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Abstract

Recently, the matrix factorization model attracts increasing attentions in handling

large-scale rank minimization problems, which is essentially a nonconvex minimization

problem. Specifically, it is a quadratic least squares problem and consequently a quar-

tic polynomial optimization problem. In this paper, we introduce a concept of the SNIG

(“Second-order Necessary optimality Implies Global optimality”) condition which stands

for the property that any second-order stationary point of the matrix factorization model

must be a global minimizer. Some scenarios under which the SNIG condition holds are

presented. Furthermore, we illustrate by an example when the SNIG condition may fail.

Mathematics subject classification: 15A18, 15A83, 65K05, 90C26
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1. Introduction

1.1. Problem description

Consider the following matrix factorization problem

minimize
Y ∈Rn×k,Z∈Rm×k

f(Y, Z) :=
1

2
||A(Y Z⊤)− b||22 =

1

2

p
∑

i=1

(

〈Ai, Y Z⊤〉 − bi
)2

, (1.1)

where b ∈ R
p is a column vector, A ∈ B(Rn×m,Rp) is a linear operator mapping n×m matrices

onto p-dimensional Euclidean space. Namely,

A(X) = (〈A1, X〉, ..., 〈Ap, X〉)⊤ ,
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where Ai ∈ R
n×m(i = 1, ..., p) are the p column matrices of A and 〈W1,W2〉 := tr(W⊤

1 W2)

designates the inner product of two matrices W1 and W2 with the same size. Denoting the

adjoint operator of A by A⊤ : Rp 7→ R
n×m, it is not difficult to verify that

A⊤(y) =

p
∑

i=1

yiAi.

1.2. Existing works

Model (1.1) appears to be a practical and efficient way for solving low-rank optimization

problem. It is also arisen from many areas of scientific and engineering applications including

matrix completion, principle component analysis (PCA) and others [1, 8, 21]. LMaFit [28],

for instance, using a series of matrix factorization models with different k (the approximation

of the optimal rank) to describe the matrix completion problem, turns out to be an efficient

and robust alternative to the convex relaxation model [3, 7, 11, 18] based on nuclear norm

relaxation [4–6, 12, 19, 25]. Matrix factorization is also used to tackle semidefinite programs

(SDP) problems. For instance, [2, 14] introduced an equivalent factorization model for SDP

through the Cholesky decomposition. Mishra in [19] used a factorization to make the trace

norm differentiable in the search space and the duality gap numerically computable, which is a

similar approach to SVD.

However, the factorization model (1.1) is nonconvex. More specifically, it is a quartic poly-

nomial optimization problem. It may contain exponential number of local minimizers or saddle

points. Hence, solving problem (1.1) to the global optimality is usually unachievable.

Recently, Candès and Li [9] proposed a so-called Wirtinger Flow (WF) method to solve

the phase retrieval problem, which is, like (1.1), essentially a quardratic least squares problem

and quartic polynomial problem. The WF algorithm consists of two phases, one is a careful

initialization stage realized by a spectral method, and the other is the local minimization

stage invoking a gradient descent algorithm with a restricted stepsize. The authors proved

that if the random sampling vectors obey certain distribution and there is no noise in the

observation, the sequence generated by the gradient descent scheme will converge linearly to a

global solution with high probability. Sun and Luo in [22] applied a similar idea to analyze the

matrix completion problems described by factorization formulation, in which an initialization

step is followed by a general first-order algorithm framework. Under the standard assumptions

on incoherence condition [4] and the random observations similar to [9], the authors of [22]

showed their framework can converge to a global solution linearly. Ge et. al [10] proved that

matrix completion problem, a special case of (1.1), does not have spurious local minimum under

the positive definiteness and randomness assumptions on the target matrix, i.e. the observation

vector b in our model (1.1).

1.3. Our contributions

Even if the linear operator A of problem (1.1) does not involve any random property, it is

observed that some local optimal solvers can often find a global solution of (1.1) by starting

from a randomly chosen initial point. In this paper, we theoretically investigate the relationship

between the global optimality of problem (1.1) and its second-order optimality under certain

scenarios, which can partly explain the above mentioned phenomenon.

Note that if there exists a nonzero vector c ∈ R
p such that A⊤(c) = 0, the linear operator

A is row linearly dependent which implies the redundancy of the observations A(Y Z⊤) = b.
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To simply invoke the second-order optimality condition in further analysis, it is reasonable for

us to exclude the row rank deficient cases. So in this paper, we are only interested in those

operators with linearly independent rows, that is, we only consider those operators with full

row rank. For simplicity of notations, we denote such operators as

Π(n,m,p) := B(Rn×m,Rp) ∩ {A | A⊤(c) 6= 0, ∀c 6= 0, c ∈ R
p}.

Clearly, problem (1.1) is bounded from below.

Assumption 1.1. The minimum of (1.1) is zero and attainable.

It is clear that the global optimality of (1.1) becomes checkable: f(Y, Z) = 0 once As-

sumption 1.1 holds. For the convenience of our analysis, throughout this paper, we assume

Assumption 1.1 holds.

Let K := {1, 2, · · · ,min(n,m)}. Note that once a triplet (A, b, k) ∈ Π(n,m,p) × R
p × K is

given, a specific instance of problem (1.1) is immediately determined. For convenience, once we

say (A, b, k) satisfies Assumption 1.1, it refers to the fact that problem (1.1) satisfies Assumption

1.1. Moreover, if (A, b, k) satisfies Assumption 1.1, there must exist a W ∈ R
n×m with rank at

most k such that A(W ) = b. Denote

r∗ = argmin
r

{r = rank(W ) | A(W ) = b},

we have r∗ ≤ k ≤ min(n,m).

Although solving the nonlinear least squares problem (1.1) to the global optimality is NP-

hard in general, obtaining a second-order stationary point can be achieved in polynomial time.

Moreover the second-order stationary point is a global minimizer of problem (1.1) for some

instances (A, b, k).

Definition 1.1. Let a triplet (A, b, k) ∈ Π(n,m,p)×R
p ×K satisfying Assumption 1.1 be given.

Let C be a cone in R
n×k × R

m×k. Then, if for any (Y, Z) ∈ C satisfying the second-order

necessary optimality condition of (1.1), (Y, Z) is a global optimizer of (1.1), we call the SNIG

(Second-order Necessary optimality Implies Global optimality) condition holds at the triplet

(A, b, k) over C. Particularly, if C = R
n×k × R

m×k, we say the SNIG condition holds at the

triplet (A, b, k).

Different from [9] and [22], we do not impose any random properties on the operator “A”.

On the other hand, we assume that it is of some special structures, for instance, the structure

mentioned in [29]. Our main contributions are to provide some scenarios of (A, b, k) under

which the SNIG condition holds:

1. the SNIG condition always holds over the cone consisting of all the rank deficient points

in R
n×m × R

n×m;

2. the SNIG condition holds when the number of observation entries is equal to the total

number of unknowns;

3. the SNIG condition holds if the operator A enjoys the special structure mentioned in [29],

more specifically, A maps a matrix to a part of it and the missing part is a block of the

matrix.

The above situations can be viewed as sufficient conditions of the SNIG. Moreover, we also

demonstrate by a simple instance that the SNIG does not always hold.



SNIG Property of Matrix Low-Rank Factorization Model 377

1.4. Organization

The rest of this paper is organized as follows. In Section 2, we first give the optimality

conditions of problem (1.1) and then present the proofs of the above mentioned first two suffi-

cient conditions of the SNIG. We assert the third sufficient condition in Section 3. In Section

4, an example is constructed to illustrate that the SNIG condition may be violated. Finally, we

conclude this paper in Section 5.

2. Preliminaries and Two Special Scenarios

In this section, we first present the optimality conditions for the factorization model (1.1).

Then we deliver two sufficient conditions for the SNIG.

2.1. Optimality conditions

The gradient of f(Y, Z) can be expressed as

∇f(Y, Z) =

[

∇Y f(Y, Z)

∇Zf(Y, Z)

]

,

where

∇Y f(Y, Z) = A⊤(A(Y Z⊤)− b)Z,

∇Zf(Y, Z) = (A⊤(A(Y Z⊤)− b))⊤Y.

The Hessian of f(Y, Z) can be expressed as

∇2f(Y, Z) =

[

∇2
Y Y f(Y, Z) ∇2

Y Zf(Y, Z)

∇2
ZY f(Y, Z) ∇2

ZZf(Y, Z)

]

, (2.1)

where

∇2
Y Y f(Y, Z)[SY ] = A⊤(A(SY Z

⊤))Z, (2.2a)

∇2
Y Zf(Y, Z)[SZ ] = A⊤(A(Y S⊤

Z ))Z +A⊤((A(Y Z⊤)− b))SZ , (2.2b)

∇2
ZY f(Y, Z)[SY ] = (A⊤(A(SY Z

⊤)))⊤Y + (A⊤(A(Y Z⊤)− b)))⊤SY , (2.2c)

∇2
ZZf(Y, Z)[SZ ] = (A⊤(A(Y S⊤

Z )))⊤Y, (2.2d)

for all SY ∈ R
n×k and SZ ∈ R

m×k.

Since (1.1) is a twice continuously differentiable unconstrained optimization problem, we

can directly give its first-order and second-order necessary optimality condition as follows,

respectively.

Definition 2.1. A pair of matrices (Y ∗, Z∗) ∈ R
n×k × R

m×k is called a stationary point of

(1.1) if ∇f(Y ∗, Z∗) = 0.

Proposition 2.1. Let (Y ∗, Z∗) be a local minimizer of (1.1), then it must be a stationary point

and ∇2f(Y ∗, Z∗) is positive semi-definite. Namely,

||A(Y ∗S⊤
Z + SY (Z

∗)⊤)||22 + 2tr(S⊤
Y A⊤(A(Y ∗(Z∗)⊤ − UV ⊤))SZ) ≥ 0, (2.3)

for all SY ∈ R
n×k, SZ ∈ R

m×k where (U, V ) is a feasible point satisfying A(UV ⊤) = b.
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Proof. The first part directly follows from the first-order optimality condition. Next, we

give the proof of the second part. The Hessian ∇2f(Y ∗, Z∗) is positive semi-definite due to the

second-order optimality necessary condition. We derive from the positive semi-definiteness of

∇2f(Y ∗, Z∗) and the relation (2.1) that

〈SY ,∇2
Y Y f(Y

∗, Z∗)[SY ]〉+ 〈SY ,∇2
Y Zf(Y

∗, Z∗)[SZ ]〉

+〈SZ ,∇2
ZY f(Y

∗, Z∗)[SY ]〉+ 〈SZ ,∇2
ZZf(Y

∗, Z∗)[SZ ]〉 ≥ 0 (2.4)

holds for all SY ∈ R
n×k and SZ ∈ R

m×k. Substituting relations (2.2) into (2.4), we can obtain

(2.3) which completes the proof. �

Definition 2.2. A pair of matrices (Y ∗, Z∗) ∈ R
n×k×R

m×k is called a second-order stationary

point of (1.1), if it is a stationary point and the second-order necessary optimality condition

(2.3) holds for all SY ∈ R
n×k, SZ ∈ R

m×k.

Apparently, a local minimizer must be a second-order stationary point, but not necessarily

vice versa.

2.2. Rank deficient second-order stationary point

The SNIG condition holds at a rather general collection of triplets (A, b, k) over a particular

cone in R
n×k × R

m×k.

Theorem 2.1. For any given triplet (A, b, k) ∈ Π(n,m,p) × R
p ×K satisfying Assumption 1.1,

the SNIG condition holds over the cone

C̄ := {(X,Y ) ∈ R
n×k × R

m×k | at least one of X and Y is rank deficient}.

Proof. Let (Y, Z) be any second-order stationary point of (1.1) satisfying that at least one

of Y and Z is rank deficient.

Denote (U, V ) as a global optimizer of (1.1). It follows from Assumption 1.1 and k ≥ r∗

that f(U, V ) = 0. Namely, A(UV ⊤) = b holds. Therefore we can rewrite the objective function

of (1.1) as

f(Y, Z) =
1

2
||A(Y Z⊤)−A(UV ⊤)||22. (2.5)

Without loss of generality, we assume that Y is rank deficient, i.e., there exists a nonzero vector

ỹ ∈ R
k satisfying Y ỹ = 0. Without loss of generality, we assume ỹl 6= 0 for some l ∈ {1, 2, . . . , k}.

We use reduction to absurdity. Suppose there exists (s, t) ∈ {(i, j) | 1 ≤ i ≤ n, 1 ≤ j ≤ m}
satisfying η = (A⊤(A(Y Z⊤ − UV ⊤)))st 6= 0.

Then, we set SY ∈ R
n×k as follows

(SY )i1i2 =

{

η, if i1 = s and i2 = l,

0, otherwise.
(2.6)

Let SZ = z̃ỹ⊤, and set z̃ ∈ R
m as follows

z̃j =

{

−ξỹl, if j = t,

0, otherwise,
(2.7)
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where ξ > ||A(rsz
⊤
l )||22/(2ỹ2l ). Here rs ∈ R

n is the s-th column of identity matrix In and zl
denotes the l-th column of Z.

Recalling Proposition 2.1, we have

||A(Y S⊤
Z + SY Z

⊤)||22 + 2tr(S⊤
Y A⊤(A(Y Z⊤ − UV ⊤))SZ) ≥ 0, (2.8)

for all SY ∈ R
n×k, SZ ∈ R

m×k and ||SY ||2F + ||SZ ||2F 6= 0.

Plugging (2.6) and (2.7) into (2.8), we obtain

||A(Y S⊤
Z + SY Z

⊤)||22 + 2tr(S⊤
Y A⊤(A(Y Z⊤ − UV ⊤))SZ)

= ||A(Y ỹz̃⊤ + SY Z
⊤)||22 + 2tr(S⊤

Y A⊤(A(Y Z⊤ − UV ⊤))z̃ỹ⊤)

= ||A(SY Z
⊤)||22 + 2tr(ỹ⊤S⊤

Y A⊤(A(Y Z⊤ − UV ⊤))z̃)

= η2||A(rsz
⊤
l )||22 − 2ξη2ỹ2l < 0.

Hence, the second-order necessary optimality condition is violated, which is contrary to the

fact that (Y, Z) is a second-order stationary point. Therefore A⊤(A(Y Z⊤ −UV ⊤)) = 0, which

implies A(Y Z⊤ −UV ⊤) = 0 due to the full rankness of A. Namely, f(Y, Z) = 0. We complete

the proof. �

2.3. The scenario when A is a special bijection

Consider p = nm and a special class of triplets (A(C,D), b(B), k) where

A
(C,D)
i+(j−1)n = CiD

⊤
j and b

(B)
i+(j−1)n = Bi,j , i = 1, ..., n, j = 1, ...,m, (2.9)

with Ci and Dj the i-th column of C and j-th column of D, respectively. And B ∈ R
n×m,

C ∈ R
n×n and D ∈ R

m×m are three given matrices. Then it is not difficult to verify that

‖A(C,D)(X)− b(B)‖22 = ‖C⊤XD −B‖2F. (2.10)

Then we have the following result.

Theorem 2.2. Suppose that the triplet (A(C,D), b(B), k) defined by (2.9) satisfies Assumption

1.1. If both C ∈ R
n×n and D ∈ R

m×m are nonsingular, then the SNIG condition holds at the

triplet (A(C,D), b(B), k).

Proof. It follows from the triplet (A(C,D), b(B), k) satisfying Assumption 1.1 that k ≥
rank(B) and there exist U ∈ R

n×k and V ∈ R
m×k such that b(B) = A(C,D)(UV ⊤). Namely,

(U, V ) is a global optimizer of (1.1) corresponding to the triplet (A(C,D), b(B), k). By (2.10),

the objective function can be reformulated as

f(Y, Z) =
1

2
‖C⊤(Y Z⊤)D −B‖2F.

Assume that (Y, Z) is a second-order stationary point of problem (1.1) with respect to

(A(C,D), b(B), k). The first-order optimality condition can be written as

{

Y ⊤CC⊤(Y Z⊤ − UV ⊤)DD⊤ = 0,

CC⊤(Y Z⊤ − UV ⊤)DD⊤Z = 0.
(2.11)
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Denote Ỹ = CC⊤Y , Z̃⊤ = Z⊤DD⊤, Ũ = CC⊤U , Ṽ ⊤ = V ⊤DD⊤, (2.11) can be rearranged

as
{

(Ỹ Z̃⊤ − Ũ Ṽ ⊤)Z = 0,

Y T (Ỹ Z̃⊤ − Ũ Ṽ ⊤) = 0.

First we consider the case that both Y ⊤Ỹ and Z̃⊤Z are nonsingular, we have






Ỹ = Ũ Ṽ ⊤Z(Z̃⊤Z)−1,

Z̃ = ((Y ⊤Ỹ )−1Y ⊤Ũ Ṽ ⊤)⊤,
(2.12)

and then

Y ⊤(Ỹ Z̃⊤ − Ũ Ṽ ⊤)Z = 0 ⇒ Y ⊤Ỹ Z̃⊤Z = Y ⊤Ũ Ṽ ⊤Z,

which indicates that Y ⊤Ũ and Ṽ ⊤Z are both nonsingular as well. Moreover, we can obtain

(Ṽ ⊤Z)−1(Y ⊤Ũ)−1 = (Z̃⊤Z)−1(Y ⊤Ỹ )−1. (2.13)

Together with (2.12) and (2.13), we have

(A(C,D))⊤(A(C,D)(Y Z⊤ − UV ⊤)) = Ỹ Z̃⊤ − Ũ Ṽ ⊤

= Ũ Ṽ ⊤Z(Z̃⊤Z)−1(Y ⊤Ỹ )−1Y ⊤Ũ Ṽ ⊤ − Ũ Ṽ ⊤

= Ũ(Ṽ ⊤Z(Z̃⊤Z)−1(Y ⊤Ỹ )−1Y ⊤Ũ − Ik)Ṽ
⊤ = 0,

which indicates A(C,D)(Y Z⊤ − UV ⊤) = 0.

Finally, we consider the case where at least one of Y ⊤Ȳ and Z̄⊤Z is singular. We notice

that Y ⊤Ỹ = (C⊤Y )⊤(C⊤Y ) and Z̃⊤Z = (D⊤Z)⊤(D⊤Z). The nonsingularity of C and D and

the singularity of Y ⊤Ỹ or Z̃⊤Z imply the rank deficiency of Y or Z. Then we recall Theorem

2.1, and complete the proof. �

3. The Scenario When A Takes a Special Form

Consider the triplet (AΩ, bΩ, k) ∈ Π(n,m,p) × R
p ×K with (AΩ, bΩ) defined by

AΩ(X) = (〈AΩ
1 , X〉, . . . , 〈AΩ

p , X〉)⊤, bΩ = (bΩ1 , . . . , b
Ω
p )

⊤, (3.1)

where Ω ⊂ {(i, j)|1 ≤ i ≤ n, 1 ≤ j ≤ m}, p = |Ω| is the cardinality of Ω, and AΩ
t =

Eitjt ((it, jt) ∈ Ω, 1 ≤ t ≤ p). Here Eij ∈ R
n×m is a matrix with (i, j)-th entry equal to 1

and 0 otherwise. We call Ω the observation-index set.

Any triplet (AΩ, bΩ, k) determines a concrete instance of (1.1) as the following

minimize
Y ∈Rn×k,Z∈Rm×k

f(Y, Z) :=
1

2
||AΩ(Y Z⊤)− bΩ||22. (3.2)

If the triplet (AΩ, bΩ, k) satisfies Assumption 1.1, as mentioned before, there exists at least

one matrix M such that

AΩ(M) = bΩ,

or equivalently,

Mitjt = bΩt , (it, jt) ∈ Ω, 1 ≤ t ≤ p.

We call such matrix M an observation matrix with respect to the triplet (AΩ, bΩ, k).
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3.1. Main results and proof outline

Suppose the observation-index set Ω in (3.1) has the following form

Ω = I1 ∪ I2 ∪ I3, (3.3)

where

I1 = {(is, jt)|1 ≤ s ≤ ñ, 1 ≤ t ≤ m̃},

I2 = {(is, jt)|1 ≤ s ≤ ñ, m̃+ 1 ≤ t ≤ m},

I3 = {(is, jt)|ñ+ 1 ≤ s ≤ n, 1 ≤ t ≤ m̃},

(3.4)

for given ñ ∈ {1, · · · , n}, m̃ ∈ {1, · · · ,m}. Clearly, Ω defined by (3.3) consists of ñ rows and m̃

columns of the observation matrix M .

Our main results can be stated as follows.

Theorem 3.1. Let (AΩ, bΩ) be defined as (3.1) and Ω be in the form of (3.3). Suppose the

triplet (AΩ, bΩ, k) satisfies Assumption 1.1 and M is its corresponding observation matrix with

rank r. If the rank of the submatrices MIi indexed by Ii satisfies rank(MIi) = rank(M) = r

where Ii (i = 1, 2, 3) is given by (3.4), then the SNIG condition holds at the triplet (AΩ, bΩ, k).

Remark 3.1. We notice that the scenario discussed in Theorem 3.1 is much more general

than the one discussed in Theorem 2.2. The number of observations (the number of known

entries of the observation matrix M) here is p = m̃n + ñ(m − m̃) < mn. The smallest choice

of p is k(m + n − k) when m̃ = ñ = k, which is much less than the lowest requirement, i.e.

(m+ n) log(m+ n), on the number of observations to guarantee the exact recovery.

The proof of Theorem 3.1 will be divided into two parts:

i) Firstly, we prove that the SNIG condition holds at the triplet (AΩ̃, bΩ̃, k) with the obser-

vation set Ω̃ being a special case of (3.3);

ii) Secondly, we show that for any Ω defined as (3.3), there exists Ω̃ being of the structure

mentioned above and the same cardinality with Ω, and satisfying that problems (1.1) de-

termined by (AΩ, bΩ, k) and (AΩ̃, bΩ̃, k) share the same optimality properties, i.e. function

values, optimality conditions.

3.2. The situation that Ω̃ is of special structure

In particular, suppose the special triplet (AΩ̃, bΩ̃, k) satisfies Assumption 1.1 where (AΩ̃, bΩ̃)

is defined by (3.1) and the observation-index set is of the form

Ω̃ = Ĩ1 ∪ Ĩ2 ∪ Ĩ3 (3.5)

where

Ĩ1 = {(i, j)|1 ≤ i ≤ ñ, 1 ≤ j ≤ m̃},

Ĩ2 = {(i, j)|1 ≤ i ≤ ñ, m̃+ 1 ≤ j ≤ m},

Ĩ3 = {(i, j)|ñ+ 1 ≤ i ≤ n, 1 ≤ j ≤ m̃},

(3.6)
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which contains all the indices of the first ñ rows and the first m̃ columns of the corresponding

observation matrix, say M̃ .

Hence, problem (3.2) can further be reformulated as,

minimize
Ỹ ∈Rn×k,Z̃∈Rm×k

f̃(Ỹ , Z̃) :=
1

2
||AΩ̃(Ỹ Z̃⊤)− bΩ̃||22. (3.7)

Lemma 3.1. Let (AΩ̃, bΩ̃) be defined by (3.1) and Ω̃ be in the form of (3.5). Suppose the triplet

(AΩ̃, bΩ̃, k) satisfies Assumption 1.1 and M̃ is the corresponding observation matrix with rank

r̃. If the rank of the submatrices M̃Ĩi
indexed by Ĩi satisfies rank(M̃Ĩi

) = rank(M̃) = r̃ where

Ĩi (i = 1, 2, 3) are given by (3.6), then the SNIG condition holds at the triplet (AΩ̃, bΩ̃, k).

Proof. Suppose (Ũ , Ṽ ) ∈ R
n×k ×R

m×k is the global minimizer of (3.7), namely, M̃ = Ũ Ṽ ⊤

and bΩ̃ = AΩ̃(Ũ Ṽ ⊤). Let (Ỹ , Z̃) ∈ R
n×k×R

m×k be a second-order stationary point of problem

(3.7). Next, we are going to prove the lemma by the following two folds.

I: Either Ỹ or Z̃ is rank deficient. In this case, the SNIG condition holds at (AΩ̃, bΩ̃, k)

directly following from Theorem 2.1 and hence the proof is completed.

II: Both Ỹ and Z̃ are of full column rank. According to the structure of Ω̃ in the form

of (3.5), we rewrite the matrices Ũ , Ṽ , Ỹ and Z̃ as follows

Ũ =

[

U1

U2

]

, Ṽ =

[

V1

V2

]

, Ỹ =

[

Y1

Y2

]

, Z̃ =

[

Z1

Z2

]

,

where U1, Y1 ∈ R
ñ×k, U2, Y2 ∈ R

(n−ñ)×k, V1, Z1 ∈ R
m̃×k and V2, Z2 ∈ R

(m−m̃)×k. Then it

follows from straightforward calculations that

(AΩ̃)⊤(AΩ̃(Ỹ Z̃⊤)− bΩ̃) = (AΩ̃)⊤AΩ̃(Ỹ Z̃⊤ − Ũ Ṽ ⊤) =

[

Y1Z
⊤
1 − U1V

⊤
1 Y1Z

⊤
2 − U1V

⊤
2

Y2Z
⊤
1 − U2V

⊤
1 0

]

.

Hence, the first-order optimality condition of (3.7) can be expressed as follows,


























((AΩ̃)⊤(AΩ̃(Ỹ Z̃⊤)− bΩ̃))Z̃ =

[

(Y1Z
⊤
1 − U1V

⊤
1 )Z1 + (Y1Z

⊤
2 − U1V

⊤
2 )Z2

(Y2Z
⊤
1 − U2V

⊤
1 )Z1

]

= 0,

((AΩ̃)⊤(AΩ̃(Ỹ Z̃⊤)− bΩ̃))⊤Ỹ =

[

(Z1Y
⊤
1 − V1U

⊤
1 )Y1 + (Z1Y

⊤
2 − V1U

⊤
2 )Y2

(Z2Y
⊤
1 − V2U

⊤
1 )Y1

]

= 0.

That is






























(Y1Z
⊤
1 − U1V

⊤
1 )Z1 + (Y1Z

⊤
2 − U1V

⊤
2 )Z2 = 0, (3.8a)

(Y2Z
⊤
1 − U2V

⊤
1 )Z1 = 0, (3.8b)

(Z1Y
⊤
1 − V1U

⊤
1 )Y1 + (Z1Y

⊤
2 − V1U

⊤
2 )Y2 = 0, (3.8c)

(Z2Y
⊤
1 − V2U

⊤
1 )Y1 = 0. (3.8d)

By rearranging (3.8a) and (3.8c), we have

{

Y1(Z̃
⊤Z̃) = U1(Ṽ

⊤Z̃), (3.9a)

Z1(Ỹ
⊤Ỹ ) = V1(Ũ

⊤Ỹ ). (3.9b)
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Combining (3.9), (3.8b) and (3.8d) together, we obtain































Y1 = U1(Ṽ
⊤Z̃)(Z̃⊤Z̃)−1, (3.10a)

Z1 = V1(Ũ
⊤Ỹ )(Ỹ ⊤Ỹ )−1, (3.10b)

Y2(Z
⊤
1 Z1) = U2(V

⊤
1 Z1), (3.10c)

Z2(Y
⊤
1 Y1) = V2(U

⊤
1 Y1). (3.10d)

As we know, the second-order necessary optimality condition of problem (3.7) can be for-

mulated as

‖AΩ̃(Ỹ S⊤
Z̃
+ SỸ Z̃

⊤)‖22 + 2tr(S⊤
Ỹ
((AΩ̃)⊤(AΩ̃(Ỹ Z̃⊤ − Ũ Ṽ ⊤)))SZ̃) ≥ 0, (3.11)

for all SỸ ∈ R
n×k, SZ̃ ∈ R

m×k.

We further prove our argument through discussing the following four cases of different

structures of (Y1, Z1),

i. Y1 is rank deficient and Z1 is of full column rank;

ii. Y1 is of full column rank and Z1 is rank deficient;

iii. both Y1 and Z1 are rank deficient;

iv. both Y1 and Z1 are of full column rank.

i. Y1 is rank deficient and Z1 is of full column rank. Due to the rank deficiency of

Y1, there exists a nonzero vector ỹ = (y1, . . . , yk)
⊤ ∈ R

k satisfying Y1ỹ = 0. Without loss

of generality, we assume that yl 6= 0 for some l ∈ {1, · · · , k}. Then we can conclude that

Y1Z
⊤
2 = U1V

⊤
2 . Otherwise, suppose that there exists (s, t) ∈ {1, · · · , ñ} × {m̃ + 1, · · · ,m}

satisfying η = (Y1Z
⊤
2 − U1V

⊤
2 )st 6= 0.

Then we set

SỸ =

[

SY1

0

]

and SZ̃ =

[

0

SZ2

]

(3.12)

where

(SY1
)i1i2 =

{

η, if i1 = s and i2 = l,

0, otherwise,
and SZ2

= z̃ỹ⊤

with z̃ ∈ R
m−m̃ given by

z̃j =

{

−ξyl, if j = t,

0, otherwise,

and ξ > ‖AΩ(rsz
⊤
l )‖22/(2y2l ). Here rs ∈ R

ñ is the s-th column of identity matrix Iñ and zl
denotes the l-th column of Z.

Substituting (3.12) into (3.11), we obtain

‖AΩ(Y S⊤
Z2

+ SY1
Z⊤)‖22 + 2tr(S⊤

Y1
(Y1Z

⊤
2 − U1V

⊤
2 )SZ2

)

=‖AΩ(SY1
Z⊤)‖22 + 2tr(ỹ⊤S⊤

Y1
(Y1Z

⊤
2 − U1V

⊤
2 )z̃)

=η2‖AΩ(rsz
⊤
l )‖22 − 2ξη2ỹ2l < 0,
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which implies that the second-order necessary condition is violated at (Ỹ , Z̃). Therefore, it

holds that Y1Z
⊤
2 = U1V

⊤
2 . Together with (3.8a), (3.8b), we obtain Ỹ (Z⊤

1 Z1) = Ũ(V ⊤
1 Z1).

From the assumption rank(M̃Ĩ1
) = r̃ = k, we know rank(U1V

⊤
1 ) = r̃ = k, which implies U1

and V1 are full column rank. Thus, combining with (24b), we can obtain the nonsingularity of

V ⊤
1 Z1. Consequently,

Y1 = U1(V
⊤
1 Z1)(Z

⊤
1 Z1)

−1

is of full column rank, which contradicts to the assumption that Y1 is rank deficient.

ii. Y1 is of full column rank and Z1 is rank deficient. We can show the same contradiction

as case i in the same manner and hence omit the detailed proof.

iii. Both Y1 and Z1 are rank deficient. By the same argument in case i, it follows from the

second-order optimality (3.11) that

{

Y1Z
⊤
2 = U1V

⊤
2 ,

Y2Z
⊤
1 = U2V

⊤
1 ,

(3.13)

due to the rank deficiency of Y1 and Z1.

It follows from the relationship (3.13) and rank(M̃Ĩi
) = rank(M̃) = r̃ (i = 1, 2, 3) that

r̃(= rank(Ũ Ṽ ⊤) = rank(M̃)) < k. Hence there exist Ū ∈ R
n×r̃ and V̄ ∈ R

m×r̃ such that

Ū V̄ ⊤ = Ũ Ṽ ⊤ = M̃ . Denote Ū and V̄ as

Ū =

[

Ū1

Ū2

]

and V̄ =

[

V̄1

V̄2

]

.

Similar to (3.10) and (3.13), we obtain































Y1 = Ū1(V̄
⊤Z̃)(Z̃⊤Z̃)−1, (3.14a)

Z1 = V̄1(Ū
⊤Ỹ )(Ỹ ⊤Ỹ )−1, (3.14b)

Y2(Z
⊤
1 Z1) = Ū2(V̄

⊤
1 Z1), (3.14c)

Z2(Y
⊤
1 Y1) = V̄2(Ū

⊤
1 Y1). (3.14d)

and






Y1Z
⊤
2 = Ū1V̄

⊤
2 ,

Y2Z
⊤
1 = Ū2V̄

⊤
1 .

(3.15)

It follows from the second equation of (3.15) and the full column rankness of Ū2 that

V̄1 = Z1(Y
⊤
2 Ū2)(Ū

⊤
2 Ū2)

−1,

which together with (3.14b) imply that the columns of Z1 can be expressed as the linear

combination of those of V̄1 and vice versa. Hence, we know that Z1 and V̄1 have the same

column range space, that is

Span{Z1} = Span{V̄1}. (3.16)
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Define H̄ := Y1Z
⊤
1 −Ū1V̄

⊤
1 ∈ R

ñ×m̃. Due to (3.16), it holds that H̄y = 0, for any y ⊥ Span{Z1}.
On the other hand, for any y ∈ Span(Z1), there exists λ ∈ R

m̃ satisfying y = Z1λ. Using (3.8a)

and the first equation of (3.15), we have H̄y = 0. Consequently, we can conclude that H̄y = 0,

for all y ∈ R
m̃, which implies H̄ = 0. Together with (3.15), we have (AΩ̃)⊤(AΩ̃(Ỹ Z̃⊤)−bΩ̃) = 0.

We have AΩ̃(Ỹ Z̃⊤)− bΩ̃ = 0.

iv. Both Y1 and Z1 are of full column rank. Define

Ĥ = Y2Z
⊤
1 − U2V

⊤
1 ∈ R

(n−ñ)×m̃.

The full column rankness of Z1 and equation (3.10b) imply

Span{Z1} = Span{V1}. (3.17)

Therefore, we can prove Ĥy = 0 holds for any y ⊥ SpanZ1. By the optimality condition (3.8b),

we have Ĥy = 0 holds for any y ∈ Span{Z1}. Thus, for any y ∈ R
m̃, it holds that Ĥy = 0,

which further implies

Ĥ = 0. (3.18)

Similarly,

Y1Z
⊤
2 − U1V

⊤
2 = 0. (3.19)

Together with (3.8a), we have (Y1Z
⊤
1 − U1V

⊤
1 )Z1 = 0. On the other hand, (3.17) implies

(Y1Z
⊤
1 − U1V

⊤
1 )z = 0 holds for any z ⊥ Span{Z1}. Therefore,

Y1Z
⊤
1 − U1V

⊤
1 = 0. (3.20)

Collecting (3.18), (3.19) and (3.20), we obtain (AΩ̃)⊤(AΩ̃(Ỹ Z̃⊤)− bΩ̃) = 0. We have

AΩ̃(Ỹ Z̃⊤)− bΩ̃ = 0.

To sum up, we conclude that if (Ỹ , Z̃) is a second-order stationary point of problem (3.7),

then AΩ̃(Ỹ Z̃⊤)− bΩ̃ = 0, i.e., (Ỹ , Z̃) is a global minimizer of problem (3.7), which implies that

the SNIG condition holds at the triplet (AΩ̃, bΩ̃, k). We complete the proof. �

Remark 3.2. Let (AΩ̃, bΩ̃) be defined by (3.1) with bΩ̃i = 1 (i = 1, . . . , p) and Ω̃ of the form

Ω̃ = {(i, j)|1 ≤ i ≤ 2, 1 ≤ j ≤ 2} ∪ {(i, j)|1 ≤ i ≤ 2, 3 ≤ j ≤ 4} ∪ {(i, j)|3 ≤ i ≤ 4, 1 ≤ j ≤ 2},

which implies n = m = 4 and p = |Ω| = 12. Set

Ũ = Ṽ =

√
2

2

[

1 1 1 1

1 1 1 1

]⊤

,

and denote M̃ = Ũ Ṽ ⊤ as the obervation matrix, we can easily verify that (AΩ̃, bΩ̃, k) satisfies

Assumption 1.1 and the SNIG condition holds at (AΩ̃, bΩ̃, 2).

Set

Ỹ =

[

1
2

1
2 0 0

1
2

1
2 1 1

]⊤

, Z̃ =

[

1 1 2 2

1 1 0 0

]⊤

.

Clearly, (Ỹ , Z̃) is also a global minimizer of (3.7). However, Ỹ Z̃⊤ 6= M̃ , which means the exact

recovery does not hold at (AΩ̃, bΩ̃, k).
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3.3. Permutation between (3.2) and (3.7)

Let Ω be any observation-index set defined by (3.3), and (AΩ, bΩ) be defined by (3.1).

Suppose M is the corresponding observation matrix of triplet (AΩ, bΩ, k), which implies that

Assumption 1.1 is satisfied. Denote S = (Sij) by

Sij =

{

1, (i, j) ∈ Ω,

0, otherwise.

It is not difficult to verify that there exist two permutation matrices, say P and Q, such that

S̃ = PSQ⊤, (3.21)

and the observation-index set Ω̃ corresponding to S̃, i.e.

S̃ij =

{

1, (i, j) ∈ Ω̃,

0, otherwise,

satisfies (3.5). Let AΩ̃ be defined by (3.1), and bΩ̃ be defined by

bΩ̃t = M̃itjt , (it, jt) ∈ Ω̃, t = 1, 2, ..., p := |Ω|,

where M̃ = PMQ⊤.

Problem (1.1) determined by (AΩ, bΩ, k) and (AΩ̃, bΩ̃, k) can be reformulated as

minimize
Y ∈Rn×k,Z∈Rm×k

f(Y, Z) =
1

2
‖S ◦ (Y Z⊤ −M)‖2F, (3.22)

minimize
Ỹ ∈Rn×k,Z̃∈Rm×k

f̃(Ỹ , Z̃) =
1

2
‖S̃ ◦ (Ỹ Z̃⊤ − M̃)‖2F, (3.23)

respectively, where ◦ designates the Hadamard product of two matrices with the same size.

We first reveal the relationship between the rank of the submatrices of M and M̃ .

Lemma 3.2. Let M be the observation matrix with respect to (AΩ, bΩ, k) and M̃ = PMQ⊤

with P and Q defined by (3.21). Suppose that Ii and Ĩi are defined by (3.4) and (3.6) for

i = 1, 2, 3, then the submatrix MIi and M̃Ĩi
have the same rank, that is,

rank(MIi) = rank(M̃Ĩi
), i = 1, 2, 3.

Proof. It is well known that multiplying a permutation matrix from the left and right side

of a matrix is only reorder the rows and columns of that matrix. From M̃ = PMQ⊤, we know

that actually M̃Ĩi
= MIi , ∀i = 1, 2, 3. Thus, it holds that rank(M̃Ĩi

) = rank(MIi) (∀i = 1, 2, 3).

�

To obtain the equivalence of (3.22) and (3.23), we need the following relationship.

Lemma 3.3. Let P and Q be two permutation matrices and S ∈ R
n×m be a 0 − 1 matrix.

Then we have

S ◦W = P⊤(PSQ ◦ PWQ)Q⊤, ∀W ∈ R
n×m. (3.24)

The proof of Lemma 3.3 directly follows from the definition of Hadamard product and the basic

properties of permutation matrix, and hence be omitted here.

Now, we arrive at our main theorem.
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Theorem 3.2. Problem (3.22) and problem (3.23) share the following optimality properties:

1. f(Y, Z) = f̃(Ỹ , Z̃), for any Y ∈ R
n×k, Z ∈ R

m×k, Ỹ = PY and Z̃ = QZ;

2. if (Y ∗, Z∗) is a second-order stationary point of problem (3.22), then (PY ∗, QZ∗) is a

second-order stationary point of problem (3.23), and vice versa.

Proof. 1. By the equality (3.24) and the orthogonal invariance of Frobenius norm, it is not

difficult to verify that

f̃(Ỹ , Z̃) =
1

2
‖S̃ ◦ (Ỹ Z̃⊤ − M̃)‖2F =

1

2
‖S ◦ (Y Z⊤ −M)‖2F = f(Y, Z).

2. Again by the equality (3.24) and some basic arguments, we can conclude that (Y ∗, Z∗)

satisfying the first-order and second-order optimality conditions of problem (3.22) is equivalent

to (PY ∗, QZ∗) satisfying the first-order and second-order optimality conditions of problem

(3.23), respectively. We omit the tedious details and complete the proof. �

3.4. Proof of Theorem 3.1

Proof. From Lemma 3.2, rank(M̃Ĩi
) = rank(MIi) (i = 1, 2, 3). Then for any triplet

(AΩ, bΩ, k), we can find a corresponding triplet (AΩ̃, bΩ̃, k) according to the procedure intro-

duced in the previous subsection, and hence (AΩ̃, bΩ̃, k) satisfies the assumptions of Theorem

3.1 and Theorem 3.1. Suppose that (Ỹ , Z̃) is a second-order stationary point of problem (3.23),

it follows from Theorem 3.2 that (Y, Z) = (P⊤Ỹ , Q⊤Z̃) is a second-order stationary point of

problem (3.22). By (3.24) and Theorem 3.1, we have

(AΩ)⊤(AΩ(Y Z⊤)− bΩ)

= S ◦ (Y Z⊤ −M) = P⊤(S̃ ◦ (Ỹ Z̃⊤ − M̃))Q

= P⊤((AΩ̃)⊤(AΩ̃(Ỹ Z̃⊤)− bΩ̃))Q = 0,

which implies AΩ(Y Z⊤)−bΩ = 0 due to the full rankness of A, namely, f(Y, Z) = 0. Therefore,

the SNIG condition holds the triplet (AΩ, bΩ, k). The proof is completed. �

4. A Special Example Violating the SNIG Condition

In this section, we illustrate that the SNIG condition may be violated through a concrete

instance.

We describe the instance as follows. Let AΩ and bΩ be defined by (3.1), Ω be an observation-

index set and n = m = 6. Suppose that (AΩ, bΩ, 1) satisfies Assumption 1.1 and M is its

observation matrix. As aforementioned, problem determined by (AΩ, bΩ, 1) can be reformulated

as follows,

minimize
y∈R6×1,z∈R6×1

f(y, z) =
1

2
‖S ◦ (yz⊤ −M)‖2F, (4.1)

where S ∈ R
6×6 is the 0− 1 matrix corresponding to the observation-index set Ω.

We set

S =

[

E I

I E

]

∈ R
6×6, and M := x̄ȳ⊤ ∈ R

6×6,

where x̄ = ȳ = (e⊤, e⊤)⊤, E = ee⊤ and e = (1, 1, 1)⊤.
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Theorem 4.1. The SNIG condition is violated at (AΩ, bΩ, 1).

Proof. Consider the point (x, y) with x = y =
√
2
2 (e⊤,−e⊤)⊤. First, we prove that (x, y) is

a second-order stationary point of problem (3.22) for the specific triplet (AΩ, bΩ, 1). It follows

from the definition of S that

S ◦ (xy⊤ − x̄ȳ⊤) =

[

− 1
2E − 3

2I

− 3
2I − 1

2E

]

. (4.2)

It can be easily verified that the first order optimality conditions of (1.1) are satisfied at (x, y):

(AΩ)⊤(AΩ(xy⊤)− bΩ)y = S ◦ (xy⊤ − x̄ȳ⊤)y = 0,

z⊤(AΩ)⊤(AΩ(xy⊤)− bΩ) = x⊤S ◦ (xy⊤ − x̄ȳ⊤) = 0.

Hence (x, y) is a stationary point of (1.1). Next, we check the second-order optimality condition.

For any u = (u⊤
1 , u

⊤
2 )

⊤ and v = (v⊤1 , v
⊤
2 )

⊤, where ui ∈ R
3 and vi ∈ R

3 (i = 1, 2), we obtain

h(u, v) = ||S ◦ (xv⊤ + uy⊤)||2F + 2u⊤S ◦ (xy⊤ − x̄ȳ⊤)v

=
1

2
‖ev⊤1 + u1e

⊤‖2F +
1

2
‖ev⊤2 + u2e

⊤‖2F +
1

2
‖Diag(ev⊤2 − u1e

⊤)‖2F

+
1

2
‖Diag(u2e

⊤ − ev⊤1 )‖2F −
(

u⊤
1 Ev1 + u⊤

2 Ev2 + 3u⊤
1 v2 + 3u⊤

2 v1

)

= 2
(

‖u1 − v2‖22 + ‖u2 − v1‖22
)

≥ 0,

where Diag(X) refers to the diagonal matrix consisting of the diagonal of the square matrix X .

Hence, (x, y) is a second-order stationary point.

On the other hand, it follows from (4.2) that

f(x, y) = ||AΩ(x, y)− bΩ||22 = ||S ◦ (xy⊤ − x̄ȳ⊤)||22 > 0 = f(x̄, ȳ).

Namely, (x, y) is not a global minimizer. Therefore, the SNIG condition is violated at (AΩ, bΩ, 1).

We complete the proof. �

Remark 4.1. It is not difficult to verify that the zero residual global optimizer (x̂, ŷ) of problem

(4.1) must be of the following form

x̂ = a(e⊤, e⊤)⊤, ŷ =
1

a
(e⊤, e⊤)⊤, ∀a 6= 0.

Therefore, this example implies that the exact recovery holds at (AΩ, bΩ, 1).

5. Conclusion

In this paper, we propose the conception of the SNIG condition, namely, the second-order

necessary optimality condition implies the global optimality. We theoretically prove the SNIG

holds in some classes of matrix factorization problem (1.1). Such results may help us to under-

stand the structure of the matrix factorization problem and the performance of the algorithms

for solving it. Moreover, we also illustrate that the SNIG condition does not always hold. We

emphasize that the conception of the SNIG condition is not related with the exact recovery.

Combining Remark 3.2 and Remark 4.1, we can conclude that the set of (AΩ̃, bΩ̃, k) satisfying
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the SNIG condition and the set of (AΩ̃, bΩ̃, k) satisfying the exact recovery do not contain each

other.
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