≤1

{
GTk s+ ρ‖c(xk) + J(xk)s‖

}
. (3.6)

3: Step (b): Apply Algorithm 2.1 with initial iterate xk,1 := xk to solve the NSCO subproblem
(3.4) with ρ := ρk and using N̄ρ SFO-calls, returning xk+1 := xk,Rk and Gk+1 := Gk,Rk ,
such that

E[‖g̃rk+1‖2] ≤ ε, (3.7)

where g̃rk is defined in (2.6), xk,Rk denotes the Rk-th iterate generated by Algorithm 2.1
when solving the k-th subproblem, and the expectation is taken with respect to the random
variables generated when calling Algorithm 2.1.

4: end for

Note that Algorithm 3.1 provides a unified framework of penalty methods for SNLP (1.1), and
any algorithm for solving NSCO in Step (b) can be incorporated into Algorithm 3.1.

Remark 3.1. We now remark that Step (a) in Algorithm 3.1 is well-defined, i.e., (3.5) can be sat-
isfied for sufficiently large penalty parameter ρ. This fact can be seen from the following argument:

φρ(xk) = ρ‖c(xk)‖ − min
‖s‖≤1

{
GTk s+ ρ‖c(xk) + J(xk)s‖

}
≥ ρ‖c(xk)‖ − min

‖s‖≤1
{‖Gk‖+ ρ‖c(xk) + J(xk)s‖}

= −‖Gk‖+ ρ

{
‖c(xk)‖ − min

‖s‖≤1
‖c(xk) + J(xk)s‖

}
= −‖Gk‖+ ρθ(xk).

This indicates that (3.5) holds when

ρ ≥ ‖Gk‖
(1− ξ)θ(xk)

. (3.8)

Once the algorithm enters Step (a), both xk and Gk are fixed, so we can achieve (3.8) by increasing
ρ.

Remark 3.2. Although motivated by the exact penalty-function algorithm proposed in [5] for solv-
ing nonlinear programming in the deterministic setting, our Algorithm 3.1, as an SA method, is
significantly different from the algorithm in [5] in the following folds.
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(i) Different subproblem solver is used in Algorithm 3.1. In [5], each composite optimization sub-
problem is solved by a trust region algorithm or a quadratic-regularization algorithm. For s-
tochastic programming, however, since exact objective gradient is not available, exact gradient-
based algorithms do not work any more. So we adopt a stochastic approximation algorithm
to solve NSCO subproblems in Algorithm 3.1. This will yield quite different subproblem ter-
mination criterion.

(ii) Different termination condition for the subproblem is used in Algorithm 3.1. When subprob-
lems in [5] are solved, an extra condition φρ(xk) ≤ ε has to be checked at each inner iteration.
However, since the SA algorithm is called to solve subproblems in Algorithm 3.1, we use
a more natural termination condition (3.7). Therefore, φρ(xk) is only computed at outer
iterations of Algorithm 3.1.

(iii) Different termination condition for outer iteration is used in Algorithm 3.1. The algorithm
in [5] for the deterministic setting is terminated once the criticality measure θ at some point
is below some tolerance. However, this cannot be used in Algorithm 3.1 for solving the SNLP
problem (1.1), because the whole algorithm is a random process, and any specific instance is
not sufficient to characterize the performance of criticality measure in average. So we set
a maximum iteration number N to terminate the outer iteration of Algorithm 3.1. We will
explore the property of the expectation of the output xN later.

In the following, we shall discuss the SFO-calls complexity of Algorithm 3.1. We assume that
the sequence {xk} generated by Algorithm 3.1 is bounded. Then AS.1 indicates that there exist
positive constants κf , κc, κg and κJ such that for all k,

f(xk) ≤ κf , ‖c(xk)‖ ≤ κc, ‖∇f(xk)‖ ≤ κg and ‖J(xk)‖ ≤ κJ . (3.9)

We first provide an estimate on the optimality of the iterate xk.

Lemma 3.1. Let AS.1 and AS.4 hold. For fixed ρ := ρk−1 and any given ε > 0, if Algorithm 2.1
returns xk satisfying E[‖g̃rk‖2] ≤ ε, then there exists λk ∈ Rq such that

E[‖∇f(xk) + J(xk)
Tλk‖2] ≤ 2ε+ 2E[‖Gk −∇f(xk)‖2], (3.10)

where the expectations are taken with respect to the random variables generated in Algorithm 2.1
for solving the (k-1)-th subproblem, and g̃rk is defined in (2.6).

Proof. Note that the outputs of Algorithm 2.1 are denoted as xk = xk−1,Rk−1
and Gk =

Gk−1,Rk−1
. At the point xk, Algorithm 2.1 generates the next iterate x+

k := xk−1,Rk−1+1 via

x+
k := argmin

u∈Rn

{
GTk (u− xk) + ρ‖c(xk) + J(xk)(u− xk)‖+

1

2γk−1,Rk−1

‖u− xk‖2
}
. (3.11)

According to the first-order optimality conditions for (3.11), there exists pk ∈ ∂‖c(xk)+J(xk)(x
+
k −

xk)‖ such that

Gk + ρJ(xk)
T pk +

1

γk−1,Rk−1

(x+
k − xk) = 0,

which yields Gk + ρJ(xk)
T pk = g̃rk−1,Rk−1

. Thus we have the following inequality:

‖∇f(xk) + ρJ(xk)
T pk‖2 ≤ 2‖Gk + ρJ(xk)

T pk‖2 + 2‖Gk −∇f(xk)‖2

= 2‖g̃rk−1,Rk−1
‖2 + 2‖Gk −∇f(xk)‖2. (3.12)
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Hence, by letting λk = ρpk and taking expectation on both sides of (3.12), we obtain (3.10).
The following lemma shows that, for any given ε > 0, we can bound E[‖∇f(xk) + J(xk)

Tλk‖2]
by ε through choosing appropriate total number of SFO-calls and batch sizes when Algorithm 2.1
is applied to solve the NSCO subproblems.

Lemma 3.2. Let AS.1 and AS.4 hold. For fixed ρ := ρk−1 and any given ε > 0, when applying
Algorithm 2.1 to minimize Φρ, we choose constant stepsize γ = γρ := 1/Lρ and set the total number
of SFO-calls N̄ρ in Algorithm 2.1 as

N̄ρ ≥ max

{(
4DΦρC2 + 4LρC3

)2
ε2

+
128LρDΦρ

ε
,
C1

L2
ρ

}
. (3.13)

where C1, C2 and C3 are defined in (2.11),

DΦρ = Φρ(xk−1)− Φlow
ρ and Lρ = Lg + ρLJ . (3.14)

We also assume that the batch sizes are chosen to be mρ:

mρ :=

min

N̄ρ,max

1,
σ

Lρ

√
N̄ρ

D̃



 , (3.15)

where D̃ is some problem-independent positive constant. Then we have

E[‖g̃rk‖2] ≤ ε and E[‖g̃k‖2] ≤ ε, (3.16)

where the expectations are taken with respect to the random variables generated when the (k-1)-th
subproblem is solved by Algorithm 2.1. Moreover, there exists λk ∈ Rq such that

E[‖∇f(xk) + J(xk)
Tλk‖2] ≤ ε, (3.17)

Proof. Let ε′ := ε/4. Replacing ε by ε′ in Theorem 2.2, and using (3.13), we obtain that

E[‖g̃rk‖2] ≤ ε′ and E[‖g̃k‖2] ≤ ε′.

Thus (3.16) holds naturally. According to (A.8), we have E[‖Gk −∇f(xk)‖2] ≤ σ2/mρ. Similar to
Theorem 2.2, we can obtain that

E[‖Gk −∇f(xk)‖2] ≤ ε′, (3.18)

where we have used (3.13) and (3.15). Therefore, Lemma 3.1 indicates

E[‖∇f(xk) + J(xk)
Tλk‖2] ≤ 2ε′ + 2ε′ = ε,

i.e., (3.17) holds.

Remark 3.3. Note that the number of SFO-calls N̄ρ given in (3.13) relies on both DΦρ and Lρ.
Actually both DΦρ and Lρ are in the order of O(ρ). To see this, by AS.1, we know that for ρ := ρk,
k = 1, 2, . . .,

DΦρ = Φρ(xk−1)− Φlow
ρ = f(xk−1) + ρ‖c(xk−1)‖ − Φlow

ρ ≤ κf + ρκc − f low,

which implies that DΦρ = O(ρ). Lρ = O(ρ) follows directly from (3.14).
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Notice that in Algorithm 3.1, for any given xk, φρ(xk) plays a key role in adjusting penalty
parameters. In the penalty algorithm with exact gradient information proposed by Cartis et al.
in [5], φρk−1

(xk) ≤ ε with Gk replaced by ∇f(xk) in (3.6) is required as the subproblem termination
criterion. However, since an SA algorithm is called to solve subproblems in Algorithm 3.1, a different
subproblem termination condition is set to yield (3.7), namely, E[‖g̃rk‖2] ≤ ε. The following lemma
provides some interesting relationship between E[‖g̃rk‖2] and E[φρk−1

(xk)].

Lemma 3.3. Let AS.1 and AS.4 hold. For fixed ρ := ρk−1 ≥ 1 and any given ε > 0, suppose that
the iterate xk is returned by Algorithm 2.1 at the (k-1)-th iteration, with stepsizes γ = γρ := 1/Lρ,
the number of SFO-calls N̄ρ satisfying (3.13) and batch sizes mρ chosen as (3.15). Then there
exists a positive constant C̄ independent of ρ such that

E[φρ(xk)] ≤ 2C̄ε1/2 + (2C̄Lρ)
1/2ε1/4,

where the expectation is taken with respect to random variables generated by Algorithm 2.1 when
the (k-1)-th subproblem is solved, φρ is defined in (3.6) and C̄ is defined as

C̄ =
1

LJ
κJ +

1

Lg

(
κ2
g + 0.25ε

)1/2
, (3.19)

and Lρ = Lg + ρLJ .

Proof. According to the setting of Algorithm 2.1, Lemma 3.2 shows that E[‖g̃rk‖2] ≤ ε. Recall
that starting from xk Algorithm 2.1 generates the next iterate through

x+
k := argmin

u∈Rn

{
ψρ,γ(xk, Gk, u) := GTk (u− xk) + ρ‖c(xk) + J(xk)(u− xk)‖+

1

2γ
‖u− xk‖2

}
.

Then as g̃rk = (xk − x+
k )/γ, we have that

E[‖xk − x+
k ‖

2] ≤ γ2ε, (3.20)

where the expectation is taken with respect to all the random variables generated by Algorithm
2.1 when the (k-1)-th subproblem is solved.

Denote ∆ψkρ,γ as

∆ψkρ,γ := ψρ,γ(xk, Gk, xk)− ψρ,γ(xk, Gk, x
+
k ).

Apparently, ∆ψkρ,γ > 0. Moreover, it follows from AS.1 that

∆ψkρ,γ ≤ ρ
∣∣‖c(xk)‖ − ‖c(xk) + J(xk)(x

+
k − xk)‖

∣∣+ ‖Gk‖ · ‖x+
k − xk‖ −

1

2γ
‖x+

k − xk‖
2

≤ ρκJ‖x+
k − xk‖+ ‖Gk‖ · ‖x+

k − xk‖. (3.21)

For fixed ρ, xk is a random variable generated in the process of Algorithm 2.1. By taking expecta-
tions on both sides of (3.21), we obtain that

E[∆ψkρ,γ ] ≤ ρκJ
(
E[‖x+

k − xk‖
2]
)1/2

+
(
E[‖Gk‖2]

)1/2 · (E[‖x+
k − xk‖

2]
)1/2

≤ ργκJε1/2 +
(
E[‖∇f(xk)‖2] + E[‖Gk −∇f(xk)‖2]

)1/2
γε1/2

≤ ργκJε1/2 +
(
κ2
g + 0.25ε

)1/2
γε1/2,
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where the second inequality is from (3.20) and the last inequality is due to (3.18). According to
γ = 1/Lρ we have

E[∆ψkρ,γ ] ≤
[

1

Lg + ρLJ
ρκJ +

1

Lg + ρLJ

(
κ2
g + 0.25ε

)1/2]
ε1/2

≤
[

1

LJ
κJ +

1

Lg

(
κ2
g + 0.25ε

)1/2]
ε1/2 = C̄ε1/2, (3.22)

where the last inequality is due to ρ ≥ 1.
We now analyze the property of φρ(xk), which is defined in (3.6). It follows from Lemma 2.5

in [5] that

∆ψkρ,γ ≥
1

2
min{1, γφρ(xk)}φρ(xk).

If 1 < γφρ(xk), then
φρ(xk) ≤ 2∆ψkρ,γ . (3.23)

If 1 ≥ γφρ(xk), then φ2
ρ(xk) ≤ 2∆ψkρ,γ/γ, which implies

φρ(xk) ≤ γ−1/2(2∆ψkρ,γ)1/2. (3.24)

Combining (3.23) and (3.24), we obtain

φρ(xk) ≤ max
{

2∆ψkρ,γ , γ
−1/2(2∆ψkρ,γ)1/2

}
≤ 2∆ψkρ,γ + γ−1/2(2∆ψkρ,γ)1/2. (3.25)

Taking expectation on both sides of (3.25), we have

E[φρ(xk)] ≤ 2E[∆ψkρ,γ ] + γ−1/2 · E[(2∆ψkρ,γ)1/2]

≤ 2E[∆ψkρ,γ ] + 21/2γ−1/2 · (E[∆ψkρ,γ ])1/2

≤ 2C̄ε1/2 + (2C̄Lρ)
1/2ε1/4,

where the last inequality is derived from (3.22) and γ = 1/Lρ. This completes the proof.
We next give the main complexity result of Algorithm 3.1.

Theorem 3.1. Let AS.1 and AS.4 hold. Assume that Algorithm 2.1 is called to solve the NSCO
subproblem (3.4) for fixed ρ at each iteration, with γ = γρ := 1/(Lg + ρLJ), the number of SFO-
calls N̄ρ satisfying (3.13) and batch sizes mρ chosen as (3.15). Then Algorithm 3.1 returns xN
which satisfies

E[θ(xN )] ≤ 2C̄ + (2C̄)1/2(Lg + LJ)1/2

ξ(ρ0 + (N − 1)τ)1/2
ε1/4 +

(κ2
g + 0.25ε)1/2

(1− ξ)(ρ0 + (N − 1)τ)
(3.26)

and
E[‖∇f(xN ) + J(xN )TλN‖2] ≤ ε, for some λN ∈ Rq, (3.27)

where the expectations are taken with respect to all the random variables generated in the process
of Algorithm 3.1. Consequently, if we set N as

N ≥ N̂ :=
⌈
τ−1C̃ε−1/2 − τ−1ρ0 + 1

⌉
, (3.28)

where C̃ = max{(4C̄+(8C̄)1/2(Lg +LJ)1/2)2ξ−2, (4κ2
g + ε)1/2(1− ξ)−1}, then Algorithm 3.1 returns

an ε-stochastic critical point of (1.1).
Moreover, Algorithm 3.1 finds an ε-stochastic critical point of (1.1) after at most O(ε−3.5)

SFO-calls.
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Proof. Lemma 3.2 shows that for any fixed ρ := ρk−1, xk returned by Algorithm 2.1 satisfies
(3.17). Because ρ is also a random variable during the process of Algorithm 3.1, (3.17) becomes

E[‖∇f(xk) + J(xk)
Tλk‖2|ρ[k]] ≤ ε, (3.29)

where ρ[k] := (ρ1, . . . , ρk−1) and the conditional expectation E[·|ρ[k]] is taken with respect to the ran-
dom variables generated by Algorithm 2.1 at the (k-1)-th iteration. By further taking expectation
with respect to ρ[k] on both sides of (3.29) with k = N , we obtain (3.27).

We next study the expectation of θ(xN ), i.e. E[θ(xN )]. There are two cases that may happen
when Algorithm 3.1 terminates, i.e., when xN is returned as the approximate solution of (1.1). One
case is that ρ := ρN−1 satisfies (3.5), namely,

θ(xN ) ≤ φρ(xN )

ξρN−1
. (3.30)

The other case is that (3.5) does not hold at ρ := ρN−1, then it indicates that the inequality
φρ(xN ) < ρN−1ξθ(xN ) holds. By (3.8) we have

θ(xN ) <
‖GN‖

(1− ξ)ρN−1
. (3.31)

Then combining (3.30) and (3.31) we obtain

θ(xN ) ≤ max

{
φρ(xN )

ξρN−1
,
‖GN‖

(1− ξ)ρN−1

}
≤ φρ(xN )

ξρN−1
+

‖GN‖
(1− ξ)ρN−1

. (3.32)

We first analyze the expectation of θ(xN ) conditioned on ρN−1, i.e. E[θ(xN )|ρN−1]. In this case, the
expectation is taken with respect to the random variables generated when the NSCO subproblem
is solved with ρ = ρN−1. On the one hand, Lemma 3.3 shows that the expectation of φρN−1(xk)
satisfies

E[(φρN−1(xN ))|ρN−1] ≤ 2C̄ε1/2 + (2C̄)1/2(Lg + ρN−1LJ)1/2ε1/4,

where C̄ is defined in (3.19). By taking expectation on the first term of (3.32) conditioned on ρN−1,
we have

E[
φρN−1(xN )

ξρN−1
|ρN−1] ≤ 2C̄ + (2C̄)1/2(Lg + LJ)1/2

ξ(ρN−1)1/2
ε1/4 (3.33)

≤ 2C̄ + (2C̄)1/2(Lg + LJ)1/2

ξ(ρ0 + (N − 1)τ)1/2
ε1/4 := E1,

where the first inequality follows from the facts that ε � 1 and ρk ≥ 1 for any k, and the second
inequality follows from ρN−1 ≥ ρ0 + (N − 1)τ . On the other hand, by taking expectation on the
second term of (3.32) conditioned on ρN−1, we have

E[
‖GN‖

(1− ξ)ρN−1
|ρN−1] ≤ (E[‖GN‖2|ρN−1])1/2

(1− ξ)ρN−1

=
(E[‖∇f(xk)‖2|ρN−1] + E[‖Gk −∇f(xk)‖2|ρN−1])1/2

(1− ξ)ρN−1

≤
(κ2
g + 0.25ε)1/2

(1− ξ)ρN−1
(3.34)

≤
(κ2
g + 0.25ε)1/2

(1− ξ)(ρ0 + (N − 1)τ)
:= E2,
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where the second inequality follows from (3.18) and the last one is due to the fact ρN−1 ≥ ρ0 +
(N − 1)τ . Then by (3.32) it yields that E[θ(xN )|ρN−1] ≤ E1 +E2. Since both E1 and E2 are fixed
constants, after further taking expectation with respect to ρ[N ] we obtain E[θ(xN )] ≤ E1 +E2 which

is exactly (3.26). Moreover, note that E1 ≤
√
ε/2 if N ≥ N̂1 := d (4C̄+(8C̄)1/2(Lg+LJ )1/2)2

ξ2τ
ε−1/2 −

ρ0
τ + 1e. And it gives E2 ≤

√
ε/2 if N ≥ N̂2 := d (4κ2g+ε)1/2

(1−ξ)τ ε−1/2 − ρ0
τ + 1e. Consequently, we have

E[θ(xN )] ≤
√
ε if the maximum iteration number N satisfies (3.28).

We now prove the second part of Theorem 3.1. From (3.33) and (3.34) we know E[θ(xN )|ρN−1] ≤√
ε, if

ρN−1 ≥ ρ̄ := C̃ε−1/2.

Hence, after at most
⌈ ρ̄−ρ0

τ

⌉
= N̂ − 1 iterations, ρ0 can be increased to no less than ρ̄ and we thus

have E[θ(xN )|ρN−1] ≤
√
ε. By taking expectation with respect to ρ[N ] we obtain E[θ(xN )] ≤

√
ε.

Moreover, from Lemma 3.2 we know that for any k, to achieve (3.29) at the (k-1)-th iteration,

Algorithm 2.1 needs at most max{
(
4DΦρC2 + 4LρC3

)2
ε−2 + 128LρDΦρε

−1, C1L
−2
ρ } SFO-calls,

where ρ = ρk−1, DΦρ = O(ρ), Lρ = O(ρ) and C1, C2, C3 are all constants. Hence, before ρ
increases to ρ̄, the number of SFO-calls at each iteration is at most in the order of O(ρ̄2ε−2).
Therefore, after at most

O
(
N̂ ρ̄2ε−2

)
= O

(
ε−3.5

)
SFO-calls, the iterate xN generated by Algorithm 3.1 is an ε-stochastic critical point of (1.1).

4 A penalty method with stochastic zeroth-order approximation
for SNLP (1.1)

In this section, we shall study a penalty method for SNLP (1.1), for which we assume that only
noisy function values of f can be obtained via calls to SZO. For any input xk, SZO outputs a
stochastic function value F (xk, ξk), where ξk is a random variable whose distribution is supported
on Ξ ⊆ Rd and independent of xk. Furthermore, we assume that F (xk, ξk) is an unbiased estimator
of f(xk). We thus make the following assumption for SZO.

AS.5 For any k ≥ 1, F (·, ξk) is continuously differentiable and ∇F (·, ξk) is Lipschitz continuous
with Lipschitz constant Lg for fixed ξk and

Eξk [F (xk, ξk)] = f(xk). (4.1)

Throughout this section, we denote

G(xk, ξk) = ∇xF (xk, ξk), (4.2)

and assume that AS.4 holds for G(xk, ξk).

As only zeroth-order information of f can be obtained, we need to figure out how to make full use
of such information. One of the most popular ways is to apply smoothing techniques. Randomized
smoothing techniques have been proposed and fully studied in [8, 15, 17, 28]. We here consider the
Gaussian distribution smoothing technique. For any function ω, given an n-dimensional Gaussian
random vector v, the Gaussian smoothing approximation function of ω is defined as

ωµ(x) := Ev[ω(x+ µv)] =
1

(2π)n/2

∫
ω(x+ µv)e−

1
2
‖v‖2dv. (4.3)

We next cite a lemma which gives some nice properties of the Gaussian smoothing approximate
function ωµ in (4.3). This lemma has been proved in [28] and is also used in [17].
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Lemma 4.1. If ω ∈ C1,1
L (Rn) 2, then

a) ωµ is Lipschitz continuously differentiable with gradient Lipschitz constant Lµ ≤ L and

∇ωµ(x) =
1

(2π)n/2

∫
ω(x+ µv)− ω(x)

µ
ve−

1
2
‖v‖2dv;

b) for any x ∈ Rn, we have

|ωµ(x)− ω(x)| ≤ µ2

2
Ln, (4.4)

‖∇ωµ(x)−∇ω(x)‖ ≤ µ

2
L(n+ 3)

3
2 , (4.5)

Ev

[∥∥∥∥ω(x+ µv)− ω(x)

µ
v

∥∥∥∥2
]
≤ 2(n+ 4)‖∇ω(x)‖2 +

µ2

2
L2(n+ 6)3; (4.6)

c) ωµ is convex if ω is convex.

With the stochastic zeroth-order information of f at xk, namely F (xk, ξk), we can further define
the stochastic gradient of f at xk as

Gµ(xk, ξk, v) =
F (xk + µv, ξk)− F (xk, ξk)

µ
v. (4.7)

From (4.1) and a) of Lemma 4.1, it follows that

Ev,ξk [Gµ(xk, ξk, v)] = ∇fµ(xk).

When solving (1.1), the penalty function minimization subproblem in this case is a special
NSCO problem in which only noisy function values of f can be obtained via SZO calls. So we
need to first present an SA algorithm, Algorithm 4.1, with only stochastic zeroth-order information
being used for solving NSCO (2.1).

Algorithm 4.1 Stochastic zeroth-order approximation algorithm for NSCO (2.1)

Input: Given x1 ∈ Rn, maximum iteration number Nin, parameters {γk} with γk > 0, batch sizes
{mk} with mk > 0, a smoothing parameter µ > 0. Let R be a random variable following
probability distribution PR which is supported on {1, . . . , Nin}.

Output: xR.
1: for k = 1, . . . , R− 1, do
2: Call SZO mk times to obtain Gµ(xk, ξk,i, vk,i), i = 1, . . . ,mk, where Gµ(xk, ξk,i, vk,i) is

defined in (4.7). Set

Gµ,k :=
1

mk

mk∑
i=1

Gµ(xk, ξk,i, vk,i). (4.8)

3: Compute
xk+1 = argmin

u∈Rn
ψγk(xk, Gµ,k, u).

4: end for

2ω ∈ C1,1
L (Rn) means that ω : Rn → R is continuously differentiable and ∇ω is Lipschitz continuous with Lipschitz

constant L.
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We denote
g̃µ,k = Pγk(xk,∇fµ(xk)) and g̃rµ,k = Pγk(xk, Gµ,k), (4.9)

where Pγ(x, g) is defined in (2.4). Similar to first-order SA method, we can obtain some properties
of Algorithm 4.1. We next state two main results: Theorems 4.1, 4.2 with their proofs given in
Appendix A. The following Theorem 4.1 provides a bound for E[‖g̃rµ,R‖2].

Theorem 4.1. Let AS.1-5 hold. Suppose that the stepsizes {γk} in Algorithm 4.1 are chosen
such that 0 < γk ≤ 2/L, k = 1, . . . , N , with γk < 2/L for at least one k, where L = Lg + LhLJ .
Moreover, suppose that the probability mass function PR is chosen as in (2.7), and suppose that
there exists κg > 0 such that ‖∇f(xk)‖ ≤ κg for any k. Then for any N ≥ 1, we have

E[‖g̃rµ,R‖2] ≤
DΦh + µ2Lgn+ σ̃2

∑Nin
k=1(γk/mk)∑Nin

k=1(γk − Lγ2
k/2)

, (4.10)

where the expectation is taken with respect to R, ξ[Nin] := (ξ1, . . . , ξNin) with ξk := (ξk,1, . . . , ξk,mk)
and v[Nin] := (v1, . . . , vNin) with vk := (vk,1, . . . , vk,mk), and DΦh is defined in (2.9) and σ̃2 is
defined as

σ̃2 = 2(n+ 4)[κ2
g + σ2 + µ2L2

g(n+ 4)2].

By specializing the settings of Algorithm 4.1, we obtain the following complexity result.

Theorem 4.2. Let assumptions AS.1-5 hold. Suppose that in Algorithm 4.1, γk = 1/L where
L = Lg + LhLJ , the probability mass function PR is chosen as (2.7), and there exists κg > 0 such
that ‖∇f(xk)‖ ≤ κg for all k. Denote N̄ as the total number of SZO-calls in Algorithm 4.1. For
any given constant ε > 0, suppose that N̄ satisfies

N̄ ≥ max

{
(16DΦh/

√
D̃2 + LC̃1)2

ε2
+

112LLgD̃1(n+ 4) + 64LDΦh

ε
,

1

L2D̃2

}
, (4.11)

where D̃1, D̃2 are two problem-independent positive constants and

C̃1 = 24(n+ 4)(κ2
g + σ2)

√
D̃2. (4.12)

Suppose that the smoothing parameter µ satisfies

µ ≤

√
D̃1

N̄
, (4.13)

and the batch sizes mk = m satisfy

m =

⌈
min

{
N̄ ,max

{
1,

1

L
·

√
N̄

D̃2

}}⌉
, (4.14)

Then we have
E[‖g̃rµ,R‖2] ≤ ε and E[‖g̃R‖2] ≤ ε, (4.15)

where the expectations are taken with respect to R, ξ[Nin] and v[Nin]. g̃k and g̃rµ,k are defined in (2.6)
and (4.9) respectively. Thus, it follows that the number of SZO-calls required by Algorithm 4.1 to
achieve E[‖g̃rµ,R‖2] ≤ ε and E[‖g̃R‖2] ≤ ε is in the order of O(ε−2).
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We are now ready to present a stochastic zeroth-order penalty method for solving (1.1). In each
iteration, Algorithm 4.1 is called to minimize the penalty function. The strategy to update penalty
parameters is the same as the one applied in Algorithm 3.1.

Algorithm 4.2 Penalty method with stochastic zeroth-order approximation for (1.1)

Input: Given maximum iteration number N , tolerance ε ∈ (0, 1), initial smoothing parameter µ0,
steering parameter ξ ∈ (0, 1), initial iterate x1 ∈ Rn, G1

µ0 ∈ Rn, penalty parameter ρ0 ≥ 1 and
minimal increase factor τ > 0. Set k := 1.

Output: xN .
1: for k = 1, . . . , N − 1 do
2: Step (a): Find ρ := ρk ≥ ρk−1 + τ satisfying

φρ,µk−1
(xk) ≥ ρξθ(xk),

where θ(x) is defined in (3.1) and

φρ,µk−1
(xk) = ρ‖c(xk)‖ − min

‖s‖≤1
{〈Gkµk−1

, s〉+ ρ‖c(xk) + J(xk)s‖}, (4.16)

3: Step (b): Apply Algorithm 4.1 with smoothing parameter µk, initial iterate xµk,1 := xk and
N̄ρ SZO-calls to solve the subproblem

min
x∈Rn

Φρk(x) = f(x) + ρk‖c(x)‖.

returning xk+1 := xµk,Rk and Gk+1
µk

:= Gµk,Rk , for which

E[‖g̃rµk,Rk‖
2] ≤ ε,

where “xµk,Rk” denotes the Rk-th iterate generated by Algorithm 4.1 with smoothing param-
eter µk when solving the k-th subproblem and g̃rµ,k is defined in (4.9), and the expectation is
taken with respect to the random variables generated in this inner iteration.

4: end for

Similar to the arguments in Remark 3.1, Step (a) in Algorithm 4.2 is well-defined. Assume that
the sequence of iterates {xk} generated by Algorithm 4.2 is bounded. Then AS.1 indicates that
there exist positive constants κf , κc, κg and κJ such that (3.9) holds for all k.

In the following lemma, we provide a measure on the optimality of each iterate xk.

Lemma 4.2. Let assumptions AS.1 and AS.4-5 hold. For fixed ρ := ρk−1 and any given positive
constant ε, if xk satisfies that E[‖g̃rµk−1,Rk−1

‖2] ≤ ε, then there exists λk ∈ Rq such that

E[‖∇f(xk) + J(xk)
Tλk‖2] ≤ 4‖Gkµk−1

−∇fµk−1
(xk)‖2 + µ2

k−1L
2
g(n+ 3)3 + 2ε, (4.17)

where the expectation is taken with respect to the random variables generated by Algorithm 4.1 when
the (k-1)-th subproblem is solved, and g̃rµ,k is defined in (4.9).

Proof. By the construction of Algorithm 4.2, Gkµk−1
= Gµk−1,Rk−1

for some Rk−1. At the

iterate xk, Algorithm 4.1 generates the next point x+
k through

x+
k := arg min

u∈Rn

{
(Gkµk−1

)T (u− xk) + ρ ‖c(xk) + J(xk)(u− xk)‖+
1

2γk−1,Rk−1

‖u− xk‖2
}
. (4.18)
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From the first-order optimality conditions for (4.18), we know that there exists pk ∈ ∂‖c(xk) +
J(xk)(x

+
k − xk)‖ such that

Gkµk−1
+ ρJ(xk)

T p+
1

γk−1,Rk−1

(x+
k − xk) = 0,

which shows Gkµk−1
+ ρJ(xk)

T pk = g̃rµk−1,Rk−1
. Hence we have

‖∇f(xk) + ρJ(xk)
T pk‖2 ≤ 2‖Gkµk−1

−∇f(xk)‖2 + 2‖Gkµk−1
+ ρJ(xk)

T pk‖2

= 2‖Gkµk−1
−∇f(xk)‖2 + 2‖g̃rµk−1,Rk−1

‖2

≤ 4‖Gkµk−1
−∇fµk−1

(xk)‖2 + 4‖∇fµk−1
(xk)−∇f(xk)‖2 + 2‖g̃rµk−1,Rk−1

‖2

≤ 4‖Gkµk−1
−∇fµk−1

(xk)‖2 + µ2
k−1L

2
g(n+ 3)3 + 2‖g̃rµk−1,Rk−1

‖2, (4.19)

where the last inequality follows from (4.5). Therefore, by taking expectation on both sides of
(4.19) with respect to the random variables generated by Algorithm 4.1 when solving the (k-1)-th
subproblem, we obtain (4.17) by letting λk = ρpk.

We show in the following lemma that for any given positive constant ε, we can bound E[‖∇f(xk)+
J(xk)

Tλk‖2] by ε through choosing appropriate total number of SZO calls N̄ , the batch size m
and the smoothing parameter µ at each iteration for any fixed ρ = ρk−1.

Lemma 4.3. Let AS.1 and AS.4-5 hold. For fixed ρ := ρk−1 and any given positive constant
ε, suppose that when applying Algorithm 4.1 to minimize Φρ, we choose the constant stepsizes
γk = γρ := 1/Lρ and the total number of SZO-calls N̄ρ satisfies

N̄ρ ≥ max

{
(64DΦρ/

√
D̃2 + 4LρC̃1)2

ε2
+

448LρLgD̃1(n+ 4) + 256LρDΦρ

ε
,

1

L2
ρD̃2

}
, (4.20)

where DΦρ and Lρ are defined in (3.14), C̃1 is defined in (4.12), and D̃1 and D̃2 are two problem-
independent positive scalars. Also suppose that the batch sizes are chosen equal to mρ defined as

mρ :=

⌈
min

{
N̄ρ,max

{
1,

1

Lρ
·

√
N̄ρ

D̃2

}}⌉
. (4.21)

Besides, the smoothing parameter µk−1 is assumed to satisfy

µk−1 ≤

√
D̃1

N̄ρ
. (4.22)

Then for xk := xk−1,Rk−1
we have

E[‖g̃rµk−1,Rk−1
‖2] ≤ ε, E[‖g̃k‖2] ≤ ε, (4.23)

and there exists λk ∈ Rq such that

E[‖∇f(xk) + J(xk)
Tλk‖2] ≤ ε, (4.24)

where the expectations are taken with respect to all the random variables generated when the (k-1)-th
subproblem being solved.
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Proof. First, by letting ε′ = ε/4, similar to the analysis in Theorem 4.2 by replacing ε with ε′,
we can prove that the choice of N̄ρ in (4.20) can ensure that E[‖g̃rµk−1,Rk−1

‖2] ≤ ε′ and E[‖g̃k‖2] ≤ ε′.
Therefore, (4.23) holds naturally.

Second, noticing that xk = xµk−1,Rk−1
and Gkµk−1

= Gµk−1,Rk−1
, by (A.13) we have

E[‖Gkµk−1
−∇fµk−1

(xk)‖2] ≤
σ̃2
k−1

mρ
, (4.25)

where the expectation is taken with respect to the random variables generated by Algorithm 4.1,
and

σ̃k−1 = 2(n+ 4)[κ2
g + σ2 + µ2

k−1L
2
g(n+ 4)2]. (4.26)

So (4.17) implies that

E[‖∇f(xk) + J(xk)
Tλk‖2] ≤

4σ̃2
k−1

mρ
+ µ2

k−1L
2
g(n+ 3)3 + 2ε′. (4.27)

Let us consider the first two terms on the right hand side of (4.27). According to the definition of
σ̃k−1 in (4.26) and the choice of µk−1 satisfying (4.22), we have

4σ̃2
k−1

mρ
+ µ2

k−1L
2
g(n+ 3)3 ≤ 4

3

[
3σ̃2

k−1

mρ
+ µ2

k−1L
2
g(n+ 3)3

]

≤ 4

3

[
6(n+ 4)(k2

g + σ2)

mρ
+

6(n+ 4)3L2
g

mρ
· D̃1

N̄
+
D̃1

N̄
· L2

g(n+ 3)3

]

≤ 4

3
ζ :=

4

3

[
6(n+ 4)(k2

g + σ2)

mρ
+

7L2
gD̃1(n+ 4)3

N̄

]
.

Note that ζ is less than the right hand side of (A.17). Following the analysis in Theorems 2.2 and
4.2 we obtain that the choice of N̄ρ and mρ in (4.20) and (4.21) can ensure

4σ̃2
k−1

m
+ µ2

k−1L
2
g(n+ 3)3 ≤ 4

3
· ε′ < 2ε′. (4.28)

Combining (4.27) and (4.28) gives (4.24).

Remark 4.1. Note that in Lemma 4.3, the number of SZO-calls N̄ρ in (4.20) depends on both Lρ
and DΦρ. Similar to the analysis in Remark 3.3, we obtain that DΦρ = O(ρ) and Lρ = O(ρ). Since

C̃1, D̃1 and D̃2 are all constants independent with ρ, N̄ρ is in the order of O(ρ2ε−2).

Analogous to Lemma 3.3, we give an estimate of E[φρ,µk−1
(xk)] in the following lemma.

Lemma 4.4. Let AS.1 and AS.4-5 hold. For fixed ρ = ρk−1 and any given positive constant ε,
suppose that the iterate xk is returned by Algorithm 4.1 at the (k-1)-th iteration with the same
settings as in Lemma 4.3. Then we have

E[φρ,µk−1
(xk)] ≤ 2C̄ε1/2 + (2C̄)1/2(Lg + ρLJ)1/2ε1/4,

where the expectation is taken with respect to random variables generated by Algorithm 4.1 when
solving the (k-1)-th subproblem, φρ,µk−1

is defined in (4.16) and C̄ is defined in (3.19).
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Proof. The idea of the proof is similar to Lemma 3.3. We only need to estimate E[‖Gkµk−1
−

∇f(xk)‖2]. By (4.25) and (4.5), we have

E[‖Gkµk−1
−∇f(xk)‖2] ≤ 2E[‖Gkµk−1

−∇fµk−1
(xk)‖2] + 2E[‖∇fµk−1

(xk)−∇f(xk)‖2]

≤
2σ̃2

k−1

mρ
+

1

2
µ2
k−1L

2
g(n+ 3)3 < ε′ =

1

4
ε,

where the last inequality follows from (4.28). The rest of the proof is the same as Lemma 3.3.
We now conclude this section by giving the main result on the total SZO-calls worst-case

complexity for Algorithm 4.2. The proof is essentially the same as Theorem 3.1, so we only state
the result and omit the proof.

Theorem 4.3. Let AS.1 and AS.4-5 hold. Assume that Algorithm 4.1 is applied to solve the
stochastic subproblem (3.4) for fixed ρ at each iteration, with γ = γρ := 1/(Lg + ρLJ), the number
of SZO-calls N̄ρ satisfying (4.20), batch sizes mρ chosen as (4.21), and smoothing parameters
satisfying (4.22). Then Algorithm 4.2 either returns an ε-stochastic critical point of (1.1), or
returns xN which satisfies

E[θ(xN )] ≤ 2C̄ + (2C̄)1/2(Lg + LJ)1/2

ξ(ρ0 + (N − 1)τ)1/2
ε1/4 +

(κ2
g + 0.25ε)1/2

(1− ξ)(ρ0 + (N − 1)τ)

and
E[‖∇f(xN ) + J(xN )TλN‖2] ≤ ε, for some λN ∈ Rq,

where the expectations are taken with respect to all the random variables generated in the process
of Algorithm 4.2. Consequently, if we set N satisfying (3.28), then Algorithm 4.2 must return an
ε-stochastic critical point of (1.1). Moreover, Algorithm 4.2 can always find an ε-stochastic critical
point of (1.1) after at most O(ε−3.5) SZO-calls.

5 Conclusions

In this paper, we proposed a class of penalty methods with stochastic approximation for solving
stochastic nonlinear programming problems. We assumed that only the first-order or zeroth-order
information of the objective function was available via subsequent calls to a stochastic first-order
or zeroth-order oracle. In each iteration of the penalty methods, we minimized a nonconvex and
nonsmooth penalty function to update the iterate. The worst-case complexity of calls to the
stochastic first-order (or zeroth-order) oracle for the proposed penalty methods for obtaining an
ε-stochastic critical point was analyzed.
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Appendix A Proofs of Theorems 2.1, 2.2, 4.1 and 4.2

In this appendix, we give the detailed proofs of Theorems 2.1, 2.2, 4.1 and 4.2. First, we need to
prepare some lemmas.

The following lemma provides a bound for the size of Pγ(x, g) defined in (2.4).

Lemma A.1. Let AS.1-2 hold and Pγ(x, g) be defined in (2.4). Then for any x ∈ Rn, g ∈ Rn and
γ > 0, we have

gTPγ(x, g) ≥
(

1− 1

2
γLhLJ

)
‖Pγ(x, g)‖2 +

1

γ

[
h(c(x+))− h(c(x))

]
. (A.1)

Proof. From the optimality conditions for (2.5), it follows that there exists p ∈ ∂h(c(x) +
J(x)(x+ − x)) such that (g + J(x)T p+ 1

γ (x+ − x))T (u− x+) ≥ 0, for any u ∈ Rn. Specifically, by
letting u = x we obtain

gT (x− x+) ≥ 1

γ
‖x+ − x‖2 + pTJ(x)(x+ − x)〉 ≥ 1

γ
‖x+ − x‖2 + h(c(x) + J(x)(x+ − x))− h(c(x)),

where the second inequality is due to the convexity of h. AS.1-2 implies that

|h(c(x+))− h(c(x) + J(x)(x+ − x))| ≤ Lh‖c(x+)− (c(x) + J(x)(x+ − x))‖

≤ Lh
∥∥∥∥∫ 1

0
[J(x+ t(x+ − x))− J(x)](x+ − x)dt

∥∥∥∥
=

1

2
LhLJ‖x+ − x‖2.

We thus obtain the following bound for 〈g, x− x+〉:

gT (x− x+) ≥
(

1

γ
− 1

2
LhLJ

)
‖x+ − x‖2 + h(c(x+))− h(c(x)).

Therefore, (A.1) follows from the definition of Pγ(x, g) in (2.4).
The following lemma shows that Pγ(x, g) is Lipschitz continuous with respect to g.

Lemma A.2. Let AS.1-2 hold and Pγ(x, g) be defined in (2.4). Then for any g1, g2 ∈ Rn, we have

‖Pγ(x, g1)− Pγ(x, g2)‖ ≤ ‖g1 − g2‖.

Proof. According to (2.4), letting x+
1 and x+

2 be given through (2.5) with g replaced by g1 and
g2, it suffices to prove that ‖x+

1 −x
+
2 ‖ ≤ γ‖g1− g2‖. From the optimality conditions for (2.5), there

exist p1 ∈ ∂h(c(x) + J(x)(x+
1 − x)) and p2 ∈ ∂h(c(x) + J(x)(x+

2 − x)) such that the following two
equalities hold:

(g1 + J(x)T p1 +
1

γ
(x+

1 − x))T (u− x+
1 ) ≥ 0, ∀u ∈ Rn, (A.2)

(g2 + J(x)T p2 +
1

γ
(x+

2 − x))T (u− x+
2 ) ≥ 0, ∀u ∈ Rn. (A.3)
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Letting u = x+
2 in (A.2) and using the fact that h is convex, we have

gT1 (x+
2 − x

+
1 ) ≥ 1

γ
(x− x+

1 )T (x+
2 − x

+
1 ) + pT1 J(x)(x+

1 − x
+
2 )

≥ 1

γ
(x− x+

1 )T (x+
2 − x

+
1 ) + h(c(x) + J(x)(x+

1 − x))− h(c(x) + J(x)(x+
2 − x)). (A.4)

Similarly, letting u = x+
1 in (A.3) we obtain

gT2 (x+
1 − x

+
2 ) ≥ 1

γ
(x− x+

2 )T (x+
1 − x

+
2 ) + h(c(x) + J(x)(x+

2 − x))− h(c(x) + J(x)(x+
1 − x)). (A.5)

Summing up (A.4) and (A.5), we obtain

‖g1 − g2‖‖x+
1 − x

+
2 ‖ ≥ (g1 − g2)T (x+

2 − x
+
1 ) ≥ 1

γ
‖x+

1 − x
+
2 ‖

2,

which completes the proof.
We now give the proof of Theorem 2.1.
Proof of Theorem 2.1. Denote δk := Gk −∇f(xk). From AS.1, we have

f(xk+1) ≤ f(xk) +∇f(xk)
T (xk+1 − xk) +

Lg
2
‖xk+1 − xk‖2

= f(xk) +GTk (xk+1 − xk) +
Lg
2
‖xk+1 − xk‖2 − 〈δk, xk+1 − xk〉.

From the definition of xk+1 in (2.3), it follows that xk − xk+1 = γkg̃
r
k. According to Lemma A.1

with g replaced by Gk and x = xk and γ = γk, we obtain

f(xk+1) ≤ f(xk)−
(
γk −

L

2
γ2
k

)
‖g̃rk‖2 − h(c(xk+1)) + h(c(xk)) + γkδ

T
k g̃

r
k,

which implies that

Φh(xk+1) ≤ Φh(xk)−
(
γk −

L

2
γ2
k

)
‖g̃rk‖2 + γkδ

T
k g̃k + γkδ

T
k (g̃rk − g̃k).

Note that it follows from Lemma A.2 with g1 = Gk and g2 = ∇f(xk) that

δTk (g̃rk − g̃k) ≤ ‖δk‖‖g̃rk − g̃k‖ ≤ ‖δk‖‖Gk −∇f(xk)‖ = ‖δk‖2.

It yields that

Φh(xk+1) ≤ Φh(xk)−
(
γk −

L

2
γ2
k

)
‖g̃rk‖2 + γkδ

T
k g̃k + γk‖δk‖2. (A.6)

Summing up (A.6) for k = 1, . . . , Nin and noticing that γk ≤ 2/L, we have

Nin∑
k=1

(
γk −

L

2
γ2
k

)
‖g̃rk‖2 ≤ Φh(x1)− Φh(xNin+1) +

Nin∑
k=1

{γkδTk g̃k + γk‖δk‖2}

≤ Φh(x1)− Φlow
h +

Nin∑
k=1

{γkδTk g̃k + γk‖δk‖2}. (A.7)
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Notice that xk is a random variable as it is a function of ξ[k−1], generated in the algorithm process.

By AS.4 we have E[δTk g̃k|ξ[k−1]] = 0 and

E[‖Gk −∇f(xk)‖2] = E[‖δk‖2] =
1

m2
k

mk∑
i=1

E[‖δk,i‖2] ≤ σ2

mk
, (A.8)

where δk,i = G(xk, ξk,i) − ∇f(xk). Taking the expectation on both sides of (A.7) with respect to
ξ[Nin], we obtain that

Nin∑
k=1

(
γk −

L

2
γ2
k

)
Eξ[Nin]

[‖g̃rk‖2] ≤ Φh(x1)− Φlow
h + σ2

Nin∑
k=1

γk
mk

.

Since R is a random variable with probability mass function PR, it follows that

E[‖g̃rR‖2] = ER,ξ[Nin]
[‖g̃rR‖2] =

∑Nin
k=1

(
γk − Lγ2

k/2
)
Eξ[Nin]

[‖g̃rk‖2]∑Nin
k=1

(
γk − Lγ2

k/2
) ,

which proves (2.8).
Following from Theorem 2.1, we now prove Theorem 2.2.
Proof of Theorem 2.2. If γk = 1/L and mk = m for k = 1, . . . , Nin, (2.8) implies that

E[‖g̃rR‖2] ≤ DΦh +Ninσ
2/(Lm)

Nin/(2L)
=

2LDΦh

Nin
+

2σ2

m
.

Using Lemma A.2 with g1 = Gk and g2 = ∇f(xk), we have

E[‖g̃R‖2] ≤ 2E[‖g̃rR‖2] + 2E[‖g̃rR − g̃R‖2] ≤ 4LDΦh

Nin
+

4σ2

m
+ 2E[‖GR −∇f(xR)‖2] ≤ 4LDΦh

Nin
+

6σ2

m
,

Note that the number of iterations of Algorithm 2.1 is at most Nin = dN̄/me. Obviously, Nin ≥
N̄/(2m). Then following from (2.12) we have that

E[‖g̃R‖2] ≤ 4LDΦh

Nin
+

6σ2

m
≤ 8LDΦh

N̄
m+

6σ2

m
(A.9)

≤ 8LDΦh

N̄

1 +
σ

L

√
N̄

D̃

+ 6 max

{
σ2

N̄
,
σL
√
D̃√

N̄

}
. (A.10)

From (2.10) we have

√
N̄ ≥

√
(DΦhC2 + LC3)2 + 32LDΦhε

ε

≥
√

(DΦhC2 + LC3)2 + 32LDΦhε+ (DΦhC2 + LC3)

2ε
. (A.11)

(2.10) also suggests that σ2/N̄ ≤ σL
√
D̃/
√
N̄ , which indicates from (A.10) that

E[‖g̃R‖2] ≤ 8LDΦh

N̄
+

8σDΦh√
N̄D̃

+
6Lσ√
N̄

√
D̃ =

8LDΦh

N̄
+
DΦhC2 + LC3√

N̄
≤ ε, (A.12)
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where the last inequality follows from (A.11). Note that (A.12) together with (A.9) implies that

4LDΦh/Nin + 6σ2/m ≤ ε,

which according to (A.9) shows that E[‖g̃rR‖2] ≤ ε.
The following is the proof of Theorem 4.1.
Proof of Theorem 4.1. It follows from part a) of Lemma 4.1 that fµ ∈ C1,1

Lµ
with Lµ ≤ Lg. By

AS.5, (4.2), (4.6) and (4.7) we obtain

Evk,ξk [‖Gµ(xk, ξk, vk)−∇fµ(xk)‖2] ≤ Evk,ξk [‖Gµ(xk, ξk, vk)‖2]

≤ Eξk

[
2(n+ 4)‖G(xk, ξk)‖2 +

µ2

2
L2
g(n+ 6)3

]
= 2(n+ 4)Eξk [‖G(xk, ξk)‖2] +

µ2

2
L2
g(n+ 6)3

≤ 2(n+ 4)(‖∇f(xk)‖2 + σ2) + 2µ2L2
g(n+ 4)3 ≤ σ̃2,

where the last inequality follows from that AS.4 holds for G(xk, ξk). Similar to (A.8), we can show
that

E[‖Gµ,k −∇fµ(xk)‖2] ≤ σ̃2

mk
(A.13)

according to the definition of Gµ,k in (4.8).
Denote Φµ,h(x) := fµ(x) + h(c(x)) and Φ∗µ,h = minx∈Rn Φµ,h(x). AS.3 together with the

continuity of Φµ,h indicates that Φ∗µ,h is well-defined. So there exists x̂ ∈ Rn such that Φ∗µ,h =
Φµ,h(x̂). By noting that Φµ,h(x)− Φh(x) = fµ(x)− f(x), we have from (4.4) that

Φµ,h(x1)− Φ∗µ,h = Φµ,h(x1)− Φµ,h(x̂)

= Φh(x1)− Φh(x̂) + Φµ,h(x1)− Φh(x1)− (Φµ,h(x̂)− Φh(x̂))

≤ Φh(x1)− Φlow
h + |Φµ,h(x1)− Φh(x1)|+ |Φµ,h(x̂)− Φh(x̂)|

≤ Φh(x1)− Φlow
h + µ2Lgn

= DΦh + µ2Lgn.

Therefore, by replacing f with fµ and Gk with Gµ,k in Theorem 2.1 we obtain

E[‖g̃rµ,R‖2] ≤
Φµ,h(x1)− Φ∗µ,h + σ̃2

∑N
k=1(γk/mk)∑N

k=1(γk − Lγ2
k/2)

≤
DΦh + µ2Lgn+ σ̃2

∑Nin
k=1(γk/mk)∑Nin

k=1(γk − Lγ2
k/2)

,

where the expectation is taken with respect to R, ξ[Nin] and v[Nin].
We now give the proof of Theorem 4.2.
Proof of Theorem 4.2. It follows directly from (4.10) with γk = 1/L and mk = m that

E[‖g̃rµ,R‖2] ≤ 2LDΦh + 2µ2LLgn

Nin
+

2σ̃2

m
.

Note that

E[‖g̃R‖2] ≤ 2E[‖g̃µ,R − g̃R‖2] + 2E[‖g̃µ,R‖2] ≤ 2E[‖g̃µ,R − g̃R‖2] + 4E[‖g̃rµ,R‖2] + 4E[‖g̃rµ,R − g̃µ,R‖2].

(A.14)
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Firstly, definitions of g̃k and g̃µ,k in (2.6) and (4.9) and Lemma A.2 indicate that

‖g̃µ,R − g̃R‖2 ≤ ‖∇fµ(xR)−∇f(xR)‖2,

which together with (4.5) shows that

‖g̃µ,R − g̃R‖2 ≤
1

4
µ2L2

g(n+ 3)3.

Secondly, the definition of g̃rµ,k in (4.9) implies that

E[‖g̃rµ,R − g̃µ,R‖2] ≤ E[‖Gµ,R −∇fµ(xR)‖2] ≤ σ̃2

m
, (A.15)

where the second inequality is due to (A.13). Therefore, (A.14)-(A.15) yield

E[‖g̃R‖2] ≤ 1

2
µ2L2

g(n+ 3)3 +
8LDΦh + 8µ2LLgn

Nin
+

8σ̃2

m
+

4σ̃2

m
. (A.16)

Given the total number of SZO-calls N̄ in the whole algorithm and the number of SZO-calls m
at each iteration, we know that the inner iteration number of Algorithm 4.1 is at most Nin =
dN̄/me ≥ N̄/(2m). Then (4.13) and (A.16) imply that

E[‖g̃R‖2] ≤ 1

2
µ2L2

g(n+ 3)3 +
16LDΦh + 16µ2LLgn

N̄
m+

12σ̃2

m

≤ D̃1

2N̄
L2
g(n+ 3)3 +

16LDΦh

N̄
m+

16LLgn

N̄
· D̃1

N̄
m+

24(n+ 4)(κ2
g + σ2)

m
+

24(n+ 4)3

m
·
L2
gD̃1

N̄

≤
25L2

gD̃1(n+ 4)3 + 16LLgD̃1n

N̄
+

16LDΦh

N̄
m+

24(n+ 4)(κ2
g + σ2)

m

≤ 28LLgD̃1(n+ 4)3

N̄
+

16LDΦh

N̄
m+

24(n+ 4)(κ2
g + σ2)

m
, (A.17)

where we have used the fact that 1 ≤ m ≤ N̄ . The choice of m in (4.14) also yields that

E[‖g̃R‖2] ≤ 28LLgD̃1(n+ 4)3

N̄
+

16LDΦh

N̄

(
1 +

1

L
·

√
N̄

D̃2

)
+ 24(n+ 4)(κ2

g + σ2) ·max

{
1

N̄
,
L
√
D̃2√
N̄

}

=
28LLgD̃1(n+ 4)3 + 16LDΦh

N̄
+

16DΦh√
N̄D̃2

+
24L√
N̄

(n+ 4)(κ2
g + σ2) ·max

{
1

L
√
N̄
,

√
D̃2

}
.

Then similar to the proof in Theorem 2.2, according to (4.11) it is easy to check that (4.15)
holds.


