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Abstract. Optimization on Riemannian manifolds widely arises in eigenvalue computation,
density functional theory, Bose–Einstein condensates, low rank nearest correlation, image regis-
tration, signal processing, and so on. We propose an adaptive quadratically regularized Newton
method which approximates the original objective function by the second-order Taylor expansion in
Euclidean space but keeps the Riemannian manifold constraints. The regularization term in the ob-
jective function of the subproblem enables us to utilize a Cauchy-point–like condition as the standard
trust-region method for proving global convergence. The subproblem can be solved inexactly either
by first-order methods or by performing corresponding Riemannian Newton–type steps. In the latter
case, we can further take advantage of negative curvature directions. Both global convergence and
superlinear local convergence are guaranteed under mild conditions. Extensive computational exper-
iments and comparisons with other state-of-the-art methods indicate that the proposed algorithm is
very promising.
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1. Introduction. We consider minimization problems on a Riemannian mani-
fold of the form

min
x∈M

f(x),(1.1)

where M is a Riemannian submanifold of a Euclidean space E and f : M→ R is a
smooth real-valued function on M. This problem widely exists in eigenvalue decom-
position [2], density functional theory [38], Bose–Einstein condensates [40], low rank
nearest correlation matrix completion [37], and many other varieties of applications.

Riemannian optimization has been extensively studied over decades. Since prob-
lem (1.1) can be viewed as a general nonlinear optimization problem with constraints,
many standard algorithms [29] can be applied to it directly. These algorithms may not
be efficient since they do not utilize the intrinsic structure of the manifold. A first and
basic class of manifold optimization methods can be obtained via modifying and trans-
ferring the nonlinear programming approaches to the manifold setting. In particular,
by performing a curvilinear search along the geodesic, Gabay [16], Udrişte [35], Yang
[43], and Smith [33] propose globally convergent steepest descent, Newton, quasi-
Newton, and conjugate gradient methods, respectively. Because the computation of
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the geodesic may be difficult and expensive, Absil, Mahony, and Sepulchre [2] and
Absil and Malick [4] develop a first-order approximation called retraction to the
geodesic. The previously mentioned algorithms can be generalized by replacing the
geodesic by the retraction, and their global and local convergence properties have been
analyzed in [1, 2]. Qi [31] and Huang, Absil, and Gallivan [19, 20] and Huang, Gallivan,
and Absil [22] propose an extensive class of quasi-Newton methods for Riemannian
manifold problems based on retractions and vector transport. In [2], a nonlinear conju-
gate gradient method for Riemannian manifold problems is presented. Vandereycken
[37] and Kressner, Steinlechner, and Vandereycken [26] show that algorithms using
the geometry of a manifold can be efficient on a large variety of applications. Boumal,
Absil, and Cartis [7] establish global convergence rates for optimization methods on
manifolds. Moreover, a selection of Riemannian first-order and second-order methods
has been implemented in the software package Manopt [8].

Optimization over the Stiefel manifold, i.e., problems with orthogonality con-
straints, is an important special case of Riemannian optimization. Edelman, Arias,
and Smith [15] analyze the geometry of this specific manifold and propose New-
ton and conjugate gradient methods along the geodesic. Wen and Yin [39] propose
a constraint-preserving algorithm on the Stiefel manifold. Other related first-order
methods are presented in [45, 24, 17]. Wen et al. [38] develop an adaptively regularized
Newton method which uses a quadratic approximation with exact Euclidean Hessian
of the original problem. It often exhibits a superlinear or quadratic local convergence
rate when the subproblem is solved accurately. This method has also been extended
to Bose–Einstein condensates in [40].

In this paper, we extend the regularized Newton method in [38, 40] to general
Riemannian optimization problems. Specifically, we approximate problem (1.1) and
construct a subproblem by adding a regularization term to the second-order Tay-
lor expansion of the objective function in Euclidean space. This leads to a class of
Euclidean-based model problems that is generally different from classical trust-region–
type approaches on Riemannian manifolds [2]. Typically, the resulting subproblems
are easier to solve than the original problem to a certain extent. We show that,
whenever the subproblem can be handled efficiently, a fast rate of convergence can
be achieved. Since a regularization term is added, global convergence can be ensured
by adjusting the regularization parameters appropriately. In fact, convergence can
be guaranteed even if the subproblem is only solved inexactly as long as it attains a
reduction similar to that of a single gradient descent step. Different from minimiz-
ing the subproblem by the gradient-type methods in [38, 40], we develop a modified
Newton method using the conjugate gradient method to solve the Newton equation
followed by a curvilinear search. In particular, our algorithm detects directions of
negative curvature. We combine them with the previous conjugate directions to con-
struct new search directions and update the regularization parameter based on the
negative curvature information. Our extensive numerical experiments show that the
proposed method is promising and performs at least comparably well.

We should point out that similar second-order–type methods have also been devel-
oped for composite convex programs where the objective function is a summation of a
smooth function and an `1-norm or more general convex term. The subproblem in the
proximal Newton method by Lee, Sun, and Saunders [28] keeps the `1-norm function
but approximates the smooth part by its second-order Taylor expansion. A first-order
method is then used to solve the resulting proximal subproblem. Byrd, Nocedal, and
Oztoprak [9] essentially consider the same algorithm but propose a specialized ac-
tive set strategy to solve the quadratic subproblem. Recently, there also has been

D
ow

nl
oa

de
d 

04
/1

9/
20

 to
 1

24
.1

6.
14

8.
9.

 R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

NEWTON METHOD FOR RIEMANNIAN OPTIMIZATION 1183

some progress on regularization methods for general nonconvex optimization prob-
lems in the Euclidean space. For instance, Karas, Santos, and Svaiter [25] consider a
quadratically regularized scheme and propose algebraic rules to update the regulariza-
tion parameter via utilizing the Lipschitz constant and the smallest eigenvalue of the
Hessian. In [6], a cubic sufficient-descent condition is incorporated to further improve
existing worst-case complexity results. Moreover, Agarwal et al. [5] develop a fast con-
jugate gradient–type method for cubic regularization that uses the specific properties
of the subproblem. Several other and related methods that exploit negative curvature
and acceleration mechanisms are presented in [30, 13, 10]. Our approach is based on
similar ideas and directions, but it generalizes these techniques to the manifold setting.

This paper is organized as follows. In section 2, we review some preliminaries on
Riemannian optimization and present the Riemannian gradient method. The adaptive
regularized Newton method is proposed in section 3, and its convergence properties
are analyzed in section 4. Finally, robustness and efficiency of the proposed algorithms
are demonstrated based on several practical examples in section 5.

1.1. Notation. Let (M, g) be a Riemannian manifold. By =x(M), we denote
the set of all real-valued functions f defined in a neighborhood of x in M. For a
given differentiable function f and a point x ∈ M, ∇f(x) (∇2f(x)) and gradf(x)
(Hessf(x)) denote the Euclidean and Riemannian gradient (Hessian) of f , respec-
tively. Let 〈·, ·〉 (‖ · ‖) and 〈·, ·〉x (‖ · ‖x) be the inner product (norm) with Euclidean
and Riemannian metric, respectively.

2. Preliminaries on Riemannian optimization. Many concepts of Rieman-
nian optimization can be regarded as generalizations of the theory and algorithms
from unconstrained Euclidean optimization to problems on manifolds. A detailed de-
scription of the properties of a few commonly used manifold algorithms are given in
[2]. Here, we only introduce some necessary definitions briefly.

A d-dimensional manifold M is a Hausdorff and second-countable topological
space, which is homeomorphic to the d-dimensional Euclidean space locally via a
family of charts. When the transition maps of intersecting charts are smooth, manifold
M is called a smooth manifold. A function f on M is said to be Ck at a point x if
f ◦ ψ−1 : ψ(U) ⊂ Rd → R is Ck, in which U is an open set in M containing x and ψ
is the mapping defining the chart. A tangent vector ξx to M at x is a mapping such
that there exists a curve γ on M with γ(0) = x, satisfying

ξxu := γ̇(0)u ,
d(u(γ(t)))

dt

∣∣∣∣
t=0

∀ u ∈ =x(M).

Then the tangent space TxM toM is defined as the set of all tangent vectors toM at
x. If the manifold M can be equipped with a smoothly varying inner product 〈·, ·〉x
between the tangent vectors of the same tangent space, thenM is called a Riemannian
manifold. Here, we will always assume that M is a Riemannian submanifold of a
Euclidean space E ; see, e.g., [2, section 3.6] for further details. The norm induced by
the Riemannian metric is equivalent to the Euclidean norm; i.e., for all x ∈ M there
exist parameters $m

x , $
M
x > 0, which depend continuously on x such that

$m
x ‖ξ‖2x ≤ ‖ξ‖2 ≤ $M

x ‖ξ‖2x ∀ ξ ∈ TxM.(2.1)

The gradient of a real-valued function f on the Riemannian manifold is defined
as the unique tangent vector satisfying 〈gradf(x), ξ〉x = Df(x)[ξ] for all ξ ∈ TxM,
where Df(x)[ξ] = ξxf and gradf(x) is called the Riemannian gradient of f at x.
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1184 J. HU, A. MILZAREK, Z. WEN, AND Y. YUAN

The Riemannian Hessian of f is a linear mapping from TxM to TxM defined by
Hessf(x)[ξ] = ∇̃ξgradf(x) for all ξ ∈ TxM, where ∇̃ is the Riemannian connection
which is a unique symmetric affine connection satisfying the Levi–Civita conditions
[1]. We refer to [2] for a more detailed discussion of the Riemannian gradient and
Hessian.

First- and second-order optimality conditions for Riemannian optimization prob-
lems take a similar form as standard optimality conditions in the Euclidean space. In
particular, letM be a smooth manifold, and let f :M→ R be a smooth function on
M. Suppose that x∗ ∈ M is a stationary point of problem (1.1); i.e., it holds that
gradf(x∗) = 0. Furthermore, let Hessf(x∗) be positive definite on Tx∗M (w.r.t. the
Riemannian metric); then by [42, Corollary 4.3], x∗ is a strict local solution of (1.1).
Analogous second-order necessary conditions are presented in [42].

2.1. Gradient-type methods on manifold. We next describe a few gradient-
type methods for solving (1.1). These methods generalize the concept of backtracking
line search and gradient descent to the manifold setting and are based on so-called
retractions. A retraction R on M is a smooth mapping from the tangent bundle
TM :=

⋃
x∈M TxM to the manifold M. Moreover, the restriction Rx of R to TxM

has to satisfy Rx(0x) = x and DRx(0x) = idTxM, where idTxM is the identity mapping
on TxM.

Given a retraction R, the curvilinear search method computes

xk+1 = Rxk(tkηk),

where ηk ∈ TxkM and tk is a scalar. Similar to Euclidean line search methods, ηk
is chosen as a descent direction, and tk is a proper step size determined by either
exact or inexact curvilinear search conditions. Given ρ, %, δ ∈ (0, 1), the monotone
and nonmonotone Armijo rules [44] try to find the smallest integer h satisfying

f(Rxk(tkηk)) ≤ Ck + ρtk 〈gradf(xk), ηk〉xk ,(2.2)

respectively, where tk = γkδ
h and γk is an initial step size. Here, the reference

value Ck+1 is a convex combination of Ck and f(xk+1) and is calculated via Ck+1 =
(%QkCk + f(xk+1))/Qk+1, where C0 = f(x0), Qk+1 = %Qk + 1 and Q0 = 1.

It is well known that an initial step size computed by the Barzilai–Borwein (BB)
method often speeds up the convergence in Euclidean optimization. Similarly and as
in [23], we can consider the following initial step sizes:

γ
(1)
k =

〈sk−1, sk−1〉xk
| 〈sk−1, vk−1〉xk |

or γ
(2)
k =

| 〈sk−1, vk−1〉xk |
〈vk−1, vk−1〉xk

,(2.3)

where we can take sk−1 = −tk−1 · Txk−1→xk(gradf(xk−1)), vk−1 = gradf(xk) +

t−1
k−1 · sk−1 and Txk−1→xk : Txk−1

M 7→ TxkM denotes an appropriate vector trans-
port mapping connecting xk−1 and xk; see [2, 23]. Since M is a submanifold of a
Euclidean space, the Euclidean differences sk−1 = xk−xk−1 and vk−1 = gradf(xk)−
gradf(xk−1) are an alternative choice if the Euclidean inner product is used in (2.3).
This choice is often attractive since the vector transport is not needed; see, e.g., [39].
A variant of the nonmonotone Riemannian gradient–type method is also proposed by
Iannazzo and Porcelli [23]. Global convergence to stationary points can be shown by
using standard assumptions and by following the analysis in [44].
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NEWTON METHOD FOR RIEMANNIAN OPTIMIZATION 1185

The optimization problem (1.1) can also be solved by the proximal gradient–type
method. At the kth iteration, the proximal Riemannian gradient method linearizes
f(x) with a proximal term to obtain the subproblem

min
x∈M

mL
k (x) = 〈gradf(xk), x− xk〉+

1

2τk
‖x− xk‖2,(2.4)

where τk is the proximal step size and the inner products are defined in Euclidean
space. It is easy to see that the solution of (2.4), denoted by xk+1, is

xk+1 = PM(xk − τkgradf(xk)) = arg min
x∈M

1

2τk
‖x− xk + τkgradf(xk)‖2,(2.5)

where PM(x) := arg min{‖x − y‖ : y ∈ M} is the projection operator onto M.
Notice that PM(x) exists if the manifold M is closed, but it may not be single-
valued. Furthermore, ifM is a submanifold of class C2 around x̄ ∈M, Proposition 5
in [4] implies that Rx(u) = PM(x+ u) is a retraction at x from TxM to M. In this
situation, the proximal gradient scheme (2.5) can be seen as a special Riemannian
gradient method.

Recently, Duchi, Hazan, and Singer [14] propose the so-called Adagrad algorithm
to solve online learning and stochastic optimization problems. An interesting feature
of Adagrad is that it can choose different step sizes for every variable. Similarly, we
can define a Riemannian version as{

Gk = Gk−1 + gradf(xk)� gradf(xk),

xk+1 = PM(xk − ηgradf(xk)�
√
Gk + ε),

(2.6)

where η, ε > 0 and the multiplication “�” and division “�” are performed component-
wise. Motivated by the results in [14, 12], we also include and test the Riemannian
Adagrad method (2.6) in our numerical experiments.

3. An adaptive quadratically regularized Newton method. Gradient-
type methods often perform reasonably well but might converge slowly when the
generated iterates are close to an optimal solution. Usually, fast local convergence
cannot be expected if only the gradient information is used, in particular, for dif-
ficult nonquadratic or nonconvex problems. Starting from an initial point x0, the
Riemannian trust-region method [1, 2] generates the kth subproblem as follows:

min
ξ∈TxkM

m̃k(ξ) := f(xk) + 〈gradf(xk), ξ〉xk +
1

2
〈Hessf(xk)[ξ], ξ〉xk

s.t. 〈ξ, ξ〉xk ≤ ∆k,

(3.1)

where ∆k is the trust-region radius. A common strategy is to apply the truncated
preconditioned conjugate gradient method (PCG) to solve (3.1) via the linear system

gradf(xk) + Hessf(xk)[ξ] = 0(3.2)

to obtain an approximate solution ξ. The truncated PCG method terminates when
either the residual becomes small enough, a negative curvature direction is detected,
or the trust-region constraint is violated. Then a trial point is generated via zk =
Rxk(ξk), and the new iterate xk+1 is set to zk if a certain reduction condition is
satisfied. Otherwise, the iterate is not updated; i.e., it holds that xk+1 := xk. Note
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that (3.2) differs from the KKT condition for (3.1) since no Lagrange multiplier is
involved.

We develop an adaptively regularized Riemannian Newton scheme as an alter-
native approach. Specifically, we use a second-order Taylor model to approximate
the original objective function in the Euclidean space. Moreover, in order to control
the definiteness of the model Hessian, a proximal-type penalization is added. The
objective function of our subproblem is given by

mk(x) := 〈∇f(xk), x− xk〉+
1

2
〈Hk(x− xk), x− xk〉+

σk
2
‖x− xk‖2,(3.3)

where ∇f(xk) is the Euclidean gradient and Hk is the Euclidean Hessian of f at xk or
a suitable approximation. The regularization parameter σk > 0 plays a similar role as
the trust-region radius ∆k in the trust-region subproblem (3.1). A specific choice of σk
will be discussed in subsection 3.2. We note since the model mk is based on Euclidean
gradient and Hessian information and on Euclidean structures, we primarily consider
Riemannian submanifolds M with a corresponding, ambient Euclidean space E in
this paper. Our overall idea now is to solve and replace the initial problem (1.1) by
a sequence of subproblems of the form

min
x∈M

mk(x)(3.4)

that maintain the manifold constraints. Note that the regularized subproblem (3.4)
always attains a solution whenever the manifold M is compact.

Similar to the classical approaches [29, 1, 2] and as in [11, 31, 38], we utilize a trust-
region–like framework to monitor the acceptance of trial steps and to control the model
precision by adjusting the regularization parameter σk. A detailed description of our
method can be found in subsection 3.2. Comparing (3.4) and (2.4), our approach can
also be seen as a hybrid of existing regularized trust-region algorithms [11, 31] and of
the proximal Newton scheme [28] used in convex composite optimization.

In general, we do not need to solve the subproblem (3.4) exactly; we only need to
find a point zk that ensures a sufficient reduction of the model function mk. For ex-
ample, as in the classical trust-region method [29] and as in the adaptively regularized
methods [11, 31], a fraction of the Cauchy decrease condition can be used to guarantee
the required model decrease and to achieve global convergence. In this respect, the
gradient-type methods introduced in subsection 2.1 can be ideal for solving the regu-
larized Newton subproblems at the early stage of the algorithm when high accuracy
is not needed or when a good initial guess is not available. Gradient steps can be also
useful when the computational cost of evaluating the Riemannian Hessian is too ex-
pensive. When a high accuracy is required, the subproblem (3.4) can be solved more
efficiently by a single or multiple Riemannian Newton steps as explained in the next
subsection. Together with our specific exploitation of negative curvature information,
our approach can be a good alternative to the trust-region–type methods [1, 2].

3.1. Solving the Riemannian subproblem. We use an inexact method for
minimizing the model (3.4) and perform a single (or multiple) Riemannian Newton
step based on the associated linear system:

gradmk(xk) + Hessmk(xk)[ξ] = 0.(3.5)

The system (3.5) is solved approximately with a modified conjugate gradient (CG)
method up to a certain accuracy. Since the model Hessian may be indefinite, we
terminate the CG method when either the residual becomes small or negative curva-
ture is detected. Then a new gradient-related direction is constructed based on the
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Algorithm 1: A Modified CG Method for Solving Subproblem (3.4)

S0 Set T > 0, θ > 1, ε ≥ 0, η0 = 0, r0 = gradmk(xk), p0 = −r0, and i = 0.
while i ≤ n− 1 do

S1 Compute πi = 〈pi,Hessmk(xk)[pi]〉xk .

S2 if πi / 〈pi, pi〉xk ≤ ε then
if i = 0 then set sk = −p0, dk = 0;
else set sk = ηi,
if πi / 〈pi, pi〉xk ≤ −ε then dk = pi, set σest = |πi| / 〈pi, pi〉xk ;

else dk = 0;
break;

S3 Set αi = 〈ri, ri〉xk / πi, ηi+1 = ηi + αipi, and
ri+1 = ri + αiHessmk(xk)[pi].

S4 if ‖ri+1‖xk ≤ min{‖r0‖θxk , T} then
choose sk = ηi+1, dk = 0; break;

S5 Set βi+1 = 〈ri+1, ri+1〉xk / 〈ri, ri〉xk and pi+1 = −ri+1 + βi+1pi.
i← i+ 1.

S6 Update ξk according to (3.7).

conjugated directions, and a necessary curvilinear search along this direction, is uti-
lized to reach a sufficient reduction of the objective function. The detailed procedure
is presented in Algorithm 1.

We next discuss a connection between (3.5) and the classical approach (3.1)–(3.2)
in the exact case Hk = ∇2f(xk). In fact, the definition of the Riemannian gradient
implies

gradmk(xk) = Pxk(∇mk(xk)) = Pxk(∇f(xk)) = gradf(xk),

where Px(u) := arg minv∈TxM ‖v−u‖x denotes the orthogonal projection onto TxM.
Using ∇2mk(xk) = ∇2f(xk) + σkI and introducing the so-called Weingarten map
Wx(·, v) : TxM→ TxM for some v ∈ T ⊥x M, it holds that

Hessmk(xk)[ξ] = Pxk(∇2mk(xk)[ξ]) + Wxk(ξ,P⊥xk(∇mk(xk)))

= Hessf(xk)[ξ] + σkξ
(3.6)

for all ξ ∈ TxkM. The Weingarten map Wx(·, v) is a symmetric linear operator that
is closely related to the second fundamental form of M. The projection P⊥xk in (3.6)

is given explicitly by P⊥xk = I −Pxk . For a detailed derivation of the expression (3.6)
and further information on the Weingarten map, we refer the reader to [3].

Although the linear systems (3.5) and (3.2) have a similar form, our approach is
based on a different model formulation and uses different trial points and reduction
ratios. Moreover, inspired by Steihaug’s CG method [34] and by related techniques in
trust-region–based optimization [18, 2], we implement a specific termination strategy
whenever the CG methods encounters small or negative curvature. In particular, we
utilize the detected negative curvature information to modify and improve our current
search direction.

An overview of the procedure is given in Algorithm 1. Except for step S2, Algo-
rithm 1 is a direct adaption of the CG method; see [29, Chapter 5] and [2, Chapter 7]
for comparison. We generate two different output vectors sk and dk, where the vector
dk represents and transports the negative curvature information and sk corresponds
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to the “usual” output of the CG method. As specified in step S2, dk will always be
zero unless negative curvature is encountered. The new search direction ξk is then
computed as follows:

ξk =

{
sk + τkdk if dk 6= 0,

sk if dk = 0,
with τk :=

〈dk, gradmk(xk)〉xk
〈dk,Hessmk(xk)[dk]〉xk

.(3.7)

In section 4, we will show that ξk is a descent direction. Note that the rescaling factor
τk in (3.7) can be obtained without any additional costs. The choice of τk is mainly
motivated by our numerical experiments; see also (4.3) and [18] for a related variant.

Once the direction ξk is constructed, we carry out a curvilinear search along ξk
to generate a trial point zk, i.e.,

zk = Rxk(αkξk).(3.8)

The step size αk = α0δ
h is again chosen by the (monotone) Armijo rule such that h

is the smallest integer satisfying

mk(Rxk(α0δ
hξk)) ≤ ρα0δ

h 〈gradmk(xk), ξk〉xk ,(3.9)

where ρ, δ ∈ (0, 1) and α0 ∈ (0, 1] are given constants.

3.2. The algorithmic framework. We now present our regularized Newton
framework starting from a feasible initial point x0 and a regularization parameter
σ0. As described in the last section, the algorithm first computes a trial point zk
to approximately solve the regularized subproblem (3.4). In order to decide whether
zk should be accepted as the next iterate and whether the regularization parameter
σk should be updated, we calculate the ratio between the actual reduction of the
objective function f(x) and the predicted reduction:

ρk =
f(zk)− f(xk)

mk(zk)
.(3.10)

If ρk ≥ η1 > 0, then the iteration is successful, and we set xk+1 = zk; otherwise, the
iteration is not successful, and we set xk+1 = xk; i.e., we have

xk+1 =

{
zk if ρk ≥ η1,

xk otherwise.
(3.11)

The regularization parameter σk+1 is updated as follows:

σk+1 ∈


(0, γ0σk] if ρk ≥ η2,

[γ0σk, γ1σk] if η1 ≤ ρk < η2,

[γ1σk, γ2σk] otherwise,

(3.12)

where 0 < η1 ≤ η2 < 1 and 0 < γ0 < 1 < γ1 ≤ γ2. These parameters determine how
aggressively the regularization parameter is adjusted when an iteration is successful or
unsuccessful. The complete regularized Newton method to solve (1.1) is summarized
in Algorithm 2.

At this point, let us notice that the regularized subproblem (3.4) might be un-
bounded in general. However, this is not really problematic in our algorithmic frame-
work since the modified CG Algorithm 1 will detect a small or negative curvature
direction and terminate after a finite number of steps in such a case. Hence, step
S1—the calculation of the trial point zk—in Algorithm 2 is always well-defined even
if the corresponding subproblem is unbounded.
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Algorithm 2: An Adaptive Regularized Newton Method

S0 Choose a feasible initial point x0 ∈M and an initial regularization
parameter σ0 > 0. Choose 0 < η1 ≤ η2 < 1, 0 < γ0 < 1 < γ1 ≤ γ2. Set
k := 0.
while stopping conditions not met do

S1 Compute a new trial point zk according to (3.8) and (3.9).
S2 Compute the ratio ρk via (3.10).
S3 Update xk+1 from the trial point zk based on (3.11).
S4 Update σk according to (3.12).

k ← k + 1.

4. Convergence analysis. We now analyze the convergence of Algorithm 2
based on the model (3.4). Let us note that the analysis can be similarly extended to
the algorithm using cubically regularized subproblems as well. In the following, we
summarize and present our main assumptions.

Assumption 1. Let {xk} be generated by Algorithm 2. We assume the following:
(A.1) The gradient ∇f is Lipschitz continuous on the convex hull of the manifold

M, denoted by conv(M); i.e., there exists Lf > 0 such that

‖∇f(x)−∇f(y)‖ ≤ Lf‖x− y‖ ∀ x, y ∈ conv(M).

(A.2) There exists κg > 0 such that ‖∇f(xk)‖ ≤ κg for all k ∈ N.
(A.3) There exists κH > 0 such that ‖Hk‖ ≤ κH for all k ∈ N.
(A.4) The Euclidean and the Riemannian Hessian are bounded; i.e., there exist

κF and κR ≥ 1 such that

‖∇2f(xk)‖ ≤ κF and ‖Hessf(xk)‖xk ≤ κR ∀ k ∈ N.

(A.5) Let $m
xk

, $M
xk

be given as in (2.1). Then suppose there exists $ > 0, $ ≥ 1
such that $ ≤ $m

xk
and $M

xk
≤ $ for all k ∈ N.

Remark 2. Suppose that the level set L := {x ∈ M : f(x) ≤ f(x0)} is compact.
Then by construction of Algorithm 2, we have f(xk+1) = f(xk) + ρkmk(zk) ≤ f(xk)
if iteration k is successful. Due to (3.11), it follows that xk ∈ L for all k, and
the sequence {xk} must be bounded. Hence, in this case, the assumptions (A.2)
and (A.4) hold automatically. Furthermore, since the parameters $m

xk
, $M

xk
, k ∈ N,

depend continuously on xk, assumption (A.5) is also satisfied.

Remark 3. The bounds in Assumption 1 can also be used to derive a bound for
Hessmk(xk). In fact, under the conditions (A.3)–(A.4) and by (3.6), we have

〈ξ,Hessmk(xk)[ξ]〉xk =
〈
ξ,Hessf(xk)[ξ] + Pxk((Hk −∇2f(xk))[ξ])

〉
xk

+ σk‖ξ‖2xk
≤ (κR + ($M

xk
)

1
2 ($m

xk
)−

1
2 (κH + κF ) + σk)‖ξ‖2xk ,

where we used the linearity and nonexpansiveness of the operator Pxk . In the follow-

ing, we set κMxk := κR + ($M
xk

)
1
2 ($m

xk
)−

1
2 (κH + κF ).

4.1. Analysis of the inner subproblem. At first, we briefly discuss several
useful properties of the modified CG method. In the following, we also consider the
mk-based model function

m̆k(ξ) := f(xk) + 〈gradmk(xk), ξ〉xk +
1

2
〈Hessmk(xk)[ξ], ξ〉xk , ξ ∈ TxkM.
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As we have shown in subsection 3.1 and (3.6), the model functions m̃k and m̆k coincide
if the exact Hessian Hk = ∇2f(xk) is used and we set σk = 0.

Lemma 4. Let the sequences {pi}`i=0, {ri}`i=0, {ηi}`i=0 and the direction ξk be
generated by Algorithm 1. Then we have the following:

(i) For all j = 1, . . . , `, it holds that pj ∈ TxkM,

〈pj ,Hessmk(xk)[pi]〉xk = 0 and 〈rj , ri〉xk = 0 ∀ i = 0, . . . , j − 1.(4.1)

(ii) The sequence {m̆k(ηi)} is strictly decreasing, and it holds that m̆k(ξk) <
m̆k(η`).

(iii) The sequence {‖ηi‖xk} is strictly increasing, and it holds that ‖ξk‖xk ≥
‖η`‖xk .

Proof. Except for step S2, Algorithm 1 coincides with the standard CG method
applied to the quadratic problem minξ m̆k(ξ). Since Hessmk(xk) is a linear operator
from TxkM to TxkM, all iterates generated by Algorithm 1 will stay in the tangent
space TxkM. Furthermore, since the Riemannian Hessian is symmetric with respect
to the metric 〈·, ·〉xk [2, Proposition 5.5.3], parts (i) and (ii) essentially follow from
the properties of the CG method in Euclidean space. We refer the reader to [29,
section 5.1] for further details. If dk 6= 0, the estimate m̆k(ξk) ≤ m̆k(η`) follows from
(4.1) and π` < 0. The first claim in (iii) is proven in [29, Theorem 7.3]. To verify
‖ξk‖xk ≥ ‖η`‖xk , we first show

‖ri‖2xk = −〈gradmk(xk), pi〉xk ∀ i = 0, . . . , `− 1(4.2)

by induction. For i = 0, (4.2) is obviously satisfied by definition of r0 and p0. Now
let us suppose that (4.2) holds for i = `− 1. Then by (4.1), we have

−〈gradmk(xk), p`〉xk = 〈r0, r` − β`p`−1〉xk = −
‖r`‖2xk
‖r`−1‖2xk

〈r0, p`−1〉xk = ‖r`‖2xk .

Thus, if dk 6= 0, this implies

ξk = η` + τkdk =

`−1∑
i=0

αipi −
‖r`‖2xk
π`

p` =
∑̀
i=0

|αi|pi.(4.3)

Consequently, since ξk and η` coincide in the case dk = 0, the estimate ‖ξk‖xk ≥ ‖η`‖xk
again follows from [29, Theorem 7.3] (and from the special structure of ξk).

We now prove that the direction ξk is a descent direction.

Lemma 5. Let {αi}, {πi}, {pi}, and {ηi} be generated by Algorithm 1, and suppose
that the conditions (A.3)–(A.4) are satisfied. Then the direction ξk—given in (3.7)—is
a descent direction, and it holds that

〈gradmk(xk), ξk〉xk
‖gradmk(xk)‖xk‖ξk‖xk

≤ −min
{ ε

2
, 1
} 1

n(κMxk + 1)
=: −λk.(4.4)

Proof. We first analyze the case where Algorithm 2 detects a small or negative
curvature and terminates in step S2. In this situation, we have

ξk = sk + τkdk =


−gradmk(xk) if ` = 0 and π` ≤ ε‖p`‖2xk ,
η` if ` > 0 and |π`| ≤ ε‖p`‖2xk ,
η` + τkp` if ` > 0 and π` < −ε‖p`‖2xk ,

D
ow

nl
oa

de
d 

04
/1

9/
20

 to
 1

24
.1

6.
14

8.
9.

 R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

NEWTON METHOD FOR RIEMANNIAN OPTIMIZATION 1191

with τk = π−1
` 〈gradmk(xk), p`〉xk . We note that condition (4.4) is obviously satisfied

with λk := 1 in the case ` = 0. Next, let us consider the case ` > 0 and π` < −ε‖p`‖2xk .
Due to (4.2), we have

〈gradmk(xk), η`〉xk =

`−1∑
i=0

αi 〈gradmk(xk), pi〉xk = −
`−1∑
i=0

〈gradmk(xk), pi〉2xk
πi

and thus

〈gradmk(xk), ξk〉xk = −
∑̀
i=0

〈gradmk(xk), pi〉2xk
|πi|

≤ −
‖p0‖4xk
π0

≤ −
‖gradmk(xk)‖2xk

κMxk + σk
,

where we used the conditions (A.3)–(A.4), Remark 3, and πi > 0, i = 0, . . . , `−1. By
construction of the algorithm, it holds that |πi| = πi > ε‖pi‖2xk for all i = 0, . . . , `− 1
and |π`| = −π` > ε‖p`‖2xk . Hence, we obtain

‖ξk‖xk ≤
∑̀
j=0

| 〈gradmk(xk), pi〉xk |
|πi|

· ‖pi‖xk

≤ (`+ 1)‖gradmk(xk)‖xk · max
i∈{0,...,`}

‖pi‖2xk
|πi|

≤ n

ε
· ‖gradmk(xk)‖xk .

Moreover, if σk ≥ κMxk + 2, then we have |πi|‖pi‖−2
xk
≥ σk − κMxk > 0, and the last

estimate becomes ‖ξk‖xk ≤ n(σk − κMxk)−1‖gradmk(xk)‖xk . Combining these results,
we now get

〈gradmk(xk), ξk〉xk
‖gradmk(xk)‖xk‖ξk‖xk

≤ −min
{ ε

2
, 1
} 1

n(κMxk + 1)
.

Due to the special structure of ξk (see again (4.3)), the same estimates can also be
used and derived in the remaining cases. This finishes the proof.

In the next lemma, we prove that the descent property of ξk can be carried over to
the Euclidean model mk using the smooth retraction R and that a sufficient reduction
of the objective function mk in the sense of (3.9) can be ensured.

Lemma 6. Suppose that the assumptions (A.2)–(A.4) are satisfied. Let ρ ∈ (0, 1)
be arbitrary, and set zk(t) := Rxk(tξk). Then we have

mk(zk(t)) ≤ ρt 〈gradmk(xk), ξk〉xk ∀ t ∈ [0, ζk],(4.5)

where

ζk := min
{

($M
xk

)−1, 1
}

min

{
χ

‖ξk‖xk
,

2(1− ρ)λk
(κ2κg + κ2

1(κH + σk))

‖gradf(xk)‖xk
‖ξk‖xk

}
(4.6)

and κ1, κ2, χ are constants that do not depend on xk.

Proof. Let us set φ(t) := mk(Rxk(tξk)). Then, sinceM is an embedded subman-
ifold and using the properties of the retraction Rxk , it follows that

mk(Rxk(tξk)) = φ(0) + tφ′(0) +

∫ t

0

φ′(s)− φ′(0) ds

= t 〈∇f(xk), ξk〉+

∫ t

0

〈∇f(xk), (DRxk(sξk)− id)[ξk]〉

+ 〈(Rxk(sξk)− xk), (Hk + σkI)[DRxk(sξk)ξk]〉 ds,
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where id ≡ idTxM denotes the identity mapping on TxM. As in [7, section B], we
define the compact set Kχ := {ξ ∈ TM : ‖ξ‖ ≤ χ}. The smoothness of R now implies

‖Rxk(ξ)− xk‖ ≤
∫ 1

0

‖DRxk(sξ)[ξ]‖ds ≤ max
y∈Kχ

‖DR(y)‖‖ξ‖(4.7)

and

‖DRxk(ξ)− id‖ ≤
∫ 1

0

‖D2Rxk(sξ)[ξ]‖ds ≤ max
y∈Kχ

‖D2R(y)‖‖ξ‖(4.8)

for all ξ ∈ Kχ. Setting κ1 := maxy∈Kχ ‖DR(y)‖ and κ2 := maxy∈Kχ ‖D2R(y)‖ and
using the assumptions (A.2)–(A.3), this yields

mk(Rxk(tξk)) ≤ t 〈∇f(xk), ξk〉+

∫ t

0

(κ2κg + κ2
1(κH + σk))s‖ξk‖2 ds

= t 〈gradf(xk), ξk〉xk +
1

2
(κ2κg + κ2

1(κH + σk))t2‖ξk‖2

if t‖ξk‖ ≤ χ. Thus, by Lemma 5 and setting κ := κ2κg + κ2
1(κH + σk), we obtain

mk(Rxk(tξk))− ρt 〈gradm(xk), ξk〉xk

≤ −(1− ρ)λkt‖gradf(xk)‖xk‖ξk‖xk +
1

2
κ$M

xk
t2‖ξk‖2xk

≤
[

1

2
κ$M

xk
t− (1− ρ)λk

‖gradf(xk)‖xk
‖ξk‖xk

]
· t‖ξk‖2xk

if t‖ξk‖ ≤ χ. Finally, using the last estimate, (2.1), and ($M
xk

)
1
2 ≤ max{$M

xk
, 1}, this

establishes (4.5) and (4.6).

4.2. Global convergence. In this section, based on the techniques used in [11],
we present global convergence properties of the adaptive regularized Newton method.
We first investigate the relationship between the reduction ratio ρk defined in (3.10),
the regularization parameter σk, and the gradient norm ‖gradf(xk)‖xk . Under the
assumption ‖gradf(xk)‖xk ≥ τ > 0, we then derive an upper bound for σk and show
that the iterations will be successful (i.e., ρk ≥ η1) whenever σk exceeds this bound.
In Theorem 11 we combine our observations and establish convergence of our method.

The next lemma shows that the distance between zk and xk is bounded by some
value related to the regularization parameter σk.

Lemma 7. Suppose that the assumptions (A.2)–(A.3) hold and that zk satisfies
the Armijo condition (3.9). Then it holds that

‖zk − xk‖ ≤
2κg

σk − κH

whenever σk > κH .

Proof. By Lemma 5 we have mk(zk) ≤ 0. Thus, it follows that

〈∇f(xk), zk − xk〉+
1

2
〈zk − xk, Hk[zk − xk]〉+

σk
2
‖zk − xk‖2 ≤ 0.
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If σk ≥ κH , then the term ‖zk − xk‖ can be bounded by

−‖∇f(xk)‖‖zk − xk‖ −
1

2
κH‖zk − xk‖2 +

1

2
σk‖zk − xk‖2 ≤ 0,

and hence

‖zk − xk‖ ≤
2‖∇f(xk)‖
σk − κH

≤ 2κg
σk − κH

.

When the regularization parameter is sufficiently large, our model defines a good
approximation of the initial problem (1.1). In this case, a successful iteration and
sufficient reduction of the objective function can be ensured.

Lemma 8. Suppose that the conditions (A.1)–(A.4) hold and that zk satisfies the
Armijo condition (3.9). Furthermore, let us assume gk := ‖gradf(xk)‖xk 6= 0 and

σk ≥ max

{
κMxk , κH + ϑk max

{
1
√
χ
,

√
Ak2√
gk

,
Ak3ϑk
gk

}}
, ϑk :=

√
Ak1 max{$M

xk
, 1}

(1− η2)gk
,

where κ := κ2κg + 2κ2
1κH , Ak1 := 2κ2

gα0(ρλkδ)
−1(Lf + κH), Ak2 := ((1 − ρ)λk)−1κ,

and Ak3 := ((1 − ρ)λk)−1κ2
1. Then iteration k is very successful; i.e., it holds that

ρk ≥ η2 and σk+1 ≤ γ0σk.

Proof. Using the Lipschitz continuity of ∇f and (A.3), it follows that

f(zk)− f(xk)−mk(zk) = 〈∇f(xk + τ(zk − xk))−∇f(xk), zk − xk〉

− 1

2
〈Hk[zk − xk], zk − xk〉 −

σk
2
‖zk − xk‖2

≤ 1

2
(Lf + κH)‖zk − xk‖2

for some τ ∈ (0, 1). Applying Lemmas 6 and 7 and the Armijo condition (3.9), we
now obtain

1− ρk =
f(zk)− f(xk)−mk(zk)

−mk(zk)

≤ (Lf + κH)‖zk − xk‖2

2ρλkαk‖gradf(xk)‖xk‖ξk‖xk

≤
2(Lf + κH)κ2

g

ρλkα
−1
0 δ

·
max{$M

xk
, 1}

(σk − κH)2gk
·max

{
1

χ
,
κ2κg + κ2

1(σk + κH)

2(1− ρ)λkgk

}
≤
Ak1 max{$M

xk
, 1}

(σk − κH)2gk
max

{
1

χ
,

κ

(1− ρ)λkgk
,
κ2

1(σk − κH)

(1− ρ)λkgk

}
=
Ak1 max{$M

xk
, 1}

(σk − κH)2gk
max

{
1

χ
,
Ak2
gk
,
Ak3
gk

(σk − κH)

}
≤ 1− η2.

The above inequality shows ρk ≥ η2. Finally, step S4 of Algorithm 2 implies σk+1 ≤
γ0σk, as desired.

We next prove that the regularization parameters can be bounded.
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Lemma 9. Suppose that the assumptions (A.1)–(A.5) are satisfied and there exists
τ > 0 such that ‖gradf(xk)‖xk ≥ τ for all k ∈ N. Then, the sequence {σk} is bounded,
i.e., there exists Lτ ≥ 0 such that

σk ≤ Lτ , ∀ k ∈ N.(4.9)

Proof. At first, using the bounds in (A.5), it holds that κMxk ≤ κR + ($)
1
2

($)−
1
2 (κH + κF ) =: κ̄M . Hence, it follows that λk ≥ min

{
ε
2 , 1
}

(n(κ̄M + 1))−1 =: λ̄
and similarly

Ak1 ≤ (2κ2
gα0(Lf + κH))(ρδλ̄)−1 =: A1, Ak2 ≤ κ((1− ρ)λ̄)−1 =: A2

and Ak3 ≤ κ2
1((1− ρ)λ̄)−1 =: A3. We now define

κτ := max

{
κ̄M , κH + ϑτ max

{
1
√
χ
,

√
A2√
τ
,
A3ϑτ
τ

}}
, ϑτ :=

√
A1$

(1− η2)τ
.

Let us assume that the bound σk ≥ κτ holds for some k ≥ 0. Then Lemma 8 implies
that iteration k is very successful with σk+1 ≤ σk. Consequently, when σ0 ≤ γ2κτ ,
we have σk ≤ γ2κτ , k ≥ 0, where the factor γ2 is introduced to cover the case that σk
is less than κτ and iteration k is not very successful. Setting Lτ := max {σ0, γ2κτ},
we obtain (4.9).

Based on the results in [11] and [2, section 7] and similar to [31], we now show
global convergence of our adaptive regularized Newton method. We first analyze
the behavior of Algorithm 2 under the assumption that only finitely many successful
iterations are performed.

Lemma 10. Suppose that the assumptions (A.1)–(A.5) are satisfied and there are
only finitely many successful iterations. Then it holds xk = x∗ for all sufficiently large
k and gradf(x∗) = 0.

Proof. Let the last successful iteration be indexed by `; then, due to the construc-
tion of Algorithm 2, it holds that x`+1 = xk = x∗ for all k ≥ `+1. Since all iterations
k ≥ `+1 are unsuccessful, the regularization parameter σk tends to infinity as k →∞.
If ‖gradf(x`+1)‖x`+1

> 0, then we have ‖gradf(xk)‖xk = ‖gradf(x`+1)‖x`+1
> 0 for

all k ≥ ` + 1, and Lemma 9 implies that σk is bounded above, k ≥ ` + 1. This
contradiction completes the proof.

The following theorem generalizes [11, Theorem 2.5] and represents our main
convergence result in this section.

Theorem 11. Suppose that the assumptions (A.1)–(A.5) hold, and let {f(xk)}
be bounded from below. Then either

gradf(x`) = 0 for some ` ≥ 0 or lim inf
k→∞

‖gradf(xk)‖xk = 0.

Proof. Due to Lemma 10, we only have to consider the case when infinitely many
successful iterations occur. Let us assume that there exists τ > 0 such that

‖gradf(xk)‖xk ≥ τ ∀ k ≥ 0,(4.10)
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and let k ∈ S with S := {k ∈ N : iteration k is successful or very successful} be
given. As in the proof of Lemma 9, there exists λ̄ such that λk ≥ λ̄ for all k ∈ N.
Now Lemmas 6 and 9 imply that

f(xk)− f(zk) ≥ η1 · (−mk(zk)) ≥ η1ρλ̄α
−1
0 δζk · ‖gradf(xk)‖xk‖ξk‖xk

≥ η1ρλ̄δ(α0$)−1τ ·min

{
χ,

2(1− ρ)λ̄τ

κ+ κ2
1(Lτ − κH)

}
=: δτ .

Summing up over all iterates yields

f(x0)− f(xk+1) =

k∑
j=0,j∈S

f(xj)− f(xj+1) ≥ |S ∩ {1, . . . , k}| · δτ .(4.11)

Since S is not finite, we have |S ∩ {1, . . . , k}| → ∞ as k → ∞. Consequently, in-
equality (4.11) implies limk→∞ f(x0) − f(xk+1) = ∞, which is a contradiction to
the lower boundedness of {f(xk)}. Hence, assumption (4.10) must be false, and
{‖gradf(xk)‖xk} has a subsequence that converges to zero.

Remark 12. Let us note that it is possible to obtain a slightly stronger result and
establish convergence of the full sequence ‖gradf(xk)‖xk → 0 as k → ∞. However,
this requires additional assumptions on the retraction and on the Lipschitz continuity
of the Riemannian gradient. We refer to [31, Corollary 4.2.1] for a related discussion
and result.

4.3. Local convergence. In this part, we analyze the local convergence prop-
erties of Algorithm 2. Because our inner solver is a regularized Newton method, the
local superlinear convergence can be established using similar techniques as in the
standard trust-region method [29]. Following [2, Proposition 7.4.5], we first present
an assumption on the boundedness of the second-order covariant derivatives D

dt
d
dtR of

the retraction R.

Assumption 13. Suppose that there exists βR, δR > 0 such that∥∥∥∥Ddt ddtRx(tξ)

∥∥∥∥
x

≤ βR

for all x ∈M, all ξ ∈ TxM with ‖ξ‖x = 1, and all t < δR.

We refer to [2, Chapter 5] for a detailed discussion of covariant derivatives. Let
us note that Assumption 13 is satisfied whenever the manifold M is compact; see,
e.g., [2, Corollary 7.4.6]. We now present our main assumptions that are necessary to
prove fast local convergence of Algorithm 2. Let us emphasize that our assumptions
are similar to the ones used in other Riemannian optimization frameworks.

Assumption 14. Let {xk} be generated by Algorithm 2. We assume the following:
(B.1) The sequence {xk} converges to x∗.

(B.2) The Euclidean Hessian ∇2f is continuous on conv(M).

(B.3) The Riemannian Hessian Hessf is positive definite at x∗, and the constant
ε in Algorithm 1 is set to zero.

(B.4) The matrices Hk, k ∈ N, satisfy the following Dennis–Moré condition:

‖(Hk −∇2f(xk))[zk − xk]‖
‖zk − xk‖

→ 0 whenever ‖gradf(xk)‖xk → 0.
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(B.5) Hk is a good approximation of the Euclidean Hessian ∇2f ; i.e., it holds
that

‖Hk −∇2f(xk)‖ → 0 whenever ‖gradf(xk)‖xk → 0.

In the following lemma and inspired by [11, Theorem 4.3] and [31, Theorem 4.2.2],
we show that the iterations generated by Algorithm 2 are eventually very successful.
Due to (3.12), this also implies that the sequence of regularization parameters {σk}
converges to zero as k →∞.

Lemma 15. Let the conditions (A.3) and (B.1)–(B.4) be satisfied. Then all itera-
tions are eventually very successful.

Proof. First, Theorem 11 implies that x∗ is stationary point of problem (1.1);
i.e., we have gradf(xk)→ gradf(x∗) = 0 as k →∞. Moreover, since {xk} converges
to x∗, the assumptions (A.2) and (A.4)–(A.5) are satisfied. We next use a connection
between ξk and gradf(xk) that was established in the proof of Lemma 5; it holds that

‖ξk‖xk ≤ min{ε−1, 1}n · ‖gradf(xk)‖xk → 0, k →∞.(4.12)

Hence, we have ‖ξk‖ ≤ χ for all k sufficiently large, and thus, from (4.7), it follows
that

‖zk − xk‖ ≤ κ1αk‖ξk‖ ≤ min{ε−1, 1}nκ1

√
$ · ‖gradf(xk)‖xk .(4.13)

Similar to [7, section B] and by combining (4.7)–(4.8), we obtain

‖zk − xk − αkξk‖ = ‖Rxk(αkξk)− xk − αkξk‖ ≤
$κ2

2
α2
k‖ξk‖2xk(4.14)

for all k sufficiently large. Using the continuity of the Riemannian Hessian and (B.3),
there exists ν > 0 such that 〈ξ,Hessf(xk)[ξ]〉xk ≥ ν‖ξ‖

2
xk

for all ξ ∈ TxkM and k ∈ N
sufficiently large. Setting mF

k (x) := mk(x)− σk
2 ‖x− xk‖

2, this implies that

〈ξk,Hessmk(xk)[ξk]〉xk ≥ (ν + σk)‖ξk‖2xk −
∣∣∣〈ξk, (HessmF

k (xk)−Hessf(xk))[ξk]
〉
xk

∣∣∣ .
Due to (3.6), we have (HessmF

k (xk)−Hessf(xk))[ξk] = Pxk((Hk−∇2f(xk))[ξk]), and
thus it holds that∣∣∣〈ξk, (HessmF

k (xk)−Hessf(xk))[ξk]
〉
xk

∣∣∣
‖ξk‖2xk

≤ c1
‖(Hk −∇2f(xk))[zk − xk]‖

‖zk − xk‖
‖zk − xk‖
αk‖ξk‖xk

+ c2
‖zk − xk − αξk‖

αk‖ξk‖xk
,

(4.15)

where c1, c2 > 0 are suitable constants that only depend on $, $, κH , and κF . By
(B.4), (4.13), and (4.14), the last term converges to zero as k →∞. Consequently, we
can infer 〈ξk,Hessmk(xk)[ξk]〉xk ≥

ν+σk
2 ‖ξk‖

2
xk

for all k sufficiently large. This also
implies that Algorithm 1 does not stop in iteration i = 0. Hence, applying Lemma 4
(ii), we obtain

〈gradmk(xk), ξk〉xk ≤ m̆k(η1)− f(xk)− 1

2
〈ξk,Hessmk(xk)[ξk]〉xk

≤ −1

2

(
‖gk‖4xk

〈gk,Hessmk(xk)[gk]〉xk
+
ν + σk

2
‖ξk‖2xk

)
≤ −ν + σk

4
‖ξk‖2xk ,
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where gk := gradf(xk). Using this estimate in the proof of Lemma 6, we can now
derive a more refined bound for the step size αk. In particular, it holds that

mk(Rxk(tξk)) ≤ −ρν
4
t‖ξk‖2xk , ∀ t ∈ [0, t̄], with t̄ :=

1− ρ
2$

min

{
ν

κ2κg + κ2
1κH

,
1

κ2
1

}
,

and thus we have

−mk(zk) ≥ ρνδ

4α0
t̄ · ‖ξk‖2xk ≥

ρνδt̄

4α0κ1$
· ‖zk − xk‖2 =: δ̄ · ‖zk − xk‖2(4.16)

for all k sufficiently large. Next, applying a second-order Taylor expansion, it follows
that

f(zk)− f(xk)−mk(zk) ≤ 1

2

〈
(∇2f(xδk)−Hk)[zk − xk], zk − xk

〉
for some suitable δk ∈ [0, 1] and xδk := xk + δk(zk − xk). Using the continuity of ∇2f ,
(B.4), and the bound (4.16), we finally obtain

1− ρk ≤
1

2δ̄

[
‖(∇2f(xk)−Hk)[zk − xk]‖

‖zk − xk‖
+ ‖∇2f(xδk)−∇2f(xk)‖

]
→ 0

as k →∞. This finishes the proof.

Next, we establish superlinear convergence of the proposed method. In compar-
ison to Lemma 15, we need a stronger assumption on the matrices Hk to guarantee
that the CG method eventually only uses the natural stopping criterion in step S4.
In the following, let f̂x := f ◦ Rx denote the pullback of f through Rx at x, and let
0x be the zero element of TxM.

Theorem 16. Suppose that Assumption 13 and the conditions (B.1)–(B.3) and
(B.5) are satisfied, and let α0 = 1 and ρ ∈ (0, 1

2 ). Then the sequence {xk} converges
q-superlinearly to x∗.

Proof. For convenience, we again set gk := gradf(xk). We further note that the
conditions (B.1) and (B.5) imply (A.2)–(A.5). Due to Assumption 13 and applying
[7, Proposition 19], the following bound holds for any smooth function h on M:

‖Hessh(x)−Hess ĥx(0x)‖x ≤ βR‖gradh(x)‖x,(4.17)

where the operator norm is induced by the Riemannian metric on TxM. Similar to
the proof of Lemma 15 and using (B.3), (B.5), and the uniform estimate

|
〈
ξ, (HessmF

k (xk)−Hessf(xk))[ξ]
〉
xk
| ≤ c · ‖Hk −∇2f(xk)‖‖ξ‖2xk(4.18)

for ξ ∈ TxkM and for some constant c > 0, we can infer that Hessmk(xk) is positive
definite for all k sufficiently large. Thus, the structure of Algorithm 1 now implies
that

‖gk + Hessmk(xk)[ξk]‖xk ≤ ‖gk‖θxk , θ > 1.(4.19)

Also, by Lemma 15, we have σk → 0 as k → ∞. Hence, there exists σ̄ such that
σk ≤ σ̄ for all k ∈ N. We next show that the full step size αk = 1 satisfies the Armijo
condition (3.9) whenever k is sufficiently large. First, by Lemma 4 (iii) and Remark 3,
we have
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‖ξk‖xk ≥ ‖η1‖xk =
‖gk‖3xk

〈gk,Hessmk(xk)[gk]〉xk
≥ ‖gk‖xk
κMxk + σk

≥ ‖gk‖xk
κ̄M + σ̄

,(4.20)

where κ̄M is defined in Lemma 9. Let mP
k := [m̂k]xk = mk ◦Rxk denote the pullback

of the model function mk. Combining (4.17), (4.19), and (4.20), it holds that

‖gk + HessmP
k (0xk)[ξk]‖xk
≤ ‖(HessmP

k (0xk)−Hessmk(xk))[ξk]‖xk + ‖gk + Hessmk(xk)[ξk]‖xk
≤ βR‖gk‖xk‖ξk‖xk + ‖gk‖θxk ≤ (βR‖gk‖xk + (κ̄M + σ̄)‖gk‖θ−1

xk
)

=: Ck(gk)

‖ξk‖xk .

Similar to [32, Proposition 5] and applying a second-order Taylor expansion, it holds
that

mP
k (ξk)−mP

k (0k)− 1

2
〈gk, ξk〉xk =

1

2

〈
gk + HessmP

k (δkξk)[ξk], ξk
〉
xk

≤
[
Ck(gk) + ‖HessmP

k (δkξk)−HessmP
k (0xk)‖xk

]
‖ξk‖2xk = o(‖ξk‖2xk),

where δk ∈ [0, 1] is a suitable constant and we used the last estimate, Ck(gk)→ 0, and
the continuity of the Hessian HessmP

k . Therefore, due to ρ < 0.5 and α0 = 1, the full
step size αk = 1 is chosen in (3.8) if k is sufficiently large and we have xk+1 = Rxk(ξk).
The remaining part of the proof now essentially follows [2, Theorem 7.4.11] and [31,
section 4.2.2]. In particular, calculating a first-order Taylor expansion of the pullback

gradient grad f̂xk and using grad f̂xk(0xk) = gk, the continuity of the pullback Hessian

Hess f̂xk , (4.19), (4.17), (4.18), (B.5), σk → 0, and (4.12), we obtain

‖grad f̂xk(ξk)‖xk
≤ ‖grad f̂xk(ξk)− gk −Hess f̂xk(0xk)[ξk]‖xk + ‖gk + Hessmk(xk)[ξk]‖xk

+ ‖(Hess f̂xk(0xk)−Hessf(xk))[ξk]‖xk + ‖(Hessf(xk)−Hessmk(xk))[ξk]‖xk
≤ ‖Hess f̂xk(δ̃kξk)−Hess f̂xk(0xk)‖xk‖ξk‖xk + ‖gk‖θxk + βR‖gk‖xk‖ξk‖xk

+ c · ‖Hk −∇2f(xk)‖‖ξk‖xk + σk‖ξk‖xk
= o(‖gk‖xk),

where δ̃k ∈ [0, 1] is again an appropriate constant. By [2, Lemma 7.4.9], this implies
that

‖gradf(xk+1)‖xk+1

‖gradf(xk)‖xk
≤ c̃ · ‖grad f̂xk(ξk)‖xk

‖gk‖xk
→ 0 as k →∞(4.21)

for some c̃ > 0. Moreover, since the Hessian Hessf(x∗) is positive definite, [2, Lemma
7.4.8] and (4.21) further imply that

dist(xk+1, x∗)

dist(xk, x∗)
→ 0

as k →∞. (Here, dist(·, ·) denotes the Riemannian geodesic distance; see [2].)
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5. Numerical results. In this section, we test a variety of examples to illus-
trate the efficiency of our adaptively regularized Newton method (ARNT).1 We mainly
compare Algorithm 2 with the Riemannian gradient method using the BB step size
for initialization (GBB), described in subsection 2.1, and the Riemannian trust re-
gion method (RTR) Manopt. All codes are written in MATLAB. Note that Huang
et al. [21] implement a C-language version of RTR to further accelerate the method.
The efficiency of ARNT can also be improved in a similar way. All experiments were
performed on a workstation with Intel Xenon E5-2680 v3 processors at 2.50 GHz (×12)
and 128 GB memory running CentOS 6.8 and MATLAB R2015b.

The default values of the GBB parameters are set to ρ = 10−4, δ = 0.2, and
% = 0.85. We have extensively tuned the stopping criterion of the truncated CG
method implemented in RTR and found that adding a rule ‖rj+1‖ ≤ min{0.1, 0.1‖r0‖}
often improves the performance of RTR. All other default settings of RTR were
used. For ARNT, we set η1 = 0.01, η2 = 0.9, γ0 = 0.2, γ1 = 1, γ2 = 10, and
σk = σ̂k‖gradf(xk)‖, where σ̂k is updated by (3.12) with σ̂0 = 10. The parameters
in Algorithm 1 are chosen as follows: ρ = 10−4, δ = 0.2, θ = 1, and T = 0.1. Further-
more, when an estimation of the absolute value of the negative curvature, denoted by
σest, is available at the kth subproblem (see step S2 in Algorithm 1), we calculate

σnewk+1 = max{σk+1, σest + γ̃}

with some small γ̃ ≥ 0. Then the parameter σk+1 is reset to σnewk+1 . This change does
not affect our convergence results. For fair comparisons, all algorithms are stopped
when the norm of the Riemannian gradient is less than 10−6 unless a different tolerance
is specified. The algorithms also terminate if a maximum number of iterations is
reached. We use a maximum number of 104 iterations in GBB and 500 in ARNT and
RTR. In the implementation of ARNT and RTR, the GBB method is used to obtain
a better initial point. Here, GBB is run with stopping criterion ‖gradf(xk)‖ ≤ 10−3

and a maximum of 2000 iterations. The maximum number of inner iterations in
ARNT is chosen adaptively depending on the norm of the Riemannian gradient.

In the subsequent tables, the column “its” represents the total number of itera-
tions in GBB, while the two numbers of the column “its” in ARNT and RTR are the
number of outer iterations and the average numbers of inner iterations. The columns
“f,” “nrmG,” and “time” denote the final objective value, the final norm of the Rie-
mannian gradient, and the CPU time that the algorithms spent to reach the stopping
criterions, respectively.

5.1. Low rank nearest correlation matrix estimation. Given a symmet-
ric matrix C and a nonnegative symmetric weight matrix H, the low rank nearest
correlation matrix problem is given as

min
X∈Rn×n

1

2
‖H � (X − C)‖2F , s.t. Xii = 1, rank(X) ≤ p, X � 0,(5.1)

for all i = 1, . . . , n and for p ≤ n. By expressing X = V >V with V = [V1, . . . , Vn] ∈
Rp×n, problem (5.1) can be converted into

min
V ∈Rp×n

1

2
‖H � (V >V − C)‖2F , s.t. ‖Vi‖2 = 1, i = 1, . . . , n.

1Downloadable at https://github.com/wenstone/ARNT.
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Table 1
Numerical results of Example 1 on low rank nearest correlation estimation.

GBB AdaGBB ARNT RTR
p its nrmG time its nrmG time its nrmG time its nrmG time

H = 1, n = 500
5 207 3.5e-7 1.2 227 8.8e-7 0.9 24( 14) 1.2e-7 1.3 31( 8) 2.7e-7 1.2
10 173 8.7e-7 0.5 215 9.6e-7 0.5 11( 11) 3.2e-7 0.6 11( 12) 6.7e-7 0.7
20 293 5.3e-7 0.9 352 6.3e-7 1.1 13( 18) 1.2e-7 0.9 12( 21) 8.4e-7 1.0
50 2622 1.0e-6 9.4 1306 8.6e-7 5.8 43( 37) 2.4e-7 5.1 39( 20) 5.5e-7 3.0
100 3286 9.0e-7 17.4 3614 9.9e-7 13.6 52( 51) 6.0e-7 11.1 52( 30) 3.6e-7 6.8
150 9358 9.9e-7 47.4 10000 3.4e-6 62.5 51( 75) 1.6e-7 18.7 55( 54) 5.1e-7 13.8
200 10000 2.8e-5 82.1 10000 2.1e-4 46.7 70( 70) 5.6e-7 31.0 77( 49) 9.2e-7 18.5

H 6= 1, n = 500
5 1016 9.3e-7 5.1 744 9.3e-7 3.4 115( 19) 1.9e-7 6.0 290( 21) 3.5e-7 20.4
10 722 1.0e-6 3.3 431 5.6e-7 1.3 40( 61) 4.9e-7 6.3 28( 40) 6.8e-7 3.6
20 923 7.8e-7 3.1 715 4.1e-7 4.8 20( 70) 8.2e-7 4.4 23( 52) 7.1e-7 3.9
50 10000 1.6e+0 36.8 10000 3.1e-6 65.3 69( 105) 6.0e-7 24.0 116( 115) 7.0e-7 50.3
100 10000 1.2e-1 47.0 10000 4.5e-2 67.6 345( 119) 5.0e-7 154.8 449( 169) 9.7e-7 331.2
150 10000 3.6e-1 49.5 10000 5.4e-2 43.8 500( 119) 1.4e-1 269.5 500( 168) 5.9e-1 385.9
200 10000 8.3e-2 65.5 10000 6.5e-2 47.8 500( 125) 7.0e-2 341.1 500( 165) 2.0e-1 414.1

In this subsection, we also use a version of the Adagrad method (2.6) in our numerical
comparison. It is dubbed as AdaGBB because its setting is similar to GBB. We select
a few typical test problems as follows.
Example 1. Let n = 500, and let Cij = 0.5 + e−0.05|i−j| for i, j = 1, . . . , n. The

weight matrix H is either 1 or a random matrix whose entries are mostly
uniformly distributed in [0.1, 10] except that 200 entries are distributed
in [0.01, 100].

Example 2. The matrix C is obtained from the real gene correlation matrix Leukemia.
The weight matrix H is either 1 or a random matrix whose entries are
set as in Example 1. Results for other data sets, such as Lymph, ER,
and Hereditarybc, are not reported here due to their similarity.

Example 3. Let n = 943. The matrix C is based on 100, 000 ratings for 1682 movies by
943 users from the Movielens data sets. The weight matrix H is provided
by T. Fushiki at the Institute of Statistical Mathematics, Japan.

The detailed numerical results are reported in Tables 1 and 2. For Example 1,
all methods perform well if p is small. For the cases with H 6= 1, ARNT is the best
when p = 50 and p = 100, while all of them fail when p = 150 and p = 200. For
Example 2, GBB may not converge when p is large, and ARNT is efficient whenever p
is small or large. In particular, ARNT is better than RTR on Leukemia with H 6= 1,
and RTR may fail on a few instances. For Example 3, we can see that GBB and
RTR fail to converge when p is small, while ARNT, and AdaGBB still work. In fact,
we observe negative curvatures of the Hessian at many iterations of ARNT, and the
strategy (3.7) indeed helps the convergence.

5.2. Kohn–Sham total energy minimization. Using a suitable discretization
scheme, we can formulate a finite dimensional approximation to the continuous Kohn–
Sham (KS) minimization problem [38] as

min
X∈Cn×p

f(X) s.t. X∗X = I,

where f(X) := 1
4 tr(X∗LX) + 1

2 tr(X∗VionX) + 1
2

∑
i

∑
l |x∗iωl| +

1
4ρL

† + 1
2e
>εxc(ρ),

X = [x1, . . . , xp] ∈ Cn×p, ρ(X) := diag(XX∗), L is a finite dimensional Laplacian
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Table 2
Numerical results of Example 2 on low rank nearest correlation estimation (continued).

GBB AdaGBB ARNT RTR
p its nrmG time its nrmG time its nrmG time its nrmG time

H = 1 (Leukemia, n = 1255)
5 272 8.9e-7 4.2 261 4.8e-7 2.9 15( 16) 4.0e-7 5.6 23( 9) 4.0e-7 5.2
10 540 9.6e-7 12.5 453 8.2e-7 5.7 23( 20) 5.6e-7 8.4 48( 21) 6.8e-7 13.8
20 1064 9.6e-7 23.0 1602 1.0e-6 26.2 34( 31) 4.1e-7 14.8 131( 25) 1.5e-7 39.4
50 1917 8.5e-7 32.9 2535 4.0e-7 35.8 33( 49) 2.6e-7 26.0 28( 42) 1.6e-7 17.4
100 10000 4.1e-5 169.4 10000 2.4e-5 156.9 35( 27) 9.6e-7 19.5 35( 28) 5.6e-7 18.0
150 10000 3.1e-5 194.8 10000 9.2e-5 184.4 40( 25) 4.8e-7 24.4 36( 27) 9.5e-7 20.0
200 10000 3.2e-5 232.1 10000 3.9e-4 200.1 37( 25) 5.0e-7 24.8 36( 27) 4.6e-7 22.5

H 6= 1 (Leukemia, n = 1255)
5 1404 5.9e-7 55.0 762 5.5e-7 13.3 44( 20) 3.8e-7 16.3 500( 16) 3.7e-3 137.7
10 680 9.7e-7 21.8 608 9.8e-7 13.0 23( 22) 9.5e-7 11.2 500( 20) 2.1e-3 169.5
20 2461 9.4e-7 77.1 2250 9.3e-7 51.6 59( 32) 9.5e-7 31.0 500( 34) 3.5e-4 289.0
50 3354 9.7e-7 82.0 1790 7.8e-7 47.1 33( 86) 4.8e-7 48.2 58( 74) 1.2e-7 79.2
100 10000 1.8e-2 170.5 10000 1.8e-3 158.6 36( 51) 7.7e-7 37.5 44( 53) 4.9e-7 48.7
150 10000 3.4e-3 194.9 10000 2.1e-3 197.8 43( 52) 4.8e-7 48.2 51( 52) 4.8e-7 57.1
200 10000 3.9e-3 216.5 10000 4.3e-2 205.8 46( 50) 4.6e-7 55.9 50( 52) 6.5e-7 65.4

Table 3
Numerical results of Example 3 on low rank nearest correlation estimation.

GBB AdaGBB ARNT RTR
p its nrmG time its nrmG time its nrmG time its nrmG time
5 10000 1.7e+02 196.5 4178 6.9e-7 41.3 260( 8) 9.4e-7 38.1 500( 12) 8.8e-2 78.4
10 10000 3.0e-4 207.4 4973 8.2e-7 103.8 347( 12) 8.4e-7 58.9 500( 17) 9.3e-2 102.5
20 10000 1.5e-4 198.3 5089 7.1e-7 86.6 237( 24) 8.3e-7 63.4 500( 23) 9.7e-2 152.0
50 10000 9.1e-5 288.1 3675 1.0e-6 90.2 34( 58) 2.0e-7 38.1 63( 82) 7.7e-7 80.2
100 10000 3.6e-4 181.6 10000 2.5e-6 258.0 26( 118) 7.1e-7 50.1 19( 428) 7.1e-7 120.4
150 10000 3.5e-2 124.2 10000 4.4e-5 241.7 35( 134) 3.0e-7 76.1 18( 688) 9.0e-7 173.2
200 10000 3.5e-2 153.7 10000 7.2e-5 245.3 37( 130) 5.5e-7 78.4 16( 758) 8.3e-7 162.0

operator, Vion corresponds to the ionic pseudopotentials, wl represents a discretized
pseudopotential reference projection function, and εxc is related to the exchange cor-
relation energy.

Our experiments are based on the KSSOLV package [41]. As in [38], we use the
Wirtinger calculus [27] to compute the complex gradient and Hessian of the function f .
Let us also note that the Lipschitz continuity required in assumption (A.1) may not
be satisfied for all types of exchange correlations. However, for the correlation that is
defined by the Perdew–Zunger formula and used in this example, Lipschitz continuity
was established in [36, Lemma 3.3]. In addition to GBB and RTR, we further compare
ARNT with the self-consistent field (SCF) iteration and the regularized trust-region
method TRQH in [38]. In the implementation of TRQH, RTR, and ARNT, we use
the same initial point obtained by GBB. Note that TRQH essentially coincides with
ARNT except that the subproblem (3.4) is solved by GBB.

A summary of the computational results is given in Table 4. All algorithms
reach the same objective function value when the gradient norm criterion is satisfied.
ARNT and RTR take a small number of outer iterations to converge and often exhibit
a fast convergence rate. In particular, ARNT tends to be more efficient than other
algorithms on “graphene30” and “qdot.” It can be even faster than SCF when SCF
works well. ARNT also outperforms TRQH. This shows that the accuracy of solving
the subproblem (3.4) is indeed important.
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Table 4
Numerical results on KS total energy minimization.

solver f its nrmG time f its nrmG time
alanine al

SCF -6.1162e+01 14 3.9e-7 25.0 -1.5784e+01 101 4.5e-2 146.9
OptM -6.1162e+01 80 7.1e-7 25.5 -1.5804e+01 1461 9.9e-7 391.1
TRQH -6.1162e+01 6( 16) 6.5e-7 39.7 -1.5804e+01 39( 16) 9.6e-7 411.9
ARNT -6.1162e+01 3( 9) 3.9e-7 24.4 -1.5804e+01 5( 113) 3.5e-7 196.4
RTR -6.1162e+01 3( 9) 4.1e-7 24.3 -1.5804e+01 5( 108) 9.9e-8 188.9

benzene c12h26
SCF -3.7226e+01 13 4.0e-7 14.3 -8.1536e+01 13 9.1e-7 30.2

OptM -3.7226e+01 68 5.1e-7 13.4 -8.1536e+01 89 8.8e-7 34.1
TRQH -3.7226e+01 6( 12) 9.3e-7 19.2 -8.1536e+01 7( 12) 9.7e-7 50.0
ARNT -3.7226e+01 3( 10) 9.2e-8 13.3 -8.1536e+01 3( 13) 6.4e-7 29.5
RTR -3.7226e+01 3( 10) 8.1e-8 13.6 -8.1536e+01 3( 13) 5.2e-7 29.5

c2h6 co2
SCF -1.4420e+01 10 6.8e-7 2.5 -3.5124e+01 10 3.1e-7 2.6

OptM -1.4420e+01 59 9.1e-7 2.6 -3.5124e+01 59 5.2e-7 2.6
TRQH -1.4420e+01 6( 12) 8.7e-7 4.0 -3.5124e+01 6( 12) 3.7e-7 3.9
ARNT -1.4420e+01 3( 8) 4.7e-7 2.5 -3.5124e+01 3( 9) 3.1e-7 2.5
RTR -1.4420e+01 3( 7) 3.9e-7 2.7 -3.5124e+01 3( 10) 2.5e-7 2.7

ctube661 graphene16
SCF -1.3464e+02 16 3.1e-7 88.5 -9.4028e+01 101 5.8e-4 160.0

OptM -1.3464e+02 101 7.2e-7 93.0 -9.4046e+01 187 8.5e-7 40.8
TRQH -1.3464e+02 6( 19) 3.2e-7 138.5 -9.4046e+01 8( 19) 9.5e-7 70.3
ARNT -1.3464e+02 3( 11) 4.9e-7 78.3 -9.4046e+01 3( 19) 8.6e-7 40.3
RTR -1.3464e+02 3( 11) 4.2e-7 78.2 -9.4046e+01 3( 19) 7.3e-7 40.7

graphene30 h2o
SCF -1.7358e+02 101 2.2e-3 860.6 -1.6441e+01 9 1.4e-7 1.8

OptM -1.7360e+02 378 6.5e-7 517.0 -1.6441e+01 58 8.9e-7 2.0
TRQH -1.7360e+02 12( 38) 8.6e-7 783.9 -1.6441e+01 5( 38) 8.4e-7 2.9
ARNT -1.7360e+02 4( 33) 2.5e-7 446.8 -1.6441e+01 3( 11) 3.9e-7 1.8
RTR -1.7360e+02 100( 4) 2.3e-5 828.8 -1.6441e+01 3( 11) 3.1e-7 2.1

hnco nic
SCF -2.8635e+01 12 3.5e-7 3.3 -2.3544e+01 10 7.2e-7 1.2

OptM -2.8635e+01 131 9.7e-7 5.6 -2.3544e+01 63 9.9e-7 1.1
TRQH -2.8635e+01 7( 21) 9.5e-7 6.9 -2.3544e+01 8( 21) 9.3e-7 2.3
ARNT -2.8635e+01 3( 15) 7.5e-7 3.7 -2.3544e+01 3( 8) 4.4e-7 1.0
RTR -2.8635e+01 3( 16) 7.7e-7 4.5 -2.3544e+01 3( 8) 4.6e-7 1.3

ptnio qdot
SCF -2.2679e+02 66 7.7e-7 146.2 2.7702e+01 101 3.4e-2 22.3

OptM -2.2679e+02 495 5.3e-7 145.6 2.7695e+01 2000 3.3e-6 70.8
TRQH -2.2679e+02 23( 39) 9.3e-7 286.0 2.7695e+01 91( 39) 9.9e-7 115.8
ARNT -2.2679e+02 4( 52) 6.9e-7 132.4 2.7695e+01 27( 65) 7.1e-7 64.5
RTR -2.2679e+02 4( 46) 8.5e-7 122.5 2.7695e+01 37( 68) 4.0e-7 83.3

5.3. Bose–Einstein condensates. The total energy in the Bose–Einstein con-
densates (BEC) is defined as

E(ψ) =

∫
Rd

[
1

2
|∇ψ(x)|2 + V (x)|ψ(x)|2 +

β

2
|ψ(x)|4 − Ωψ̄(x)Lz(x)

]
dx,

where x ∈ Rd is the spatial coordinate vector, ψ̄ denotes the complex conjugate of
ψ, Lz = −i(x∂ − y∂x), V (x) is an external trapping potential, and β,Ω are given
constants. Using a suitable discretization, such as finite differences or the sine pseu-
dospectral and Fourier pseudospectral (FP) method, we can reformulate the BEC
problem as follows:
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Table 5
Numerical results on BEC with the potential function V (x, y).

solver f its nrmG time f its nrmG time
β =500

Ω = 0.00 Ω = 0.25
OptM 8.5118 58 6.6e-5 1.4 8.5106 103 9.7e-5 12.3
TRQH 8.5118 4( 17) 1.5e-4 2.0 8.5106 5( 22) 1.9e-4 21.9
ARNT 8.5118 3( 24) 1.2e-5 1.5 8.5106 4( 53) 1.6e-5 17.7
RTR 8.5118 3( 25) 1.3e-5 1.5 8.5106 3( 23) 6.0e-5 15.1

Ω = 0.50 Ω = 0.60
OptM 8.0246 276 9.0e-5 32.3 7.5890 301 1.0e-4 19.9
TRQH 8.0246 5( 53) 2.0e-4 60.7 7.5890 5( 60) 1.9e-4 35.4
ARNT 8.0197 3( 62) 6.5e-5 21.3 7.5890 3( 67) 5.7e-5 22.1
RTR 8.0246 11( 113) 1.0e-4 56.5 7.5890 3( 61) 5.2e-5 23.8

Ω = 0.70 Ω = 0.80
OptM 6.9731 340 1.0e-4 56.3 6.1016 386 1.0e-4 65.2
TRQH 6.9731 7( 55) 2.0e-4 61.6 6.1016 5( 64) 2.0e-4 83.1
ARNT 6.9731 10( 99) 8.7e-5 44.4 6.1016 10( 104) 8.7e-5 70.6
RTR 6.9731 99( 118) 9.3e-5 234.2 6.1016 18( 130) 7.7e-5 130.1

Ω = 0.90 Ω = 0.95
OptM 4.7784 10000 1.2e-3 243.6 3.7419 10000 7.4e-4 241.6
TRQH 4.7778 277( 176) 2.0e-4 1090.9 3.7416 363( 181) 2.0e-4 1185.1
ARNT 4.7777 147( 132) 9.6e-5 413.3 3.7414 500( 147) 2.6e-4 1204.0
RTR 4.7777 500( 147) 8.5e-4 1250.4 3.7415 500( 172) 9.7e-4 1419.0

β =1000
Ω = 0.00 Ω = 0.25

OptM 11.9718 76 4.6e-5 3.0 11.9266 358 9.9e-5 40.2
TRQH 11.9718 4( 15) 1.0e-4 1.5 11.9266 4( 50) 1.7e-4 44.3
ARNT 11.9718 3( 16) 3.1e-5 0.9 11.9266 15( 70) 2.5e-5 40.9
RTR 11.9718 3( 16) 3.8e-5 0.8 11.9266 15( 70) 8.7e-5 46.4

Ω = 0.50 Ω = 0.60
OptM 11.1054 396 1.0e-4 32.6 10.4392 5524 1.0e-4 140.4
TRQH 11.1326 6( 53) 2.0e-4 36.3 10.4437 9( 98) 2.0e-4 92.8
ARNT 11.1326 20( 66) 5.9e-5 36.8 10.4392 20( 73) 7.6e-5 77.9
RTR 11.1326 32( 78) 5.8e-5 68.9 10.4392 93( 80) 9.8e-5 187.6

Ω = 0.70 Ω = 0.80
OptM 9.5283 990 1.0e-4 63.7 8.2627 10000 5.5e-4 231.9
TRQH 9.5301 102( 156) 2.0e-4 404.1 8.2610 453( 177) 2.0e-4 1427.0
ARNT 9.5301 60( 81) 9.3e-5 140.4 8.2610 202( 105) 6.7e-5 412.7
RTR 9.5301 293( 91) 8.6e-5 478.8 8.2610 500( 113) 5.5e-4 972.7

Ω = 0.90 Ω = 0.95
OptM 6.3611 10000 3.0e-3 230.8 4.8856 10000 5.2e-4 241.4
TRQH 6.3607 142( 170) 2.0e-4 595.6 4.8831 172( 178) 2.0e-4 708.1
ARNT 6.3607 500( 110) 2.8e-3 931.5 4.8822 500( 121) 1.5e-3 1015.8
RTR 6.3607 500( 122) 7.6e-4 1010.8 4.8823 500( 137) 1.9e-3 1103.8

min
x∈CM

f(x) :=
1

2
x∗Ax+

β

2

M∑
j=1

|xj |4, s.t. ‖x‖2 = 1,

where M ∈ N, β is a given real constant, and A ∈ CM×M is a Hermitian matrix.
In this numerical experiment, we again use the Wirtinger calculus to calculate the

complex gradient and Hessian of the objective function. We stop GBB, ARNT, RTR,
and TRQH (the Newton method in [40]) when the gradient norm is less than 10−4

or the maximum number of iterations is reached. For TRQH, the stopping criterion
‖xk+1 − xk‖∞ ≤ εx is added for some small constant εx since TRQH often does not
converge under the gradient norm criterion. We take d = 2 and test two different
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Table 6
Numerical results on low rank matrix completion with the fixed k = 10, rS = 0.8 but different n.

GBB ARNT RTR
n its nrmG time its nrmG time its nrmG time

1000 603 5.1e-7 12.5 6(84) 3.4e-7 7.7 8(91) 6.6e-7 8.2
2000 570 9.2e-7 43.9 5(72) 8.9e-7 23.6 8(86) 6.2e-7 28.2
4000 671 9.7e-7 179.8 6(82) 4.6e-7 94.8 9(85) 2.0e-7 104.8
8000 666 9.8e-7 694.2 5(104) 5.2e-7 320.1 8(130) 5.4e-7 394.5

Table 7
Numerical results on low rank matrix completion with fixed n = 4000, rS = 0.95 but different k.

GBB ARNT RTR
k its nrmG time its nrmG time its nrmG time
10 5252 1.0e-6 1415.9 13(133) 7.4e-7 392.1 12(236) 4.4e-7 438.2
20 2126 1.0e-6 600.8 7(125) 3.9e-7 269.5 9(195) 2.3e-7 315.9
30 1488 1.0e-6 438.8 6(132) 3.1e-7 255.2 9(214) 2.6e-7 329.9
40 1010 9.3e-7 311.4 5(103) 1.1e-7 220.5 5(103) 1.1e-7 219.4
50 1494 7.9e-7 477.1 4(103) 1.5e-7 273.8 4(103) 1.6e-7 272.5
60 1398 9.9e-7 480.4 4(110) 5.7e-7 313.3 4(114) 5.7e-7 315.2

potential functions V (x, y) = 1
2x

2 + 1
2y

2. The BEC problem is discretized by FP on
the bounded domain (−16, 16)2 with β = 500, 1000 and different values of Ω ranging
from 0 to 0.95. Under the same settings as in [40, section 4.3], we use the mesh
refinement procedure with the coarse meshes (24 + 1)× (24 + 1), (25 + 1)× (25 + 1),
. . . , (27 + 1) × (27 + 1) to gradually obtain an initial solution point on the finest
mesh (28 + 1)× (28 + 1). For a fair comparison, all algorithms are tested with mesh
refinement and start from the same initial point on the coarsest mesh with φ(x, y) =

(1−Ω)φ1(x,y)+Ωφ2(x,y)
‖(1−Ω)φ1(x,y)+Ωφ2(x,y)‖ and φ1(x, y) = 1√

π
e−(x2+y2)/2, φ2(x, y) = x+iy√

π
e−(x2+y2)/2.

A summary of the results is presented in the Table 5. The parameter εx for TRQH
is set to 10−8 in these two cases. The tables show that GBB does not to converge
within 10000 steps in several cases. TRQH usually performs worse than ARNT in
terms of accuracy and time except in the cases β = 1000 with Ω = 0.95 in Table 5,
where ARNT finds a point with a smaller objective function value. ARNT performs
no worse than RTR in most experiments.

5.4. Low rank matrix completion. Given a partially observed matrix A ∈
Rm×n, we want to find the lowest rank matrix to fit A on the known elements. This
problem can be formulated as follows:

min
X∈Rm×n

f(X) :=
1

2
‖PΩ(X)−A‖2F s.t. X ∈ {X ∈ Rm×n : rank(X) = k},

where PΩ : Rm×n → Rm×n, PΩ(X)i,j := Xi,j if (i, j) ∈ Ω, and PΩ(X)i,j := 0 if
(i, j) /∈ Ω is the projection onto Ω and Ω is a subset of {1, . . . ,m} × {1, . . . , n}. More
details can be found in [37].

Similar to [37], we construct random numerical examples as follows. We first take
two Gaussian random matrices AL, AR ∈ Rn×k, then uniformly sample the index set
Ω for a given cardinality and set the matrix A := PΩ(ALA

>
R). Since the degrees of

freedom in a nonsymmetric matrix of rank k is given k(2n − k), we define the ratio
rS = (k(2n− k))−1|Ω|. In this example, we only penalize x − xk on the known set
Ω in the implementation of ARNT to reduce the computational costs. (That is, the
penalization term in the subproblem (3.3) is set to σk‖PΩ(x− xk)‖2.) In Tables 6–8,
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Table 8
Numerical results on low rank matrix completion with fixed n = 8000, k = 10 but different rS .

GBB ARNT RTR
rS its nrmG time its nrmG time its nrmG time
0.1 86 3.7e-7 88.1 3(11) 4.4e-7 54.7 3(11) 4.3e-7 53.2
0.2 89 8.6e-7 93.9 3(14) 3.4e-7 55.5 3(14) 3.4e-7 54.0
0.3 117 9.5e-7 119.7 3(14) 4.2e-7 67.3 3(14) 4.2e-7 66.1
0.5 173 8.5e-7 178.8 3(18) 7.0e-7 111.4 3(18) 7.0e-7 109.7
0.8 666 9.8e-7 700.2 5(104) 5.2e-7 318.7 8(130) 5.4e-7 388.8

we can see that ARNT and RTR perform better than GBB regardless of whether the
dimension n and rank k are large or small. We often observe that ARNT tends to
outperform RTR when negative curvature is encountered.

6. Conclusions. In this paper, we propose a regularized Newton method for op-
timization problems on Riemannian manifolds. We use a second-order approximation
of the objective function in the Euclidean space to form a sequence of quadratic sub-
problems while keeping the manifold constraints. A modified Newton method is then
developed and analyzed to solve the resulting subproblems. Based on a Steihaug-type
CG method, we construct a specific search direction that can use negative curvature
information of the Riemannian Hessian. We show that our method enjoys favorable
convergence properties and converges with a locally superlinear rate. Numerical ex-
periments are performed on the nearest correlation matrix estimation, KS total energy
minimization, BEC, and low rank matrix completion problems. The comparisons il-
lustrate that our proposed method is promising. In particular, it can often reach a
certain level of accuracy faster than other state-of-the-art algorithms. Our algorithm
performs comparable to the RTR method and usually achieves a better convergence
rate once negative curvature is encountered. Finally, let us mention that the per-
formance of our proposed algorithmic framework may be further improved if a more
specialized and problem-dependent solver for the inner subproblem is used.
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