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Abstract. A full multigrid method with coarsening by a factor-of-three to distributed
control problems constrained by Stokes equations is presented. An optimal control
problem with cost functional of velocity and/or pressure tracking-type is considered
with Dirichlet boundary conditions. The optimality system that results from a La-
grange multiplier framework, form a linear system connecting the state, adjoint, and
control variables. We investigate multigrid methods with finite difference discretization
on staggered grids. A coarsening by a factor-of-three is used on staggered grids that
results nested hierarchy of staggered grids and simplified the inter-grid transfer oper-
ators. A distributive-Gauss-Seidel smoothing scheme is employed to update the state-
and adjoint-variables and a gradient update step is used to update the control variables.
Numerical experiments are presented to demonstrate the effectiveness and efficiency of
the proposed multigrid framework to tracking-type optimal control problems.
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1. Introduction

For the last decade, there is a growing interest among computation community to
devise fast and efficient solution methods for large-scale distributed optimal control prob-
lems constrained by partial differential equations (PDEs). Optimal control problems con-
strained by the Stokes system form a stepping stone in the natural progression from the -
now classical-Poisson-constrained test problem to problems constrained by more special-
ized and complex PDE systems modeling fluid flow such as Navier-Stokes, non-Newtonian
Stokes, or the shallow water equations. Optimal control problems constrained by such PDE
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models play important roles in real-world applications, such as modeling of ice sheets or
data assimilation for ocean flows and weather models.

How to effectively solve large scale algebraic systems arising from the discretization
of PDEs is a fundamental question in scientific and engineering computing. For the pos-
itive definite linear systems corresponding to elliptic boundary value problems, multigrid
methods are proven to be one of the most efficient algorithms [4, 13, 23]. However, it is
much more challenging for saddle-point systems [2]. In the last few decades, much atten-
tion has been given to numerical solution of Stokes and/or Navier-Stokes systems, e.g., a
distributive Gauss-Seidel relaxation based on the least squares commutator is devised for
the saddle-point systems arising from the discretized Stokes equations in [22]. In [1], a
distributed relaxation method for the incompressible Stokes problem has been advertised.
A large selection of solution methods for linear systems in saddle point form is presented
with an emphasis on iterative methods for large and sparse problems in [2].

As a motivation of this work, suppose that we have a flow that satisfies the Stokes
equations in some domain with some given boundary condition, and then we have some
mechanism (e.g., a magnetic field application) to change the forcing variable of the PDE.
Suppose we have given functions, the so-called desired states. Then the question is how do
we choose the forcing term, while satisfying the Stokes equations? One way of formulating
such problem is by minimizing a cost functional of tracking-type with constrained PDE as
Stokes equations, is presented in this article.

This paper aims at to construct an efficient multigrid scheme without any precondi-
tioners, on staggered grids to solve (velocity and/or pressure tracking-type) distributed
optimal control problem constrained by the Stokes equations. A significant amount of
work has been devoted to develop multigrid methods for optimal control problems in the
recent years, for example, see a review article [3] and the references therein. However, less
attention has been given specifically to optimal control problems constrained by the Stokes
system. In [9], multigrid preconditioners to accelerate the solution process of a distributed
optimal control problem constrained by the Stokes equations are constructed. Recent-
ly, [19] proposed a robust all-at-once multigrid method for the Stokes control problem.
This article extends the work [7], where a formulation and multigird solution for Cauchy-
Riemann optimal control problems has been presented to control problems constrained by
Stokes equations. Adopting a coarsening by factor-of-three strategy on staggered grids to
these distributed control problems has the potential advantage of simplifying the inter-grid
transfer operators, coarsening more quickly, and ultimately reducing the number of levels
and parallel computations.

The paper is organized as follows. In the next Section 2, an optimal control problem
with a cost functional of tracking-type is considered and its solution is characterized as
an optimality system, in a two-dimensional bounded domain Ω ⊂ R2. Discretization with
finite difference on staggered grids, on non-uniform meshes, is presented in Section 3. In
Section 4, a full multigrid scheme is discussed for solving the optimality system. It is shown
that a coarsening by a factor-of-three of the mesh sizes is advantageous, easy to implement
inter-grid transfer operators, and a nested hierarchy of staggered grids is obtained. A
distributive-Gauss-Seidel relaxation scheme with inter-grid transfer operators is explained
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in Section 4.1. Numerical results are presented in Section 5 to illuminate our full multigrid
solution procedure to tracking-type control problems. A section of conclusions is given in
the last section.

2. Control problem

In this work, we consider an optimal control problem with a cost functional of (velocity
and/or pressure) tracking-type, in a two-dimensional bounded domain Ω⊂ R2:

min J(u, p, f) := αu

2
‖u−U‖2

L2(Ω)
+
αp

2
‖p− P‖2

L2(Ω)
+ α

2
‖f‖2

L2(Ω)
(2.1)

subject to the Stokes equations

−△u+∇p = f in Ω, (2.2a)

−∇ · u = 0 in Ω, (2.2b)

u= 0 on ∂Ω, (2.2c)

where U ∈ L2(Ω), P ∈ L2
0(Ω) denotes the target velocity, respectively, target pressure and

α > 0 being a fixed positive constant represents the weight of the cost of control f. The
constants αu, αp are nonnegative but not both zero.

Here and in the following, L2(Ω) and H1(Ω) denote the standard Lebesque and Sobolev
spaces with ‖ · ‖L2(Ω) and ‖ · ‖H1(Ω), respectively, as associated standard norms. The usual
inner product associated with L2(Ω) will be denoted by (·, ·). Throughout this paper, we
will assume Ω to be convex and use bold script to denote vectors and product spaces and

L2
0(Ω) =

¨

q ∈ L2(Ω) :

∫

Ω

q d x = 0

«

, H1
0(Ω) =

¦

w ∈ H1(Ω) : w= 0 on ∂Ω
©

.

The weak solution
(u, p) ∈ H1

0(Ω)× L2
0(Ω)

of (2.2a)-(2.2c) is the solution of

a(u,w) + b(w, p) = (f,w) ∀w ∈ H1
0(Ω),

b(u,q) = 0 ∀q ∈ L2
0(Ω),

where a : H1
0(Ω)×H1

0(Ω)→ R and b : H1
0(Ω)× L2

0(Ω) are the bilinear forms defined as

a(u,w) =
2
∑

i=1

∫

Ω

∇ui · ∇wi, b(w, p) = −

∫

Ω

p∇ ·w.

For f ∈ H−1(Ω) the problem has a unique solution [11]. Moreover, if Ω is a convex polygon
and f ∈ L2(Ω), then u ∈ H2(Ω), p ∈ H1(Ω) [12] and there exists C = C(Ω)> 0 satisfying

‖u‖H2(Ω)+ ‖∇ p‖L2(Ω) ≤ C‖f‖L2(Ω).
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The solution to the problem (2.1)-(2.2c) is characterized by the Lagrange framework
[15,17,20], and the Lagrangian functional is given by

L(u, p, f,λ,q) := J(u, p, f) + (−∆u+∇p− f,λ)− (∇ · u,q)

where λ ∈ H1
0(Ω) and q ∈ L2

0(Ω) are the Lagrange variables, which leads to the following
optimality system

−∆u+∇p = f, −∇ ·u = 0 in Ω, u = 0 on ∂Ω, (2.3a)

−∆λ+∇q = αu(U− u), −∇ ·λ= αp(P − p) in Ω, λ= 0 on ∂Ω, (2.3b)

αf−λ= 0 in Ω. (2.3c)

This system characterizes the solution

(u, p, f) ∈ H1
0(Ω)× L2

0(Ω)× L2(Ω)

of the optimal control problem (2.1)-(2.2c) with Lagrange variables

(λ,q) ∈ H1
0(Ω)× L2

0(Ω).

Moreover, (2.3a) represents the state system, (2.3b) the adjoint system and (2.3c) the
optimality conditions, respectively;

u= (u, v), λ= (λ,µ),

f= ( f , g), U= (U , V ).

In the following Theorem 2.1, we present the first-order optimality conditions for the
purpose of completeness.

Theorem 2.1. Assume existence and uniqueness of solution to the Stokes (state) system

(2.2a)-(2.2c) and define the gradient ∇Ĵ(f) := α f − λ where λ and q are the solution to

the adjoint system (2.3b). Then the control problem (2.1)-(2.2c) has a unique solution in

L2(Ω) if and only if ∇Ĵ(f) = 0. That is, the optimal solution is characterized as the solution

of the first-order optimality system.

Proof. Since the Stokes system (2.2a)-(2.2c) has a unique solution (u, p) for given f,
therefore we can write (u, p) =

�

u(f), p(f)
�

to show this dependence.
To discuss existence and uniqueness of the solution to (2.1)-(2.2c), we introduced a

so-called reduced cost functional Ĵ [15,17,20] given by

Ĵ(f) = J
�

u(f), p(f), f
�

. (2.4)

In fact, the unique minimizer of Ĵ(f) gives the optimal solution. Recall that the map

L2(Ω) ∋ f 7→
�

u(f), p(f)
�

∈
�

H1
0(Ω)

⋂

H2(Ω), L2
0(Ω)

�
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is Fréchet differentiable. Let its first derivative be denoted by
�

u′(f)δf, p′(f)δf
�

at f in the
direction δf, and is characterized as the solution to (the so-called tangent equation)

−∆(u′(f)δf)+∇(p′(f)δf) = δf, (2.5a)

−∇ · (u′(f)δf) = 0, (2.5b)

subject to Dirichlet boundary condition. Because of linear dependence of the governing
Stokes system on the control, the second derivative of f 7→ (u(f), p(f)) is zero.

Using (2.1) we get the second derivative of f→ Ĵ(f) as

Ĵ ′′(f)(δf,δf) = αu‖u
′(f)δf‖2

L2(Ω)
+αp‖p

′(f)δf‖2
L2(Ω)

+α‖δf‖2
L2(Ω)

,

that results that f→ Ĵ(f) is uniformly convex. This implies existence of a unique solution f∗

to the optimal control problem, denoted by ∗. Furthermore, the minimum is characterized
by Ĵ ′(f∗)(δf) = 0 for all δf ∈ L2(Ω) and thus

Ĵ ′(f∗)(δf) = αu

�

u∗ −U,u′(f∗)δf
�

L2(Ω) +αp

�

p∗ − P, p′(f∗)δf
�

L2(Ω) +α(f
∗,δf)L2(Ω), (2.6)

where u∗ = u(f∗). To remove u′ and p′ from this equation, we introduce the Lagrange
variables (λ∗,q∗) ∈ H1

0(Ω) × L2
0(Ω) as the unique solution to the adjoint system (2.3b).

Since

−αu(u
∗ −U) = −∆λ∗+∇q∗,

−αp(p
∗ − P) = −∇ ·λ∗,

we replace αu(u
∗−U) and αp(p

∗− P) in (2.6) and using (2.5a)-(2.5b) with the the Gauss-
Green theorem [10], we obtain

Ĵ ′(f∗)(δf) = −(λ∗,δf)L2(Ω) +α(f
∗,δf)L2(Ω) = (α f∗−λ∗,δf)L2(Ω) = 0, (2.7)

for all δf ∈ L2(Ω). Thus, we have obtained the gradient of the reduced cost functional,
∇Ĵ(f) := α f−λ and formally∇Ĵ(f∗) = 0 constitutes the necessary and sufficient optimality
condition (due to convexity) for the Stokes optimal control problem. �

3. Discretization

In this section, the discretization of the optimality system (2.3a)-(2.3b) by finite differ-
ence approximations on staggered grids is illustrated. We provide implementation details
and notice the advantageous collocation of the optimization variables.

Consider a sequence of grids {Ωh}h>0 defined by

Ωh = {x ∈ R
2 : x i = i hx , y j = j hy , i, j ∈ Z} ∩Ω.

We assume that Ω is a rectangular domain and that the values of hx and hy are chosen
such that the boundaries of Ω coincide with grid lines. On staggered grids, variables may
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be placed on cell edge that can be vertical or horizontal and on cell centers. We denote
these sets of grid points with Ωs

h
, s ∈ {ev, eh, c}. For example, Ωev

h
means grid points defined

on center of cell edge-vertical. Notice that within the same set the grid points are spaced
with hx and hy intervals in x− and y−direction, respectively.

For grid functions uh and vh defined on the same set Ωs
h
, we introduce the discrete

L2-scalar product
�

uh, vh
�

L2
h
(Ωs

h
)
= hx hy

∑

x∈Ωs
h

uh(x) vh(x),

with associated norm

‖uh‖L2
h
(Ωs

h
) =
�

uh,uh
�1/2

L2
h
(Ωs

h
)
.

We require as well the discrete H1-product given by

‖uh‖H1
h
(Ωs

h
) =

 

‖uh‖2
L2

h
(Ωs

h
)
+

2
∑

i=1

‖∂iu
h‖2

L2
h
(Ωs

h
)

!1/2

,

where ∂i denotes the difference quotient in the ß̂-direction

∂ h
i u(x) =

u(x+ ß̂ hi)− u(x)

hi

.

Here uh is extended by 0 on grid points outside of Ω; see [14]. The spaces L2
h
(Ωs

h
) and

H1
h
(Ωs

h
) consist of the sets of grid functions uh defined on Ωs

h
endowed with ‖uh‖L2

h
(Ωs

h
),

respectively ‖uh‖H1
h
(Ωs

h
), as norm. In the following, we denote with U h, Vh and Ph the

space of the grid functions uh(λh), vh(µh) and ph(qh), respectively that approximate the
state (adjoint) variables.

We first discuss the discretization of the state system. On the staggered grid the variable
u is defined on Ωev

h
, v is defined on Ωeh

h
and p is defined at cell centers Ωc

h
; see Fig. 1.

−∆huh+ ∂ h
x ph = f h in Ωev

h
,

−∆hvh+ ∂ h
y ph = gh in Ωeh

h
,

−(∂ h
x uh+ ∂ h

y vh) = 0 in Ωc
h
,

where the discrete approximation ∆h to Laplace operator is the usual 5-point approxima-
tion. However, for a point x = (x , y) near a boundary, ∆huh(x) may involve an exterior
value. This value is defined by quadratic extrapolation; see [5].

In the following, we use a lexicographic order starting from the lowest-left corner, and
consider a unique set of grid indices (i, j) where i = 1, · · · , Nx + 1 and j = 1, · · · , Ny + 1
that index all grid points including the boundaries. The vertices coordinate are given by
x i = (i − 1)hx and y j = ( j− 1)hy . With ui+1/2, j+1/2 we mean the discrete counterpart to



A Full Multigrid Method for Distributed Control Problems 645

u(x i + hx/2, y j + hy/2). Thus by finite difference approximations, we have the following
discretized state system

−

 

ui−1, j+1/2 − 2ui, j+1/2 + ui+1, j+1/2

h2
x

+
ui, j−1/2 − 2ui, j+1/2 + ui, j+3/2

h2
y

!

+
pi+1/2, j+1/2 − pi−1/2, j+1/2

hx

= fi, j+1/2 on Ωev
h

, (3.1a)

−

 

vi−1/2, j − 2vi+1/2, j + vi+3/2, j

h2
x

+
vi+1/2, j−1 − 2vi+1/2, j + vi+1/2, j+1

h2
y

!

+
pi+1/2, j+1/2 − pi+1/2, j−1/2

hy

= gi+1/2, j on Ωeh
h

, (3.1b)

−

�

ui+1, j+1/2 − ui, j+1/2

hx

+
vi+1/2, j+1 − vi+1/2, j

hy

�

= 0i+1/2, j+1/2 on Ωc
h
, (3.1c)

where the first momentum Eq. (3.1a) is centered at all internal cell edge-vertical Ωev
h

, the
second momentum Eq. (3.1b) is centered at all internal cell edge-horizontal Ωeh

h
and the

continuity Eq. (3.1c) is centered at all internal cell centers Ωc
h
.

Next, we note that the optimality conditions

α f −λ= 0, α g −µ = 0

suggest that the staggered grid for adjoint system should be such that u, λ and f share
the same location and thus defined on Ωev

h
; v, µ and g is defined on Ωeh

h
and p and q

are defined on Ωc
h
. In this way, we require no interpolation, i.e., we implement a direct

coupling between state, adjoint and control variables. Therefore, we have the discretized
adjoint system given by

−

 

λi−1, j+1/2 − 2λi, j+1/2 +λi+1, j+1/2

h2
x

+
λi, j−1/2 − 2λi, j+1/2 +λi, j+3/2

h2
y

!

+
qi+1/2, j+1/2 − qi−1/2, j+1/2

hx

= αu(U − u)i, j+1/2 on Ωev
h , (3.2a)

−

 

µi−1/2, j − 2µi+1/2, j +µi+3/2, j

h2
x

+
µi+1/2, j−1 − 2µi+1/2, j +µi+1/2, j+1

h2
y

!

+
qi+1/2, j+1/2 − qi+1/2, j−1/2

hy

= αu(V − v)i+1/2, j on Ωeh
h , (3.2b)

−

�

λi+1, j+1/2 −λi, j+1/2

hx

+
µi+1/2, j+1 −µi+1/2, j

hy

�

=αp(P − p)i+1/2, j+1/2 on Ωc
h. (3.2c)
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Next, the optimality condition and boundary conditions after discretization gives

α fi, j+1/2 −λi, j+1/2 = 0 on Ωev
h

, (3.3a)

α gi+1/2, j −µi+1/2, j = 0 on Ωeh
h

(3.3b)

and

ui, j+1/2 = 0 for i = 1, Nx + 1, j = 1, · · · , Ny , (3.4a)

vi+1/2, j = 0 for j = 1, Ny + 1, i = 1, · · · , Nx , (3.4b)

λi, j+1/2 = 0 for i = 1, Nx + 1, j = 1, · · · , Ny , (3.4c)

µi+1/2, j = 0 for j = 1, Ny + 1, i = 1, · · · , Nx . (3.4d)

Summarizing, the discretized state (3.1a)-(3.1c) and adjoint system (3.2a)-(3.2c) with the
optimality conditions (3.3) and boundary conditions (3.4) constitute the discrete optimal-
ity system.

4. A full multigrid framework

In this section, we present a full multigrid scheme to solve the discrete optimality
system (3.1a)-(3.4), which faces some difficulties due to the nature of staggered grids and
of coupled state and adjoint systems.

Here, we anticipate the fact that a multigrid scheme uses different discretization grids.
On such grids a refinement is obtained by refining a starting coarse grid, e.g., halving the
mesh size [21] that results in a non-nested hierarchy of grids. This fact requires additional
effort in the construction of the required inter-grid transfer operators; see [5, 18]. To
overcome this, we notice that a nested sequence of grids is obtained by tripling the mesh
size. This remark seems novel in the staggered-grid and it has important consequences in
the development of multigrid staggered grid schemes and thus to the proposed tracking-
type control problems, i.e., distributed optimal control problems with cost functional of
velocity and/or pressure tacking-type. A coarsening strategy by a factor-of-three for cell-
centered discretization to second-order PDEs in given by [8] and for first-order elliptic
optimal control problems in [7], respectively.

Next, we define a sequence of nested grids (levels) Ωk of mesh size

hx k = hx 1/3
(k−1), hy k

= hy1
/3(k−1), k = 1, · · · , L,

where k = L is the finest level and hx 1 and hy 1
are the mesh sizes of the coarsest grid in

the x - and y- direction, respectively. In the numerical experiments we choose

hx 1 = hy 1
=

1

2
.

We denote all operators and functions defined on Ωk in terms of the index k. Notice that
with this setting a variable X k−1

I J at the grid point (I , J) of the coarse grid Ωk−1 has the
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p p p

p p,p p

p p p

u u u u

u,u u u u,u

u u u u

v

v

v

v

v,v

v

v

v,v

v

v

v

v

Figure 1: Illustration of the coarsening by a factor-of-three on a single mesh, where the bold-lines
Figure 1: Illustration of the coarsening by a factor-of-three on a single mesh, where the bold-lines
represent the coarse grid and fine-lines depict the fine grid, respectively.

same spatial placement as the variable X k
i j

at the grid point (i, j) of the fine grid Ωk as
follows; see Fig. 1.

uk−1
I ,J+1/2←→ uk

i j (i = 3I − 2, j = 3J − 1),

vk−1
I+1/2,J ←→ vk

i j (i = 3I − 1, j = 3J − 2),

pk−1
I+1/2,J+1/2←→ pk

i j (i = 3I − 1, j = 3J − 1),

λk−1
I ,J+1/2←→ λ

k
i j (i = 3I − 2, j = 3J − 1),

µk−1
I+1/2,J ←→ µ

k
i j (i = 3I − 1, j = 3J − 2),

qk−1
I+1/2,J+1/2←→ qk

i j (i = 3I − 1, j = 3J − 1).

4.1. A smoothing scheme and intergrid transfer operators

Here, we illustrate a smoothing scheme called distributive relaxation [5] to solve the
state and adjoint systems and updates the control variables through a gradient step. Fur-
thermore, intergrid transfer operators are also presented in this section.

Let (uh, vh, ph,λh,µh,qh, f h, gh) be the current approximation to the numerical solution
to the optimality system (3.1a)-(3.4). We define an update to this approximation by a
sequence of iterative steps.

In the start, we update the control variables by performing a gradient update step as
follows

f h := f h− t∇ f Ĵ( f h, gh), (4.1a)

gh := gh− t∇g Ĵ( f h, gh), (4.1b)
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where
∇ f Ĵ( f h, gh) = α f h−λh, ∇g Ĵ( f h, gh) = αgh−µh

are the gradients in the control spaces, and t ∈ (0,1] is the step length.
Next, we implement the iterative step to the state system by distributive relaxation

scheme [5, 6] as follows. Let (uh, vh, ph) be the current approximation to the discretized
state system (3.1a)-(3.1c). The state momentum Eqs. (3.1a)-(3.1b) are elliptic, therefore
for each fix equation, we relax (by point-wise Gauss-Seidel) all the interior points where
uh and vh is defined. Now, we have to relax the state continuity Eq. (3.1c) to make one
complete iterative step for the state system. For this, let (i + 1

2
, j + 1

2
) be the current cell

center and let
rh

p = 0− (∂ h
x uh+ ∂ h

y vh) (4.2)

be the prior residual at the current cell center, i.e., the residual at cell center just before
relaxing there. Then the relaxation step for state continuity equation (3.1c) at current cell
center is made up of the following nine changes

ui+1/2, j ← ui+1/2, j +δp/hx , vi, j+1/2← vi, j+1/2 + δp/hy ,

ui−1/2, j ← ui−1/2, j −δp/hx , vi, j−1/2← vi, j−1/2 − δp/hy ,

pi, j ← pi, j + 2(δp/h
2
x + δp/h

2
y), pi+1, j ← pi+1, j − δp/h

2
x ,

pi, j+1← pi, j+1 − δp/h
2
y , pi−1, j ← pi−1, j − δp/h

2
x ,

pi, j−1← pi, j−1 − δp/h
2
y ,

where

δp =
rh

p

2(1/h2
x + 1/h2

y)
. (4.3)

Above changes and δp are such that, after changing, rh
p vanishes. The pressure changes

are such that the momentum equations residuals

rh
u = f h+∆huh− ∂ h

x ph, (4.4a)

rh
v = gh+∆hvh− ∂ h

y ph (4.4b)

at all points remain unchanged, in the approximation sense. We need to modify δp because
of boundary conditions as

δp =
rh

p

2(1/h2
x + 1/h2

y)− d
, (4.5)

where d ∈ {1/h2
x , 1/h2

y , 1/h2
x + 1/h2

y}, i.e., d = 1/h2
x whenever one of the u updates is not

performed and d = 1/h2
y if one of the v updates is not performed. We have d = 1/h2

x+1/h2
y

in the case when both u and v are not updated at the boundary (corner). This completes
one iterative step to the state system.

Next, let (λh,µh,qh) be the current approximation to the discretized adjoint system
(3.2a)-(3.2c). We relax (by point-wise Gauss-Seidel) the residuals of Stokes momentum
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Eqs. (3.2a)-(3.2b) at all the interior points where λh and µh is defined. After completing
this, we relax, qh, the adjoint continuity Eq. (3.2c) by distributive relaxation as described
in the state system relaxation step. This completes one iterative (relaxation) step for the
optimality system.

In the following, we discuss the prolongation (interpolation) and restriction operator
needed for the multigrid scheme. A coarsening by factor of three gives a nested sequence of
staggered grids and the implementation of bilinear interpolation becomes easier. Therefore
we use bilinear interpolation, e.g, consider the space Uk of uk : Ωev

k
→ R, k = 1, · · · , L.

Among two grids Ωk and Ωk−1, we define a prolongation operator, Ik
k−1 :Uk−1→Uk, that

is consistent with the assumption of bilinear finite elements on each rectangular partition
of the discretization.

Note that in coarsening by factor-of-three on staggered grids, the coarse-grid points
spatial location is the same as for the fine-grid points; see Fig. 1. Therefore, we use only s-
traight injection operator Ik−1

k
:Uk→Uk−1 for transfer of residuals and solution functions

from fine to coarse grid.

4.2. The multigrid algorithms

In this section, we discuss the full approximation scheme (FAS) together with the pro-
posed full multigrid method (FMG). The FAS is a nonlinear multigrid method that allows
to accommodate non-linearities like the inequalities representing the optimality condition-
s. The full multigrid method allows to improve the computational complexity of the FAS.
The full multigrid method is obtained combining a nested iteration strategy with the FAS
that we discuss next.

Consider the optimality system (3.1a)-(3.4) at the discretization level k for the un-
known variables Xk = (uk, vk, pk,λk,µk,qk, fk, gk). We write this system with a compact
notation as follows

Ak(Xk) = Fk. (4.6)

Denote with X
(l)

k
= Sk (X

(l−1)
k

, Fk), the result of our smoothing scheme given in Sec. 4.1.
Suppose to apply m1-times this iteration to (4.6) starting with the current approximation
X
(0)
k

to obtain the approximate solution X̃k = X
(m1)

k
.

It is clear that the desired correction ek to X̃k is defined by Ak(X̃k + ek) = Fk. This
correction can be defined as the solution to

Ak(X̃k + ek)− Ak(X̃k) = rk, (4.7)

where rk = Fk − Ak(X̃k) is the residual associated to X̃k.
Next, assume to represent the problem (4.7) on the coarser grid Ωk−1. To represent

X̃k + ek on this coarse grid we write

Xk−1 := Ik−1
k

X̃k+ ek−1. (4.8)

Since Ik−1
k

X̃k and X̃k should represent the same function but on different grids. We can
think of representing ek by a coarse function ek−1 because ek is smooth due to the action
of Sk.
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Now to formulate (4.7) on the coarse grid replace Ak(·) by Ak−1(·), X̃k by Ik−1
k

X̃k, and

rk by restriction Ik−1
k

rk = Ik−1
k

�

Fk − Ak(X̃k)
�

. We get the following (FAS) equation

Ak−1(Xk−1) = Ik−1
k

�

Fk − Ak(X̃k)
�

+ Ak−1(I
k−1
k

X̃k). (4.9)

This equation is also written in the form Ak−1(Xk−1) = Ik−1
k

Fk +τ
k−1
k

where

τk−1
k
= Ak−1

�

Ik−1
k

X̃k

�

− Ik−1
k

Ak(X̃k).

The term τk−1
k

is the fine-to-coarse defect or residual correction such that at convergence
the solution to (4.9) coincides with the fine grid solution in the sense that Xk−1 = Ik−1

k
Xk.

With Xk−1 obtained solving (4.9) and from (4.8) we have

ek−1 = Xk−1− Ik−1
k

X̃k.

Therefore we can obtain a correction to the fine-grid approximation as follows

Xk = X̃k+ Ik
k−1

�

Xk−1− Ik−1
k

X̃k

�

, (4.10)

where Ik
k−1 is the coarse-to-fine interpolation operator. To damp possible high-frequency

errors arising through the entire coarse-grid correction process, the correction step (4.10)
is followed by m2-times smoothing iteration.

The full approximation scheme (FAS) cycle is summarized in the following algorithm.
Notice that we can perform m two-grid iterations at each working level. For m = 1 we

have a V -cycle and for m = 2 we have a W -cycle; m is called the cycle index [21].
Next, the full mutigrid algorithm is explained as follows. Suppose to start the solution

process from a coarse working level K < M where the discretized problem Al(X l) = Fl

with l = K is easily solved. The idea is to interpolate this solution to the next finer work-
ing level as initial approximation for the iterative process to solve Al+1(X l+1) = Fl+1 as
X l+1 = I l+1

l
X l . Thereafter the FAS algorithm at level l + 1 is applied. The idea of using a

coarse grid approximation as a first guess for the solution process on a finer grid is known
as nested iteration. The algorithm obtained by combining the multigrid scheme with nest-
ed iteration is called full multigrid (FMG) method. Because of the improvement on the
initial solution at each starting level, the FMG scheme results to be more efficient than
the iterative application of the multigrid cycle without FMG initialization. An algorithm
describing the FMG method is given in the following algorithm.

5. Numerical experiments

In this section, we present some numerical results that illustrate the application of
the proposed multigrid scheme to distributed optimal control problems (2.1)-(2.2c). We
consider a rectangular domain Ω = (0,1)2, a family of uniform rectangular grids with mesh
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Algorithm 4.1 FAS(m1, m2) for solving Ak(Xk) = Fk.

1. If k = 1 solve Ak(Xk) = Fk exactly.

2. Pre-smoothing steps on the fine grid:

X
(l)

k
= Sk(X

(l−1)
k

, Fk), l = 1, · · · , m1.

3. Computation of the residual:

rk = Fk − Ak(X
(m1)

k
).

4. Restriction of the residual:
rk−1 = Ik−1

k
rk.

5. Set Xk−1 = Ik−1
k

X
(m1)

k
.

6. Set Fk−1 = rk−1+ Ak−1(Xk−1).

7. Call m times MG(m1, m2) to solve:

Ak−1(Xk−1) = Fk−1.

8. Coarse-grid correction:

X
(m1+1)
k

= X
(m1)

k
+ Ik

k−1

�

Xk−1− Ik−1
k

X
(m1)

k

�

.

9. Post-smoothing steps on the fine grid:

X
(l)

k
= Sk(X

(l−1)
k

, Fk), l = m1 + 2, · · · , m1 +m2 + 1.

size h, and run our experiments on a laptop i7, 1.86GHz, 4GB RAM, using Matlab 8.5.0
(R2015a).

In the following, we consider the tracking-type control problem (2.1)-(2.2c) and take
the following target velocity [9]

U(x , y) := −2x2 y(1− x)2(1− 3y + 2y2),

V (x , y) := 2x y2(1− y)2(1− 3x + 2x2)

and the target pressure
P(x , y) := cos(πx)cos(πy).

To solve this problem, we use our full multigrid scheme to the optimality system (3.1a)-
(3.4). We employ W -cycles with m1 = m2 = 2, i.e., 2-pre and 2-post smoothing steps.
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Algorithm 4.2 FMG for solving AL(X L) = FL .

1. For l = K < L set initial approximation ul .

2. If l < L then interpolate to the next finer working level:

X̃ l+1 = I l+1
l

X l .

3. Apply FAS to solve Al+1(X l+1) = Fl+1, starting with X̃ l+1.

4. Set l := l + 1. If l < L go to step 2, else stop.

Further, for the control variable update step, we find advantages by choosing t = 1 in the
numerical experiments. In the FMG scheme, we implement a stopping criteria with a given
tolerance on the discrete L2-norm of the residuals as

max
¦

‖rh
i ‖L2 : i ∈ {u, v, p,λ,µ,q}

©

< tol = 10−6.

In Table 1, we report maximum number of iterations (W-cycles) required to reach the
given tol on finest level. This shows the computational performance of the proposed FMG
scheme and the tracking ability to velocity control only (αu = 1,αp = 0) and to mixed
velocity-pressure control (αu = 1,αp 6= 0). In Table 1, it is evident that our proposed
multigrid scheme gives good convergence results to the proposed control problem formu-
lation for small values of optimization parameter α, and as expected number of iterations
increases as α ↓ 0 due to the fact that very small values of α correspond to more stiff op-
timality system. Moreover, a decrease in the number of iterations with mesh size can be
observed in Table 1.

The choice of values for αp in mixed velocity-pressure control is justified by the data in
Table 2, where we report relative tracking errors for velocity

Eu = ‖u
∗ −U‖L2/‖U‖L2

and pressure
Ep = ‖p

∗ − P‖L2/‖P‖L2

on 54×54 mesh for velocity control only, and mixed velocity-pressure control. From Table
2, it is evident that for velocity control only, the pressure is not recovered at all (i.e.,
Ep ≈ 1). For the mixed control both velocity and pressure are being recovered, i.e., both
Eu, Ep decrease with α ↓ 0. Furthermore, for αp = 10−5 the relative velocity tracking error
Eu is smaller than Ep, i.e., velocity is recovered better than pressure, whereas for αp = 10−3

the situation is reversed, i.e., the relative pressure error Ep is better recovered than Eu.
It is important to remark that the dependence of our proposed full multigrid method to

optimization (or regularisation) parameter α, see Table 1, can be improved by line search

method (or by changing the choice t = 1) during update step of the control variables in
(4.1a)-(4.1b), e.g., see [6]. On the other hand, preconditioning iterative methods can be
used to improve this phenomena.
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Table 1: Iteration history for velocity control only and mixed (velocity-pressure) control.

Nx × Ny 6× 6 18× 18 54× 54
αu = 1,αp = 0
α= 1 4 2 2
α= 10−1 9 5 3
α= 10−2 99 46 22
α= 10−3 933 468 188
α= 10−4 6239 3930 863
α= 10−5 37511 5423 6458
α= 10−7 20248 1171 440

αu = 1,αp = 10−5

α= 1 4 2 2
α= 10−1 9 5 3
α= 10−2 99 46 22
α= 10−3 932 468 187
α= 10−5 31875 5415 4601
α= 10−7 319758 14256 2684

αu = 1,αp = 10−3

α= 1 6 4 4
α= 10−1 8 6 4
α= 10−2 87 51 28
α= 10−3 814 466 249
α= 10−5 11446 19244 11527
α= 10−7 16565 5332 1978

Table 2: Relative tracking errors for velocity Eu = ‖u
∗ −U‖L2/‖U‖L2 and pressure Ep = ‖p

∗ − P‖L2/‖P‖L2 .

αu αp Eu Ep Eu Ep Eu Ep

α 10−3 10−5 10−7

1 0 7.3592e− 1 ≈ 1 4.0563e− 2 ≈ 1 6.0637e− 3 8.1557e− 1
1 10−5 7.3585e− 1 9.9941e− 1 4.1252e− 2 9.4753e− 1 5.4686e− 3 1.7919e− 1
1 10−3 7.2719e− 1 9.4138e− 1 1.2297e− 1 1.4859e− 1 7.3012e− 3 9.7044e− 3

6. Conclusions

In this article, a full multigrid method for distributed optimal control problem with
cost functional of tracking-type, constrained by Stokes system with Dirichlet boundary
conditions, was investigated. We discretize the optimality system using finite differences
on staggered grids and a coarsening by a factor-of-three is used. A distributive-Gauss-
Seidel smoothing scheme with gradient update step was employed. Results of numerical
experiments demonstrate the effectiveness and efficiency of proposed multigrid staggered
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grid framework to tracking-type control problems.
The proposed multigrid scheme can also be extended to constrained control problems,

e.g., see [6]. This work also provides a first step towards the solution of the tracking-type
problems constrained by Navier-Stokes system using the proposed multigrid staggerd grid
procedure, which is the focus of our current research.
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