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Abstract. In this paper, we consider a class of optimization problems with orthogonality con-
straints, the feasible region of which is called the Stiefel manifold. Our new framework combines
a function value reduction step with a correction step. Different from the existing approaches, the
function value reduction step of our algorithmic framework searches along the standard Euclidean
descent directions instead of the vectors in the tangent space of the Stiefel manifold, and the cor-
rection step further reduces the function value and guarantees a symmetric dual variable at the
same time. We construct two types of algorithms based on this new framework. The first type is
based on gradient reduction including the gradient reflection (GR) and the gradient projection (GP)
algorithms. The other one adopts a columnwise block coordinate descent (CBCD) scheme with a
novel idea for solving the corresponding CBCD subproblem inexactly. We prove that both GR/GP
with a fixed step size and CBCD belong to our algorithmic framework, and any clustering point
of the iterates generated by the proposed framework is a first-order stationary point. Preliminary
experiments illustrate that our new framework is of great potential.
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1. Introduction. We consider numerical methods for solving the following ma-
trix variable optimization problem with orthogonality constraints,

min
X∈Rn×p

f(X)

s. t. X>X = Ip,
(1.1)

where Ip stands for the p-by-p identity matrix, f : Rn×p −→ R, with p ≤ n, satisfying
the following assumption.

Assumption 1.1 (blanket assumption).
(i) f is twice differentiable. We define ρ as

ρ := sup
X∈S̃

∥∥∇2f(X)
∥∥

2
,

where S̃ := {Y | ‖Y ‖2F < p+ 1}.1
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(ii) f(X) can be represented as h(X) + tr(G>X), where G ∈ Rn×p, and h(X)
is orthogonal invariant, namely, h(XQ) = h(X) holds for any Q ∈ Sp,p, and
∇h(X) = H(X)X, where H : Rn×p −→ Sn is a matrix function.

Here, Sn refers to the set of n-by-n symmetric matrices. The feasible region of
problem (1.1) can be consequently denoted as Sn,p. In practice, the value of ρ is often
not known and difficult to estimate. Fortunately, we can overcome this difficulty in
computation as shown in section 5.1.

Optimization problems of the above type with orthogonality constraints have
many applications in scientific engineering computing and data science. More specif-
ically, they play an important role in electronic structure calculations [35, 36, 34],
linear eigenvalue problems [6], low-rank correlation matrix problems [14], sparse prin-
cipal component analysis [39, 8], the orthogonal Procrustes problem [27, 11], etc. For
other applications, we refer the interested readers to [10, 33, 17].

Remark 1.2. If ρ = 0, the objective function f(X) reduces to a linear function
tr(G>X). In this case, the solution of (1.1) has the closed form X = −RQ>, where
RSQ> is the reduced singular value decomposition2 of G. In this paper, this special
situation will not be discussed.

Assumption 1.1 is sufficient for the global convergence of our algorithmic frame-
work. In this paper, we will not investigate how to weaken this sufficient condition.
Fortunately, many interesting problems satisfy this assumption. Here are two simple
examples.

Example 1.1.

f(X) :=
1

2
tr
(
X>AX

)
+ tr

(
G>X

)
,

where A ∈ Sn. In this case

∇f(X) = AX +G.

We notice that if the objective function defined in Example 1.1 takes G = 0,
the corresponding optimization problem with orthogonality constraints (1.1) reduces
to the Rayleigh–Ritz minimization which is exactly the optimization model for the
eigenvalue problem. However, the problem with G 6= 0 is difficult to solve, even if A is
positive definite. Example 1.1 is a key subproblem in the trust-region method for solv-
ing optimization problems with orthogonality constraints (see [36, (4.5)]). Therefore,
it is challenging and interesting to explore efficient solvers for this problem.

Example 1.2.

f(X) :=
1

2
tr
(
X>AX

)
+

1

2

m∑
i=1

qi(z),

where z = diag(XX>), qi : Rn → R (i = 1, . . . ,m), and A ∈ Sn. In this case,

∇f(X) =

(
A+

m∑
i=1

Diag(∇qi(z))
)
X.

This example often appears in electronic structure calculations [20], which is one
of the most important topics in materials science.

2For G ∈ Rn×p with p < n, the reduced singular value decomposition refers to RSQ>, where
R ∈ Rn×p and Q ∈ Rp×p are orthogonal matrices and S ∈ Rp×p is diagonal.
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1.1. Overview of existing methods. In general, it is difficult to find a global
solution of problem (1.1) due to the nonconvexity. In fact, finding a stationary point or
a feasible point is not an easy task because it can be numerically expensive to maintain
the orthogonality for large p. There are some existing infeasible methods such as the
splitting method [19] or the penalty method for large-scale eigenspace computation
[32]. However, the former does not guarantee global convergence, and the latter only
works for a very special case. Exploring practically useful infeasible methods for
optimization problems with orthogonality constraints is beyond the discussion of this
paper.

Recently, some algorithms have been developed for special cases of (1.1), such
as electronic structure calculations [38, 31], dominant eigenpair calculation [21, 22],
computing the coupling between matrices [12]. Usually, these approaches utilize the
special structures of the problems and can hardly be extended to the generic opti-
mization problems with orthogonality constraints.

The feasible region of problem (1.1), Sn,p, is usually called the Stiefel manifold
[28]. Various optimization methods designed for solving optimization problems re-
stricted on a matrix manifold can be applied to problem (1.1). For instance, gradient-
based methods [23, 24, 1], conjugate gradient methods [10, 2], trust-region methods
[36], Newton methods [10], quasi-Newton methods [26, 16, 15], etc. The key prin-
ciple of these methods is to find a feasible point with a lower function value than
that at the current iterate. In [10, 3], the authors study the geometric structure of
the Stiefel manifold from the optimization point of view, and bring up a new con-
cept, which is called “retraction,” to connect previously unrelated algorithms. A map
RX : TXSn,p → Sn,p is called a retraction if the following properties hold:

(1) RX(0X) = X, where 0X is the origin of TXSn,p;
(2) d

dtRX(tZ)|t=0 = Z for all Z ∈ TXSn,p,
where TXSn,p := {Y ∈ Rn×p | Y >X + X>Y = 0} is the tangent space of the Stiefel
manifold Sn,p at point X. The retractionRX maps a tangent vector into the manifold,
so it defines an update rule to preserve the orthogonality.

There are two major classes of retractions for optimization problems with or-
thogonality constraints. The first one searches along the geodesic of a manifold to
find a suitable trial point. Methods in this class are called geodesic-like retractions
[10, 1, 3]. Calculating geodesics involves solving ordinary differential equations which
often causes computational difficulties. The authors of [24] propose a quasi-geodesic
updating formula based on the Cayley transformation whose main computation is to
solve an n-by-n linear system. The methods in the other major class consist of two
steps, line search in the tangent space and projection back to the Stiefel manifold.
Thus, they are called projection-like methods [23, 3, 4]. The orthogonal projection can
be calculated by QR factorization or polar decomposition. The projection-like meth-
ods coincide with the geodesic-like methods, in the special case of p = 1. The above
mentioned retraction-based approaches, including both geodesic-like and projection-
like methods, should work with a certain line search strategy, such as the Armijo
inexact line search [25, 29] or a nonmonotonic line search strategy. The line search
procedure is to guarantee the global convergence, but in the meantime, it induces
additional function value evaluations.

Recently, Wen and Yin [33] proposed a feasible method for optimization with
orthogonality constraints. In their work, an efficient way to calculate the Cayley
transformation is introduced. In each iteration, it only requires one to solve a 2p× 2p
linear system instead of an n × n one. Combining a curvilinear search algorithm
[13] with Barzilai–Borwein (BB) [5] nonmonotonic line search [37], it achieves much
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Retraction

Projection-likeGeodesic-like 

Wen-Yin

Jiang-Dai

Fig. 1. Relationship among retraction-based methods.

lower computational cost than the other existing retraction-based algorithms and is
illustrated to have robust numerical performance in solving a bunch of optimization
problems with orthogonality constraints. Later on, Jiang and Dai [17] significantly
extended the idea of [33], and found out that a large group of retraction-based methods
enjoy such a reducible iterative formulation. It can be proved that all the algorithms
under their framework with BB nonmonotonic line search are globally convergent to
a stationary point.

In order to clarify the difference among the aforementioned retraction-based al-
gorithms, we demonstrate their relationship through Figure 1.

It is worth mentioning that the retraction-based algorithms highly depend on the
geometry of the Stiefel manifold and hence have very low compatibility with additional
constraints such as nonnegative constraints or linear inequality constraints.

1.2. Contributions. In this paper, we revisit the first-order optimality condi-
tion of problem (1.1), and find that it is of the following form, (In −XX>)∇f(X) = 0, substationarity,

X>∇f(X) = ∇f(X)>X, symmetry,
X>X = Ip, feasibility.

(1.2)

For convenience, we call the three equalities of (1.2) substationarity,3 symmetry, and
feasibility, respectively. Based on the first-order optimality condition, we propose a
new algorithmic framework consisting of two main steps.

The first step is function value reduction. Namely, we find a feasible point which
reduces the objective function value to a certain amount in proportion to the norm
square of the projected gradient. We then propose two types of algorithms which can
achieve such a requirement. Gradient reflection (GR) and gradient projection (GP)
are the representatives of the first type of algorithm which uses different strategies
to pull a gradient descent point back to the Stiefel manifold. The second type of
algorithm employs a columnwise block coordinate descent (CBCD) iteration. A novel
idea for solving the corresponding subproblem efficiently is proposed.

The second step is to find a feasible point satisfying the symmetry property. This
correction step, whose main calculation is a p × p singular value decomposition, is
highly dependent on Assumption 1.1. The correction step can be viewed as a rotation
of the trial point obtained in the first step. In the special cases when p = 1 or G = 0,
the symmetry of (1.2) always holds and hence this step can be waived.

3Here, substationarity stands for the stationarity of the gradient of the objective function in the
null space of X>.
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It is worth mentioning that GR and GP iterations belong to particular retractions
if the correction step is not necessary, but either CBCD or GR/GP with correction step
is not a retraction-based iteration. According to the construction way, the proposed
algorithmic framework is expected to be compatible with additional nonmanifold con-
straints. Our framework exposes the essential mechanism of the gradient methods for
optimization problems with orthogonality constraints, with which the global conver-
gence of gradient-based algorithms with fixed step sizes can be established. Moreover,
the numerical experiments for solving a class of generic quadratic minimization prob-
lems and the instances arising from electronic structure calculations show that our
new algorithmic framework performs robustly and more efficiently than the existing
algorithms.

Finally, the global convergence of CBCD is of great potential itself, as this is the
first convergence result for the BCD method for nonconvex optimization problems
with coupled constraints.

1.3. Organization. The rest of this paper is organized as follows. In section 2,
we study the first-order optimality condition of problem (1.1), and provide a new
first-order framework. The main step of our new framework is only required to meet
a condition for sufficient function value reduction. We then develop two types of algo-
rithms, in section 3, to achieve this requirement and form three concrete algorithms
under the scheme of the new framework, namely, GR, GP, and CBCD, respectively.
Global convergence of our new algorithmic framework is established in section 4. In
section 5, we demonstrate the efficiency of our algorithmic framework in solving a
class of general quadratic minimization problems and the energy minimization prob-
lem arising from the electronic structure calculations. We show the great potential of
our proposed approach in solving large-scale problems. Finally, concluding remarks
are given in the last section.

1.4. Notation. The Euclidean inner product of two matrices X,Y ∈ Rn×p is
defined as 〈X,Y 〉 = tr(X>Y ), where tr(A) is the trace of a matrix A ∈ Rp×p. ‖·‖2
and ‖·‖F represent the 2-norm and the Frobenius norm, respectively. The notations
diag(A) and Diag(x) stand for the vector formed by the diagonal entries of matrix A,
and the diagonal matrix with the entries of x ∈ Rn to be its diagonal, respectively. X†

refers to the pseudoinverse of X. We denote the smallest positive eigenvalue and the
smallest eigenvalue in magnitude of A by λ+

min(A) and λ|min|(A), respectively. The

ith column of matrix X ∈ Rn×p is denoted by Xi. Xī ∈ Rn×(p−1) denotes the matrix
X with its ith column removed, i.e., Xī = [X1, . . . , Xi−1, Xi+1, . . . , Xp]. We use
Xi,v ∈ Rn×p to denote X with its ith column replaced by a given vector v, i.e., Xi,v =
[X1, . . . , Xi−1, v,Xi+1, . . . , Xp]. Finally, B(C, r) is the ball defined as {X ∈ Rm1×m2 |
‖X −C‖F ≤ r}, where C ∈ Rm1×m2 is the center and r is the radius. qr (X) is the Q
matrix of the reduced QR decomposition4 of X. PSn,p

(X) denotes the projection5 of
X to the Stiefel manifold Sn,p. Finally, rand(n, p) and randn(n, p) represent n × p
randomly generated matrices under independently and identically distributed (i.i.d.)
uniformed distribution in [0, 1] and i.i.d. standard Gaussian distribution, respectively.

2. A new first-order framework. In this section, we first give a new pre-
sentation of the first-order optimality condition of the optimization problem with

4Q ∈ Rn×p is the Q matrix of the reduced QR decomposition of X ∈ Rn×p, if X = QR,
Q ∈ Rn×p is orthogonal, and R ∈ Rp×p is an upper triangle matrix.

5PSn,p (X) = Ũ Ṽ >, where ŨΣṼ > is the reduced singular value decomposition of X.
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orthogonality constraints (1.1), which motivates our new framework. The details of
the new framework will also be presented.

2.1. Optimality condition. The first-order optimality condition of problem
(1.1) can be interpreted as follows.

Definition 2.1. Given a point X ∈ Rn×p, if the relationship{
tr(Y >∇f(X)) ≥ 0,

X>X = Ip,
(2.1)

holds for any Y ∈ TXSn,p, we call X a first-order stationary point of (1.1). The set
containing all the first-order stationary points is denoted as ΩFON .

Since condition (2.1) cannot be verified numerically, we show the following equiv-
alent result.

Lemma 2.2. A point X is a first-order stationary point if and only if equalities
(1.2) hold.

Proof. We notice that any Y ∈ TXSn,p can be uniquely decomposed as Y =
XS+K,6 where S ∈ Rp×p is a skew matrix (i.e., S>+S = 0) and K ∈ Rn×p satisfies
K>X = 0, which is equivalent to K = (In − XX>)K. Likewise, any matrix of the
form XS +K lies in TXSn,p.

Since S and K are arbitrary, condition (2.1) is equivalent to the following rela-
tionships,

tr
(
S>X>∇f(X)

)
≥ 0 ∀S ∈ Rp×p andS> + S = Ip,(2.2)

tr
(
K>∇f(X)

)
≥ 0 ∀K ∈ Rn×p andK>X = 0,(2.3)

X>X = Ip.

By using (2.2) and the skew symmetry of Q>−Q, where Q := X>∇f(X), we obtain

tr
((
Q−Q>

)
Q
)
≥ 0.(2.4)

It then follows from (2.4) that

0 ≤ tr
((
Q−Q>

)
Q
)

+ tr
((
Q−Q>

)
Q
)

= tr
(
QQ−Q>Q

)
+ tr

(
Q>

(
Q> −Q

))
= tr

(
QQ−Q>Q

)
+ tr

((
Q> −Q

)
Q>
)

= tr
(
QQ−Q>Q+Q>Q> −QQ>

)
= tr

((
Q−Q>

) (
Q−Q>

))
= −tr

((
Q−Q>

)> (
Q−Q>

))
≤ 0.

This implies Q = Q>. On the other hand, if X>∇f(X) is symmetric, the equal-
ity tr(S>X>∇f(X)) = 0 holds for any skew symmetric matrix S. Hence, (2.2) is
equivalent to the symmetry of X>∇f(X).

Following from the property K = (In −XX>)K and the arbitrariness of K, we
can easily obtain the equivalence between (2.3) and (In − XX>)∇f(X) = 0. This
completes the proof.

6This is because Y = XX>Y + (In − XX>)Y for any Y . It is not difficult to verify that
(In − XX>)Y satisfies Y >(In − XX>)>X = 0. X>Y is a skew matrix due to the fact that
Y ∈ TXSn,p := {Y ∈ Rn×p | Y >X +X>Y = 0}.
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Remark 2.3. It is very easy to check that our first-order optimality condition (1.2)
in the Euclidean space is exactly the same as the one in the tangent space:{

∇f(X)−X∇f(X)>X = 0,
X>X = Ip,

which is stated in [33]. Moreover, it actually holds that

(2.5)

∥∥∇f(X)−X∇f(X)>X
∥∥2

F
=
∥∥∇f(X)−XX>∇f(X)

∥∥2

F

+
∥∥X>∇f(X)−∇f(X)>X

∥∥2

F
.

2.2. Correction step and algorithm framework. We notice that there are
three properties, substationarity, symmetry, and feasibility in our first-order optimal-
ity condition (1.2) of problem (1.1). Motivated by the relationship (2.5), to make the
gradient in the tangent space equal to zero, we can adopt the following two step pro-
cedure. From the current iterate, we first find a trial point which reduces the function
value in proportion to the norm square of the projected gradient. Based on this trial
point, we then find the next iterate which makes the symmetry property hold without
increasing the function value. Then we repeat the procedure until convergence. In
these two steps, the feasibility holds all the time. The details of these two steps are
described in the following.

Suppose the current iteration point isXk. In the first step, we find an intermediate
point X̄ ∈ Sn,p, which satisfies sufficient function value reduction, i.e.,

f
(
Xk
)
− f(X̄) ≥ C1 ·

∥∥∥(In −XkXk>
)
∇f

(
Xk
)∥∥∥2

F
,(2.6)

where C1 > 0 is a positive constant. The right-hand side of (2.6) measures the square
of the Frobenius norm of the projected gradient at Xk in the Euclidean space.

Although the intermediate point X̄ ∈ Sn,p satisfies (2.6), it does not satisfy the
symmetry property in (1.2). In the second part, we consider constructing a correction
step which makes the symmetry property hold without increasing the function value.

Resulting from Assumption 1.1, it holds that

X̄>∇f(X̄) = X̄>H(X̄)X̄ + X̄>G.(2.7)

The term X̄>H(X̄)X̄ is symmetric. Hence, the next iterate Xk+1 can take X̄, if
X̄>G is symmetric. Otherwise, it suffices to find a point Xk+1 satisfying the symme-

try property Xk+1>G = G>Xk+1. To achieve this, we use the rotation correction,
namely, Xk+1 = −X̄UT>, where U and T come from the singular value decomposi-
tion of a p× p matrix

(2.8) X̄>G = UΛT>.

The motivation of this correction step is to find a p× p orthogonal matrix Q∗ which
minimizes f(X̄Q∗), and then set Xk+1 = X̄Q∗. By recalling Assumption 1.1, we
obtain Q∗ = −UT>, which is the global minimizer of

min
Q∈Sp,p

tr
((
X̄Q

)>
G
)
.

Therefore, we set the next iterate as

Xk+1 =

{
X̄ if X̄>G = G>X̄,
−X̄UT> otherwise.

(2.9)

We can then establish the following properties of such a correction step Xk+1.
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Lemma 2.4. Suppose X̄ ∈ Sn,p. Let {Xk+1} be calculated by (2.9), where U and

T are determined by (2.8). Then, it holds that Xk+1 ∈ Sn,p and Xk+1>∇f(Xk+1) is
symmetric. Furthermore, we have

8θ
(
f(X̄)− f

(
Xk+1

))
≥
∥∥X̄>∇f(X̄)−∇f(X̄)>X̄

∥∥2

F
,(2.10)

where

θ := ‖G‖2.(2.11)

Proof. The orthogonality of Xk+1 and the symmetry of Xk+1>∇f(Xk+1) can
be directly derived by formula (2.9). Next, we prove inequality (2.10). If θ = 0,
which means ∇f(X) = H(X)X, then the symmetry of X̄>∇f(X̄) implies (2.10)
immediately. On the other hand, according to Assumption 1.1, we have

(2.12)

f(X̄)− f
(
Xk+1

)
= h(X̄) + tr

(
G>X̄

)
− h

(
Xk+1

)
− tr

(
G>Xk+1

)
= tr

(
G>X̄ −G>Xk+1

)
= tr

(
UΛT> + Λ

)
= tr(B + Λ),

where B = (ΛT>U + U>TΛ)/2.
On the other hand,

(2.13)∥∥X̄>∇f(X̄)−∇f(X̄)>X̄
∥∥2

F
=
∥∥X̄>G−G>X̄∥∥2

F

=
∥∥UΛT> − TΛU>

∥∥2

F
= 2tr

(
Λ2
)
− 2tr

(
ΛT>UΛT>U

)
= 4tr

(
Λ2 −B2

)
,

where the last equality uses the fact that

tr
(
B2
)

=
1

2
tr
(
Λ2
)

+
1

2
tr
(
ΛT>UΛT>U

)
.

Moreover, we have
(2.14)

tr
(
Λ2 −B2

)
≤

p∑
i=1

(
Λ2
ii −B>i Bi

)
≤

p∑
i=1

(
Λ2
ii −B2

ii

)
=

p∑
i=1

(Λii −Bii)(Λii +Bii)

≤
p∑
i=1

2Λii(Λii +Bii) ≤ 2‖Λ‖2 ·
p∑
i=1

(Λii +Bii) = 2‖Λ‖2 · tr(Λ +B)

≤ 2‖G‖2 · tr(Λ +B) = 2θ · tr(Λ +B).

Here the third inequality uses the fact that

|Bii| = Λii ·
∣∣T>i Ui∣∣ ≤ Λii.

Combining (2.12)–(2.14), we complete the proof.

We can adopt

c(X) :=
(
In −XX>

)
∇f(X),(2.15)

because the symmetry and the feasibility of (1.2) hold at each iteration. The complete
framework can be described as the following.

D
ow

nl
oa

de
d 

04
/1

9/
20

 to
 1

24
.1

6.
14

8.
9.

 R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

310 BIN GAO, XIN LIU, XIAOJUN CHEN, AND YA-XIANG YUAN

Algorithm 1: First-order framework for optimization problems with or-
thogonality constraints.

1 Set tolerance ε > 0; Initialize: X0 ∈ Sn,p; Set k := 0

2 while ‖c(Xk)‖F > ε do
3 Based on Xk, find a feasible point X̄ satisfying (2.6);

4 Based on X̄, calculate a feasible point Xk+1 by (2.9);
5 Set k := k + 1.

6 Return Xk.

3. Algorithms for finding X̄ from Xk. In section 2, we propose a new algo-
rithmic framework; however, how to find a point X̄ satisfying sufficient function value
reduction (2.6) is still open. In this section, we introduce two types of algorithms to
achieve step 3 in Algorithm 1. The first type of algorithm is based on gradient descent
in the Euclidean space which will be introduced in the first two subsections. The sec-
ond type of algorithm adopts a columnwise coordinate descent idea, and it will be
introduced in the third subsection. In the last subsection, we list the computational
cost per iteration of some existing algorithms and our new proposed algorithms.

3.1. Gradient-type methods. An intuitive idea to reduce the function value
in the Euclidean space is to take the gradient descent direction. Unfortunately, a trial
point obtained by a gradient descent step from the current iterate may violate the
orthogonality constraint. Therefore, in this section we discuss two concrete strategies
to pull the trial point back to the Stiefel manifold. Each of them can be used in step
3 in Algorithm 1.

Both strategies are based on the following observation.

Lemma 3.1. For any Y ∈ BX,τ := B(X − τ∇f(X), τ‖∇f(X)‖F), where τ ∈
(0, ρ−1), it holds that

f(X)− f(Y ) ≥ 1− ρτ
2τ

· ‖X − Y ‖2F.(3.1)

Proof. For any Y ∈ BX,τ , we can derive

〈Y −X,Y −X + 2τ∇f(X)〉 ≤ 0,

which implies

f(Y ) ≤ f(X) + 〈Y −X,∇f(X)〉+
ρ

2
‖Y −X‖2F

= f(X) +
1

2τ
· 〈Y −X,Y −X + 2τ∇f(X)〉 − τ−1 − ρ

2
· ‖Y −X‖2F

≤ f(X)− τ−1 − ρ
2

· ‖Y −X‖2F.

This completes the proof.

We illustrate the relationship among the feasible region, current iterate, gradient
step, and the auxiliary ball BX,τ in Figure 2.
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2.3 Gradient Type Method

An intuitive idea to reduce the function value in the Euclidean space is to take the gradient descent direction. Unfor-
tunately, a gradient step must violate the orthogonal constraint. Therefore, in this section we discuss two strategies to
pull the gradient step back to the Stiefel manifold.

Both of the two strategies are based on the following observation.

Lemma 2.4. Suppose Assumption 1.1 holds. For any Y ∈ BX := B(X − τ∇f(X), τ ||∇f(X)||F), where τ ∈
(0, ρ−1), it holds that

f(X)− f(Y ) ≥ 1− ρτ
2τ

· ||X − Y ||2F. (18)

Proof. For any Y ∈ BX , we can derive

〈Y −X,Y −X + 2τ∇f(X)〉 ≤ 0,

which implies

f(Y ) ≤ f(X) + 〈Y −X,∇f(X)〉+
ρ

2
||Y −X||2F

= f(X) +
1

2τ
· 〈Y −X,Y −X + 2τ∇f(X)〉 − τ−1 − ρ

2
· ||Y −X||2F

≤ f(X)− τ−1 − ρ
2

· ||Y −X||2F.

This completes the proof.

We illustrate the relationship among the feasible region, current iterate, gradient step and the auxiliary ball BX by
the following figure which shows the special case n = 2, p = 1.

-1 -0.5 0 0.5 1 1.5 2 2.5 3

-1

-0.5

0

0.5

1

1.5

2

2.5

0

BX,τ

2.3.1 Gradient Reflection

The first possibly feasible trial step can take the point which is the farthest away from the current iterate Xk in the
intersection of the Stiefel manifold and the auxiliary ball. This point can actually calculated by the Householder

9

S2,1 

.
.

.
.

X − τ∇f(X)

− τ∇f(X)

X  

Fig. 2. Gradient-type method.

3.1.1. Gradient reflection. The first possible choice of a feasible trial point is
to take the reflection point of the current iterateXk reflecting on the null space ofXk−
τ∇f(Xk). This point can be actually calculated by the Householder transformation

GR :

{
V = Xk − τ∇f(Xk) for a fixed chosen τ ∈ (0, ρ−1),
X̄GR = (−In + 2V (V >V )†V >)Xk.

(3.2)

Since X̄GR is the reflection point, we call Algorithm 1, using (3.2), to get X̄ := X̄GR

in step 3, the GR.
Next, we show the intermediate point X̄GR defined in (3.2) is feasible and achieves

sufficient function value reduction (2.6).

Lemma 3.2. Let Xk ∈ Sn,p and X̄GR be defined by (3.2). Then it holds that
X̄GR ∈ Sn,p and

f
(
Xk
)
− f

(
X̄GR

)
≥ 2(τ−1 − ρ)

(τ−1 + ρ+ θ)2
·
∥∥∥(In −XkXk>

)
∇f

(
Xk
)∥∥∥2

F
,(3.3)

where τ ∈ (0, ρ−1), ρ, and θ are defined in Assumption 1.1 and equality (2.11), re-
spectively.

Proof. With a slight abuse of notation, we omit the superscript k and use X to
denote Xk in this proof.

First, by simple calculation, we have

X̄>GRX̄GR = X>(−In + 2V (V >V )†V >)>(−In + 2V (V >V )†V >)X = Ip,

which implies X̄GR ∈ Sn,p.
Let RSQ> be the reduced singular value decomposition of V . If S = 0, we have

X = τ∇f(X), which implies that (In −XX>)∇f(X) = 0, and inequality (3.3) holds
immediately. Now we consider the case that S 6= 0. We have
(3.4)
‖X̄GR −X‖F
= 2

∥∥(In − V (V >V )†V >
)
X
∥∥

F
= 2

∥∥(In −RR>)X∥∥F
= 2
√
p− ‖R>X‖2F

= 2
∥∥(In−XX>)R∥∥F

≥ 2
∥∥(In−XX>)V QS†∥∥F

≥ 2
∥∥(In−XX>)V Q∥∥F

· λ+
min

(
S†
)

= 2
∥∥(In −XX>)V ∥∥F

/‖S‖2 = 2τ ‖c(X)‖F /‖V ‖2 ≥
2

τ−1 + ρ+ θ
‖c(X)‖F ,
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where λ+
min and c(X) are defined in section 1.4 and equality (2.15), respectively. Here,

the second inequality uses the fact that all the entries of the jth column of V Q are
zero for any j satisfying Sjj = 0 which is implied by the equality RS = V Q. The last
inequality of (3.4) results from

‖∇f(X)‖2 ≤ ‖H(X)X‖2 + ‖G‖2 ≤ ρ+ θ,(3.5)

‖V ‖2 ≤ ‖X‖2 + τ‖∇f(X)‖2 ≤ 1 + τ(ρ+ θ).

Substituting inequality (3.4) into (3.1) in Lemma 3.1 with Y = X̄GR, we arrive at

f(X)− f
(
X̄GR

)
≥ 4

(τ−1 + ρ+ θ)2
· τ
−1 − ρ

2
·
∥∥(In −XX>)∇f(X)

∥∥2

F

=
2(τ−1 − ρ)

(τ−1 + ρ+ θ)2
·
∥∥(In −XX>)∇f(X)

∥∥2

F
,(3.6)

which completes the proof.

3.1.2. Gradient projection. Another possible choice of a feasible trial point
is to directly take the projection of Xk − τ∇f(Xk) onto the Stiefel manifold, which
can be calculated by,

GP :

{
V = Xk − τ∇f(Xk) for a fixed chosen τ ∈ (0, ρ−1),
X̄GP = PSn,p

(V ).
(3.7)

We call Algorithm 1 using (3.7) to get X̄ := X̄GP in step 3 the GP. We can simi-
larly prove the feasibility of X̄GP and show sufficient function value reduction can be
achieved.

Lemma 3.3. Let Xk ∈ Sn,p and X̄GP be defined by (3.7). Then it holds that
X̄GP ∈ Sn,p and

f(Xk)− f
(
X̄GP

)
≥ τ−1 − ρ

2(τ−1 + ρ+ θ)2
·
∥∥∥(In −XkXk>

)
∇f

(
Xk
)∥∥∥2

F
,(3.8)

where τ ∈ (0, ρ−1), ρ, and θ are defined in Assumption 1.1 and equality (2.11), re-
spectively.

Proof. The first part of the argument can be derived in the same manner as
Lemma 3.2. Here, we just focus on the proof of (3.8).

By using the singular value decomposition V = RSQ> and the first two equalities
of (3.4), we arrive at∥∥X̄GP −Xk

∥∥2

F
− 1

4

∥∥X̄GR −X
∥∥2

F

=
∥∥RQ> −Xk

∥∥2

F
−
∥∥(In −RR>)Xk

∥∥2

F

= tr(Ip)− 2tr
(
QR>Xk

)
+ tr(Ip)− tr(Ip) + 2tr

(
Xk>RR>Xk

)
−
∥∥R>Xk

∥∥2

F

= p− 2tr
(
QR>Xk

)
+
∥∥R>Xk

∥∥2

F
=
∥∥Q> −R>Xk

∥∥2

F
≥ 0,

which implies∥∥X̄GP −Xk
∥∥

F
≥ 1

2

∥∥X̄GR −Xk
∥∥

F
≥ 1

τ−1 + ρ+ θ
‖c(X)‖F.

Then, we can obtain (3.8) along the lines of the proof of inequality (3.6), and then
complete the proof.
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3.2. CBCD method. Another popular first-order method is block coordinate
descent. For optimization problems with orthogonality constraints, a natural way to
build up blocks is to partition the variables by the columns. On the other hand,
the convergence of block coordinate descent with blocks coupled in nonconvex con-
straints cannot be guaranteed by existing results. Therefore, it is worthwhile studying
the CBCD for optimization problems with orthogonality constraints. In this subsec-
tion, we consider Algorithm 1 using CBCD in step 3, discuss the way to solve the
subproblem efficiently, and prove that such an approach belongs to Algorithm 1.

Once we fix the values of p − 1 columns of X and only leave the ith column as
variable, we arrive at the following subproblem:

min
x∈Rn

fi,X(x)

s. t. ‖x‖2 = 1,
X>
ī
x = 0,

(3.9)

where fi,X(x) := f(Xi,x), Xi,x, and Xī are defined in subsection 1.4.
Suppose we can obtain the solution of the above subproblem or find a feasible

point x+ with sufficient function value reduction compared to fi,X(Xi). Then we can
use this feasible point to update our iterate columnwisely in a Gauss–Seidel manner.
More specifically, if X is the current iterate, the trial point X̄ can be calculated by
the following CBCD scheme.

Algorithm 2: Columnwise block coordinate descent.

1 Set W 0 = X, i := 1;
2 while i ≤ p do
3 Solve the subproblem (3.9) with X replaced by W i−1, and obtain feaible

point x+ satisfying the following sufficient function value reduction and
asymptotic small step size safeguard

fi,W i−1(Xi)− fi,W i−1(x+) ≥ k1‖Xi − x+‖22,(3.10)

‖Xi − x+‖2 ≥ k2‖(In −W i−1W i−1>)∇fi,W i−1(Xi)‖2;(3.11)

Set W i = W i−1
i,x+ , i := i+ 1;

4 Return X̄ = W p.

Remark 3.4. Algorithm 2 actually provides a cyclic CBCD scheme, i.e., the col-
umns are updated in a cyclic order. We can similarly implement the greedy order,
stochastic order (sampling with replacement), or randomly permuted order (sampling
without replacement) which often appear in classical block coordinate descent algo-
rithms. However, as we will show in section 5, these strategies will not help to improve
the performance of the cyclic CBCD. Therefore, we omit the detailed descriptions and
analyses of these strategies.

Before claiming that Algorithm 2 can find X̄ in step 3 of Algorithm 1, we need to
answer two questions: can we cheaply calculate a solution or feasible point achieving
sufficient function value reduction and asymptotic small step size safeguard (3.10)–
(3.11)? Does Algorithm 2 provide a feasible point of problem (1.1) satisfying (2.6)?
We answer these two questions in the following two subsections.
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3.2.1. Solving the CBCD subproblem. In this subsection, we discuss how to
obtain a feasible trial point of subproblem (3.9) efficiently. We notice that the second
constraint of (3.9) restricts the variable x lying in the null space of Xī. Hence, we
can use the variable change x = (In −XīX

>
ī

)x to reduce this constraint.

First, the fact X>
ī
x = 0 holds if and only if x = (In−XīX

>
ī

)x. Hence, subproblem
(3.9) is equivalent to the following problem,

min
x∈Rn

fi,X
((
In −XīX

>
ī

)
x
)

s. t.
∥∥(In −XīX

>
ī

)x
∥∥

2
= 1.

(3.12)

Furthermore, problem (3.12) is equivalent to a well-posed problem if it is restricted
to the null space of Xī. More specifically, we have the following proposition.

Proposition 3.5. The equivalence between problem (3.9) restricted to a subspace
D and the following sphere constrained problem

min
x∈Rn

qi(x) := fi,X
((
In −XīX

>
ī

)
x
)

s. t. ‖x‖2 = 1,
x ∈ D

(3.13)

holds, if X>
ī
x = 0 holds for any x ∈ D.

Proof. For any x ∈ D, it holds that x = (In −XīX
>
ī

)x which implies the equiv-
alence of problems (3.13) and (3.12) restricted to the subspace D. By using the
equivalence between problems (3.12) and (3.9), we complete the proof.

Proposition 3.5 tells us that we can calculate a feasible point of subproblem (3.9)
with sufficient function value reduction through solving problem (3.13) if we can find
a suitable subspace D.

We notice that both Xi and ∇qi(Xi) = (In −XīX
>
ī

)∇fi,X((In −XīX
>
ī

)Xi) lie
in the null space of Xī. Therefore, any point in the subspace span {Xi,∇qi(Xi)}
satisfies the orthogonality. In other words, span {Xi,∇qi(Xi)} is a qualified choice of
orthogonal subspace D in Proposition 3.5. Considering that subproblem (3.13) with
D = span {Xi,∇qi(Xi)} is a special case of the original optimization problem with
orthogonality constraints (1.1) with n = 2 and p = 1, we recommend using the GR
step (3.2) or the GP step (3.7) introduced in subsection 3.1 to calculate x+.

It can be verified that the GR as well as the GP step satisfy sufficient function
value reduction (3.10) and asymptotic small step size safeguard (3.11).

Lemma 3.6. Let x+ = (−1 + 2v(v>v)−1v>)Xi or x+ = (v>v)−
1
2 v, where v =

Xi−τ ·∇qi(Xi), τ ∈ (0, ρ−1). Then x+ satisfies the constraints of (3.9) and conditions
(3.10) and (3.11).

The proof of Lemma 3.6 directly follows from Lemmas 3.1, 3.2, 3.3, and the fact
that In −XX> = (In −XiX

>
i )(In −XīX

>
ī

), and hence it is omitted here.

Remark 3.7. If fi,X is quadratic, subproblem (3.13) restricted to the subspace
span {Xi,∇qi(Xi)} is equivalent to finding the roots of a quartic equation, which can
be calculated in a closed form. In this case, the global minimizer of subproblem (3.13)
restricted to the subspace span {Xi,∇qi(Xi)} can be an alternative option of x+.

3.2.2. Sufficient function value reduction. In this subsection, we show that
X̄ calculated by Algorithm 2 is a feasible point of problem (1.1) and satisfies sufficient
function value reduction (2.6).
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Lemma 3.8. Let X ∈ Sn,p and X̄ be calculated by Algorithm 2. Then it holds that
X̄ ∈ Sn,p and

(3.14)
f(X)− f(X̄) ≥ k1k

2
2(

1 + (p− 1)k2

(
(1 +

√
2)ρ+

√
2θ
))2

·
∥∥(In −XX>)∇f(X)

∥∥2

F
.

Proof. The feasibility of X̄ directly follows from the cyclic Gauss–Seidel-type
update and the constraints of subproblem (3.9).

Now, we prove the second part. First, we have

(3.15)

f(X)− f(X̄) = f
(
W 0
)
− f (W p) =

p∑
i=1

(
f
(
W i−1

)
− f

(
W i
))

=

p∑
i=1

(
fi,W i−1

(
W i−1
i

)
− fi,W i−1

(
W i
i

))
and

(3.16) fi,W i−1

(
W i−1
i

)
− fi,W i−1

(
W i
i

)
≥ k1k

2
2

∥∥∥(In −W i−1W i−1>
)
∇fi,W i−1

(
W i−1
i

)∥∥∥2

2
.

By using the Lipschitz continuity and the boundedness of gradient (3.5), we have
(3.17)∥∥∥(In −W i−1W i−1>

)
∇fi,W i−1

(
W i−1
i

)∥∥∥
2

≥
∥∥∥(In −W 0W 0>

)
∇fi,W i−1

(
W i−1
i

)∥∥∥
2

−
∥∥∥(W i−1W i−1> −W 0W 0>

)
∇fi,W i−1

(
W i−1
i

)∥∥∥
2

≥
∥∥(In −XX>)∇fi,W i−1(Xi)

∥∥
2

−
i−1∑
j=1

∥∥∥W jW j> −W j−1W j−1>
∥∥∥

F
·
∥∥∇fi,W i−1

(
W i−1
i

)∥∥
2

≥
∥∥(In −XX>)∇fi,W 0(Xi)

∥∥
2
−
∥∥(In −XX>) (∇fi,W 0(Xi)−∇fi,W i−1(Xi)

)∥∥
2

− (ρ+ θ)
i−1∑
j=1

(√
2− 2

(
W j
j

>
W j−1
j

)2
)

≥
∥∥(In −XX>)∇fi,X(Xi)

∥∥
2
−
∥∥∇fi,W 0(Xi)−∇fi,W i−1(Xi)

∥∥
2

−
√

2(ρ+ θ) ·
i−1∑
j=1

(√
2− 2

(
W j
j

>
W j−1
j

))

≥
∥∥(In −XX>)∇fi,X(Xi)

∥∥
2
− ρ ·

∥∥W 0 −W i−1
∥∥

2
−
√

2(ρ+ θ)

i−1∑
j=1

∥∥∥W j
j −W j−1

j

∥∥∥
2

≥
∥∥(In −XX>)∇fi,X(Xi)

∥∥
2

−
((

1 +
√

2
)
ρ+
√

2θ
)√

k1

−1
i−1∑
j=1

√
fj,W j−1

(
W j−1
j

)
− fj,W j−1

(
W j
j

)
,
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where the third last inequality uses the facts |W i−1
i

>
W i
i | ≤ 1 and

√
2− 2δ2 ≤ 2

√
1− δ

(∀|δ| ≤ 1). Together with (3.16), we have
(3.18)√
fi,W i−1(W i−1

i )− fi,W i−1

(
W i
i

)
≥
√
k1k2

∥∥∥(In −W i−1W i−1>
)
∇fi,W i−1

(
W i−1
i

)∥∥∥
2

≥
√
k1k2

∥∥(In −XX>)∇fi,X(Xi)
∥∥

2

− k2

((
1 +
√

2
)
ρ+
√

2θ
) i−1∑
j=1

√
fj,W j−1

(
W j−1
j

)
− fj,W j−1

(
W j
j

)
.

Let δj :=
√
fj,W j−1(W j−1

j )− fj,W j−1(W j
j ), c := k2((1 +

√
2)ρ +

√
2θ), substituting

relationship (3.18) into the fact thatδi + c

i−1∑
j=1

δj

2

≤ (1 + (i− 1)c) δ2
i +

i−1∑
j=1

c (1 + (i− 1)c) δ2
j ,

we obtain

(3.19) (1 + (i− 1)c) δ2
i +

i−1∑
j=1

c (1 + (i− 1)c) δ2
j

≥ k1k
2
2

∥∥(In −XX>)∇fi,X(Xi)
∥∥2

2
.

Summing up inequality (3.19) from i = 1 to p, and recalling (3.15), we arrive at

(3.20)(
1 + (p− 1)k2

((
1 +
√

2
)
ρ+
√

2θ
))2

p∑
i=1

(√
fi,W i−1

(
W i−1
i

)
− fi,W i−1

(
W i
i

))2

≥
p∑
i=1

k1k
2
2 ·
∥∥(In −XX>)∇fi,X(Xi)

∥∥2

2
= k1k

2
2 ·
∥∥(In −XX>)∇f(X)

∥∥2

F
,

which implies

f(X)− f(X̄) ≥ k1k
2
2(

1 + (p− 1)k2

(
(1 +

√
2)ρ+

√
2θ
))2 · ∥∥(In −XX>)∇f(X)

∥∥2

F
.

This completes the proof.

A byproduct of the proof of Lemma 3.8 is the following asymptotic small step
size safeguard property of CBCD.

Corollary 3.9. Let X ∈ Sn,p and X̄ be calculated by Algorithm 2. Then it holds
that

‖X − X̄‖F ≥
k2

1 + (p− 1)k2((1 +
√

2)ρ+
√

2θ)
·
∥∥(In −XX>)∇f(X)

∥∥
F
.(3.21)

Proof. Using condition (3.11), the second last inequality of (3.17), and following
along the same lines of inequalities (3.18) and (3.20), we can immediately obtain the
desired result.
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Table 1
Comparison on computational cost.

Update schemes
Computational cost

First τ Subsequent τ

Geodesic-like algorithms

Ygeoc(τ ;X) [1] O(n3) O(n3)
Yqgeo(τ ;X) [24] O(n3) O(n3)
Ygeoe(τ ;X) [10] 10np2 + 2np+O(p3) 4np2 + O(p3)
Ywy(τ ;X) [33] 7np2 + 2np+O(p3) 4np2 + np+O(p3)

Projection-like algorithms

Yqr(τ ;X) [3] 6np2 + 3np+O(p3) 2np2 + 2np
Ypd(τ ;X) [3] 7np2 + 4np+O(p3) 2np2 + 2np+O(p3)
Ypj(τ ;X) [23] 7np2 + 4np+O(p3) 3np2 + 3np+O(p3)
Yjd(τ ;X) [17] 7np2 + 3np+O(p3) 2np2 + 3np+O(p3)

Our algorithms

GR 9np2 + 4np+O(p3)
GP 7np2 + 3np+O(p3)

CBCD-GR 4np2 + 8np+O(p3)
CBCD-GP 4np2 + 5np+O(p3)

3.3. Computational cost. In this subsection, we compare the computational
cost per iteration among the existing algorithms and our GR, GP, and CBCD al-
gorithms. First of all, we clarify the computational cost of the basic linear algebra
operations as the following. Given A ∈ Rn×n, B1, B2 ∈ Rn×p, S1, S2 ∈ Rp×p, and
x ∈ Rn, calculating matrix-matrix products B>1 B2, B>1 B1, B1S1, and S1S2 we need
2np2, np2 + np, 2np2, and 2p3 flops, respectively. Computing A−1 and S−1 we need
8n3/3 and 8p3/3 flops, respectively, and computing Ax needs 2n2 flops. Calculating
the full singular value decomposition of S ∈ Rp×p to a fixed precision costs O(p3) flops
[30]. We assume ∇f(X) is already assembled and hence the computation of ∇f(X)
is not counted in the computational cost per iteration. The other settings are similar
to [17, Table 1]. We illustrate the comparison result as follows.

In Table 1, the two columns “first τ” and “subsequent τ” refer to the computa-
tional cost for the first trial point, and for subsequent trial points, respectively. How-
ever, the additional function evaluations have not been counted yet. For our GP, GR,
and CBCD algorithms, line search is waived, as GR and GP converge with a fixed step
size and the subproblem of CBCD only needs to be solved inexactly by one iteration.
Hence, our computational cost per iteration is much cheaper than the retraction-based
algorithms in general. Nevertheless, we have to point out that the computation time
does not only depend on the flops count, but also an efficient use of the BLAS.

Moreover, CBCD-GR or CBCD-GP refer to the CBCD (using Algorithm 2 in
step 3 of Algorithm 1) with the GR or GP updating formula used once in step 3

of Algorithm 2. We notice that the calculation of ∇fi,X((In −W i−1
ī

W i−1
ī

>
)Xi) is

waived because it is equal to∇fi,X(Xi) which is implied by W i−1
ī

>
Xi = 0. If fi,X(Xi)

(i = 1, . . . , p) are quadratic, and we solve the subproblem (3.13) restricted to the
subspace span {Xi,∇qi(Xi)} to global optimality in Algorithm 2, the corresponding
computational cost is 12np2 + 3np+O(p3).

4. Convergence analysis. In this section, we establish the global convergence
of our new algorithmic framework, Algorithm 1. First, the function value convergence
is shown.
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Lemma 4.1. Let {Xk} be the iterate sequence generated by Algorithm 1 initiated
from a point X0 ∈ Sn,p, then

{
f(Xk)

}
converges.

Proof. According to the construction of X̄ in step 3 of Algorithm 1 and Lemma 2.4,
we obtain
(4.1)
f
(
Xk
)
− f

(
Xk+1

)
= f

(
Xk
)
− f(X̄) + f(X̄)− f

(
Xk+1

)
≥ C1 ·

∥∥∥∇f (Xk
)
−XkXk>∇f

(
Xk
)∥∥∥2

F
+

1

8θ + 1
·
∥∥X̄>∇f(X̄)−∇f(X̄)>X̄

∥∥2

F

≥ C1 ·
∥∥∥∇f (Xk

)
−Xk∇f

(
Xk
)>
Xk
∥∥∥2

F
.

Hence, {f(Xk)} is monotonically decreasing. Since Sn,p is a compact set, {f(Xk)} is
bounded below so that we can conclude that {f(Xk)} converges.

Next, we show the iterate subsequence convergence.

Theorem 4.2. Let {Xk} be the sequence generated by Algorithm 1 initiated from
a point X0 ∈ Sn,p. Then there exists a convergent subsequence of {Xk}. Moreover,
each accumulation point X∗ of {Xk} satisfies the first-order optimality condition of
(1.1) defined by Definition 2.1.

Proof. Notice that {Xk} is bounded due to the feasibility of each iterate Xk,
hence it has a convergent subsequence. Let X∗ be an accumulation point of {Xk}.
Due to the feasibility of Xk, X∗ satisfies the feasibility equality of condition (1.2).

Recalling inequality (4.1) in the proof of Lemma 4.1 and the boundedness of
{f(Xk)}, we can conclude that

lim
k→+∞

∥∥∥∇f (Xk
)
−Xk∇f

(
Xk
)>
Xk
∥∥∥

F
= 0,

which implies
∥∥∇f(X∗)−X∗∇f(X∗)>X∗

∥∥
F

= 0. Hence, the first two equalities of
condition (1.2) are satisfied at X∗ as well. Combining with Lemma 2.2, we complete
the proof.

Lemma 4.1 and Theorem 4.2 guarantee that f(X) is a constant on the accumu-
lation point set of {Xk}. We denote this constant as f∗, and

Ωf
∗

FON = ΩFON ∩ {X | f(X) = f∗},(4.2)

where ΩFON is defined in Definition 2.1.
Next, we show that the distance between Xk and Ωf

∗

FON goes to zero.

Corollary 4.3. Let {Xk} be the sequence generated by Algorithm 1 initiated
from a point X0 ∈ Sn,p, then it holds that

f
(
Xk
)
≥ f∗ ∀ k = 1, . . . ,(4.3)

and

lim
k→∞

dist
(
Xk,Ωf

∗

FON

)
= 0.(4.4)
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Proof. Since {f(Xk)} is nonincreasing, relationship (4.3) holds. Now, we assume
statement (4.4) is not true. Then there exist δ > 0 and a subsequence of {Xk},
denoted as {Xkj}, such that

dist
(
Xkj ,Ωf

∗

FON

)
≥ δ.(4.5)

Since {Xkj} is bounded, there exists a convergent subsequence of {Xkj} and any accu-
mulation point shall also satisfy the first-order optimality condition, which contradicts
(4.5).

5. Numerical experiments. In this section, we report the numerical perfor-
mance of the algorithms based on Algorithm 1. Two types of testing problems are
chosen based on Examples 1.1 and 1.2. All experiments are performed in MATLAB
R2016a under a Windows 10 operating system on a Dell Optiplex 9020 personal com-
puter with an Intel Core i7-4790 CPU at 3.6 GHz×2 and 8 GB of RAM.

5.1. Implementation details. In Lemmas 3.2 and 3.3, we show that GR and
GP satisfy sufficient function value reduction (3.1) if the fixed step size τ is smaller
than ρ−1. However, to obtain a good estimation of ρ is often intractable, and ρ−1 can
be very small, which leads to slow convergence. In practice, we can use an alternating
BB step size introduced in [7], which has been already adopted in the retraction-
based algorithm in [33]. More specifically, the updating rule for τ can be described
as follows:

τ :=

{
τBB1 for odd k,
τBB2 for even k,

(5.1)

where

τBB1 :=

〈
Jk−1, Jk−1

〉
|〈Jk−1,Kk−1〉| , τBB2 :=

∣∣〈Jk−1,Kk−1
〉∣∣

〈Kk−1,Kk−1〉 ,

Jk−1 = Xk −Xk−1, Kk−1 = c
(
Xk
)
− c

(
Xk−1

)
.

We call GR and GP with step size τ defined by (5.1) as GR-BB and GP-BB, respec-
tively. In contrast, GR and GP with a fixed step size are called GR-F and GP-F,
respectively.

CBCD will only be tested in solving quadratic problem (1.1). Therefore, in
each inner iteration, the subproblem (3.13) restricted to the 2-dimensional subspace
span {Xi,∇qi(Xi)} can be solved to the global optimality. However, in each outer
iteration, the column updating order {j1, j2, . . . , jp} determines the way to classify
different types of algorithms. Usually, there are four orders:

(a) cyclic type: ji = i for i = 1, 2, . . . , p;
(b) random 1: ji = dp·rand(1, 1)e for i = 1, 2, . . . , p (sampling with replacement);
(c) random 2: {j1, j2, . . . , jp} is a random permutation of {1, 2, . . . , p} (sampling

without replacement);
(d) greedy type: for i = 1, 2, . . . , p,

ji := arg max
j=1,...,p

∥∥∥(In −W i−1W i−1>
)
∇fj(Xj)

∥∥∥
2
.

The corresponding CBCD are denoted as CBCD-C, CBCD-R1, CBCD-R2, and CBCD-
G, respectively.
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We have already shown that any iterate generated by any algorithm based on our
new framework satisfies the symmetry and feasibility in (1.2). Hence, for the stopping
criterion, we only need to check the projected gradient, ‖(In−XX>)∇f(X)‖F. More
specifically, the stopping criterion can be described as follows:

(5.2)
∥∥(In −XX>)∇f(X)

∥∥
F
< ε

∥∥∥∇f (X0
)
−X0∇f

(
X0
)>
X0
∥∥∥

F
,

where ε > 0 is a small number. The right-hand side of (5.2) is to match the scale of
the initial projected gradient. On the other hand, convergence of first-order methods
may slow down as the iterates approach a stationary point, so it is critical to detect
the slowdown and stop properly. It is usually beneficial to have flexible stopping rules
for identifying the situation that the algorithm gets trapped in a certain region. As
suggested in [33], we use the following rule based on the relative error in addition:

tolxk :=

∥∥Xk −Xk+1
∥∥

F√
n

< εx and tolfk :=

∣∣f(Xk)− f(Xk+1)
∣∣

|f(Xk)|+ 1
< εf ,(5.3)

(5.4)

mean
([

tolxk−min{k,T}+1, . . . , tolxk

])
< 10εx

and mean
([

tolfk−min{k,T}+1, . . . , tolfk

])
< 10εf .

We terminate the algorithm when one of the above three criteria (5.2)–(5.4) or
a maximum iteration number MaxIter is reached. Unless otherwise specified, the
default tolerance parameters are chosen as ε = 10−5, εx = 10−6, εf = 10−10, T = 5,
and MaxIter = 3000.

5.2. Testing problems. In this subsection, we introduce two types of testing
problems.

The first type of testing problem is based on Example 1.1. We consider the
following quadratic minimization problems with orthogonality constraints,

min
X∈Rn×p

1
2 tr
(
X>AX

)
+ tr

(
G>X

)
s.t. X>X = Ip,

(5.5)

where the matrices A ∈ Rn×n and G ∈ Rn×p are randomly generated by

A := PΛP>,(5.6)

G := α ·QD,(5.7)

where the matrices P = qr (rand(n, n)) ∈ Rn×n, Q̃ = rand(n, p) ∈ Rn×p, Q ∈ Rn×p,
and Qi = Q̃i/‖Q̃i‖2 (i = 1, 2, . . . , p), and matrices Λ ∈ Rn×n and D ∈ Rp×p are
diagonal matrices with

Λii :=

{
β1−i ifωi < ξ,
−β1−i otherwise

for all i = 1, 2, . . . , n,(5.8)

Djj := ζj−1 for all j = 1, 2, . . . , p,(5.9)

where ωi ∈ [0, 1] (i = 1, 2, . . . , n) are randomly generated numbers. Here, n× p is the
variable size; β ≥ 1 is a parameter determining the decay of eigenvalues of A; ζ ≥ 1 is
a parameter referring to the growth rate of the column’s norm of G. The parameter
α > 0 represents the scale difference between the quadratic term and the linear term.
When α is large, the linear term dominates the objective. The parameter ξ ∈ [0, 1] is
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for determining the definiteness of A. Once ξ = 1, matrix A is positive definite, while
ξ = 0 means A is negative definite. In contrast, unless specifically mentioned, the
default setting of these parameters are n = 3000, p = 60, α = 1, β = 1.01, ζ = 1.2, ξ =
1. The initial point is chosen as X0 = qr (rand(n, p)) ∈ Rn×p.

The second type of testing problem is a special case of Example 1.2. It is called
Kohn–Sham total energy minimization which comes from electronic structure calcu-
lations [18]. The original Kohn–Sham equations are the Euler–Lagrange equations for
the continuous total energy minimization problem. Under the planewave discretiza-
tion scheme, the Kohn–Sham total energy can be transformed into a finite-dimensional
approximation as follows:

(5.10) Etotal(X) = tr

[
X>

(
1

2
L+ Vion

)
X

]
+

1

2
%(X)>L†%(X) + %(X)>εxc(%(X)),

where %(X) := diag(XX>) denotes the charge density, and L is a finite-dimensional
representation of the Laplacian operator in the planewave basis. The discretized local
ionic potential can be represented by a diagonal matrix Vion. And the matrix L†

which is the discrete form of the Hartree potential corresponds to the pseudoinverse
of L. The exchange correlation function εxc is used to model the nonclassical and
quantum interaction between electrons. We aim to solve the following total energy
minimization problem,

min
X>X=Ip

Etotal(X).(5.11)

It is not difficult to verify that the gradient of the energy function is H(X)X, where
H(X) = L/2+Vion+Diag(L†%(X))+Diag(µxc(%(X))) is the Kohn–Sham Hamiltonian
and µxc(%(X)) = dεxc/d%(X).

5.3. Default settings of our algorithms. In this subsection, we determine the
default settings for our GR, GP, and CBCD algorithms by numerical experiments.

We first compare the performance of GR-F and GP-F with different fixed step
sizes for choosing a proper value of the step size. The parameter p in the test is
chosen as 0.1n, the parameter ζ is 1.01, and the other parameters take their default
values. We will compare four measurements: CPU time in seconds, total number
of iterations, KKT violation, and function value variance, which is defined in the
following. Suppose fmin is the smallest absolute function value of those obtained by
all solvers in the comparison, then for fs the function value returned by solver s, the
function value variance is defined as

|fs − fmin|
1 + |fmin|

+ eps,(5.12)

where eps = 2.2204e-16 is the machine precision in MATLAB. Here, we add eps to
the relative variance of function value, which is the first part of (5.12), in order to plot
the variance of the function value with a logarithmic scale for the y-axis. Since both
retraction-based approaches and our new framework are feasible methods, we do not
report the feasibility violation ‖I − X>X‖F. The results with respect to the above
four measurements are demonstrated in subfigures of Figure 3(a)–(d), respectively.
We choose different τ ’s ranging from 0.1ρ−1 to ρ−1.

From Figure 3, we observe that τ = 1/3ρ and 1/ρ are the best choices for GR-F
and GP-F, respectively, in this testing problem. Hence, we choose them as step sizes
in the comparison with GR-BB and GP-BB.
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Fig. 3. Performance of GR-F and GP-F with different step sizes.
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Fig. 4. Performance of gradient-based algorithms.
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Fig. 5. Performance of CBCD with different types of choosing working index.

Next, we perform on a set of testing problems with ten randomly generated matri-
ces with size n ranging from 500 to 5000, and the width of variable p is still 10%n. The
parameter ζ is 1.01, and the other parameters take their default values. Numerical
results of this test are illustrated in Figure 4.

From Figure 4, we notice that GR-BB and GP-BB require a much smaller num-
ber of iterations and less CPU time than GR-F and GP-F, and also achieve the same
first-order stationary point with comparable KKT violation. Moreover, GR-BB out-
performs GP-BB in terms of CPU time and iteration number in most cases. Thus,
we choose GR-BB to represent the gradient-based class of algorithms in the following
comparison in subsection 5.4.

We next compare the performance among CBCD variations corresponding to
different updating orders. In this comparison, we run CBCD-C, CBCD-R1, CBCD-
R2, and CBCD-RG to solve the testing problems with n ranging from 1000 to 6000,
p = 2%n, and other parameters taking their default values. The numerical results are
presented in Figure 5.
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Fig. 6. Performance of MOptQR with different types of step sizes.

From Figure 5, we can see that CBCD-C, CBCD-G, and CBCD-R2 have a similar
performance with respect to CPU time and iteration number, and are better than
CBCD-R1. Among CBCD-C, CBCD-G, and CBCD-R2, CBCD-C performs slightly
better and it is easy to implement. Therefore, we will use CBCD-C to represent the
CBCD class of algorithms in the following tests.

5.4. Performance comparison on random problems. In this subsection, we
compare the performance of our algorithms GR-BB and CBCD-C with two state-of-
the-art solvers in solving a large variety of problems (5.5). We first choose the solver
OptM7 based on the algorithm in [33]. For the other existing solver for comparison,
we intend to choose one from MOptQR-LS (manifold QR method with line search8

[3]), MOptQR-BB (for fair comparison, we implement the same alternating BB step
size strategy as GR-BB for the manifold QR method), and MOptTR (manifold trust-
region method [3]). We compare MOptQR-LS, MOptQR-BB, and MOptTR to solve
the problem (5.5) with default settings. The result is illustrated in Figure 6.

We can learn from Figure 6 that MOptQR-BB outperforms the other two methods
in the testing problems and, hence, we will choose MOptQR-BB to be the other solver
to compare with our algorithms. By abuse of notation, we use MOptQR to denote
MOptQR-BB hereafter.

In the following experiments, we only compare the performance between GR-BB,
CBCD-C, OptM, and MOptQR. We will set the same stopping criteria as introduced
in subsection 5.1, and the tolerance takes its default value. We design six groups of
testing problems, in each of which there is only one parameter varying with all the
others fixed. More specifically, we describe the varying parameters of each group as
follows:

• Number of rows of the variable, n = 1000j for j = 1,2,3,4,5,6.
• Number of columns of the variable, p = 20j for j = 1,2,3,4,5,6.
• Decay of the eigenvalues of A, β = 1.01 + 0.03j for j = 0,1, 2, 3,4, 5, 6,7, 8.
• Difference between column norms of G, ζ = 1.01 + 0.03j

for j = 0,1, 2, 3,4, 5, 6,7, 8.
• The dominance of the linear term, α = 10−2,10−1,1,10, 102.
• The definiteness of A, ξ = 0.2(j − 1) for j = 1, 2,3, 4,5, 6.

The meanings of these parameters refer to equalities (5.6)–(5.9). The linear eigenvalue
problem, i.e., problem (5.5) with α = 0, is not in our testing problems. The step sizes
in our new proposed GR and GP need to be tuned for different problems, and hence
the algorithms do not become practically useful. On the other hand, there are a bunch

7Available from http://optman.blogs.rice.edu
8Available from http://www.manopt.org
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Fig. 7. Comparison with varying matrix dimension n.
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Fig. 8. Comparison with varying width of variable p.

1.05 1.1 1.15 1.2 1.25
Eigenvalues decaying parameter, β

10-1

100

101

102

103

C
P

U
 t

im
e

(s
)

CBCD-C
GR-BB
OptM
MOptQR

(a) CPU time

1.05 1.1 1.15 1.2 1.25
Eigenvalues decaying parameter, β

100

101

102

103

104

It
e

ra
ti
o

n
 n

u
m

b
e

r

CBCD-C
GR-BB
OptM
MOptQR

(b) Iteration number

1.05 1.1 1.15 1.2 1.25
Eigenvalues decaying parameter, β

10-7

10-6

10-5

10-4

K
K

T
 v

io
la

ti
o

n

CBCD-C
GR-BB
OptM
MOptQR

(c) KKT violation

1.05 1.1 1.15 1.2 1.25

Eigenvalues decaying parameter, 

0

0.2

0.4

0.6

0.8

1

F
u
n
ct

io
n
 v

a
lu

e
 v

a
ri
a
n
ce

10-6

CBCD-C
GR-BB
OptM
MOptQR

(d) Function value
variance

Fig. 9. Comparison with varying decay parameter β.
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Fig. 10. Comparison with varying G parameter ζ.

of efficient solvers particularly designed for the linear eigenvalue problem which can
hardly be beaten by general solvers for optimization problems with orthogonality
constraints. The numerical results of the above six groups of testing problems are
given in Figures 7 to 12, respectively.

From the above figures, we have the following observations. All solvers reach
the same function value from the same initial point. They achieve comparable KKT
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Fig. 11. Comparison with varying dominance of linear term α.
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Fig. 12. Comparison with varying nonnegtivity of A, ξ.

violation with magnitude around 10−5. Moreover, GR-BB and CBCD-C usually
have lower KKT violation than the other two in most experiments. Among the four
algorithms, CBCD-C has the lowest iteration number in all the tests, while GR-BB
has the least CPU time. Except for very extreme cases, CBCD-C performs the second
best in terms of CPU-time.

Finally, we select all the testing problems with options in bold in the above
description, and put them into a performance profile experiment [9]. There are alto-
gether 6× 6× 3× 3× 3× 3 = 2916 randomly generated problems. The performance
profile can eliminate the influence of a small number of difficult problems and the
sensitivity of results associated with the different criteria, and also provide a way to
visualize the expected performance difference among many solvers. We describe the
key parameters of such a test as the following. For problem m and solver s, we denote
tm,s to represent the CPU time or iteration number. Performance ratio is defined as
rm,s := tm,s/mins{tm,s}. If solver s fails to solve problem m, the ratio rm,s will be
set to infinity or some sufficiently large number. Finally, the overall performance of
solver s is defined by

πs(ω) :=
number of problems where rm,s ≤ ω

total number of problems
.

It means the percentage of testing problems that can be solved in ωmins tm,s seconds
(or iterations). Of course, the closer πs is to 1, the better performance solver s has.
The performance profile results with respect to CPU time and iteration number are
given in Figure 13.

We observe that GR-BB performs best and CBCD-C performs the second best
among all four algorithms in solving these 2916 testing problems in CPU time, and
meanwhile CBCD-C requires the smallest iteration number. In addition, we also pro-
vide the average KKT violation and feasibility over these 2916 random problems in
Table 2.
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Fig. 13. Performance profile.

Table 2
Average KKT, feasibility violation, and function value.

CBCD-C OptM GR-BB MOptQR

KKT violation 1.6075e-05 2.1730e-05 1.9501e-05 2.5072e-05

Function value variance 6.5780e-06 8.1754e-06 3.0417e-06 7.9584e-06

Table 2 shows all solvers achieve a comparable average KKT violation, feasibility,
and function value variance. Here, the function value variance of solver s in solving
problem m is in the same manner as (5.12). More specifically,

zm,s :=
|fm,s −mins{fm,s}|

1 + |mins{fm,s}|
.

5.5. Global property of CBCD. An interesting observation of all the exper-
iments introduced above is that all solvers reach the same function value when they
converge from a randomly generated initial guess, although our problem (1.1) is non-
convex. Therefore we design a new experiment as the following. We construct the
following problem

min
X∈R3×2

1

2
tr
(

(X −X∗)>A (X −X∗)
)

s. t. X>X = I2,

where

A =

13/2 2 0
2 1 0
0 0 1

 .
For this special problem, we can verify that

X∗ =

3/5 0
4/5 0
0 1
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Table 3
Test results with initial points near XI.

Testing methods X∗ XI XII XIII Success rate

CBCD-C 1000 0 0 0 100%

GR-BB 0 1000 0 0 0%

OptM 0 1000 0 0 0%

MOptQR 0 1000 0 0 0%

Table 4
Test results with initial points near XII.

Testing methods X∗ XI XII XIII Success rate

CBCD-C 1000 0 0 0 100%

GR-BB 0 1000 0 0 0%

OptM 729 0 271 0 72.9%

MOptQR 78 0 922 0 7.8%

Table 5
Test results with initial points near XIII.

Testing methods X∗ XI XII XIII Success rate

CBCD-C 1000 0 0 0 100%

GR-BB 1000 0 0 0 100%

OptM 338 28 634 0 33.8%

MOptQR 5 5 990 0 0.5%

is the unique global minimizer, while

XI =

 1 0
0 0
0 1

 , XII =

 3/5 0
4/5 0
0 −1

 , XIII =

 1 0
0 0
0 −1


are the first-order stationary points. XI is a local minimizer, while the other two
are saddle points. Then we set the initial guess from the neighborhoods of the three
stationary points, and run GR-BB, CBCD-C, OptM, and MOptQR to see the different
performances. More specifically,

X0 := PSn,p

(
Xi + µ · randn(3, 2)

)
for i = I, II, III,

X0 := PSn,p
(randn(3, 2)),

where µ > 0 controls the distance between X0 and Xi for i = I, II, III. We set
µ = 10−4 and compare all solvers with these four types of initial points. With
repeating each test 1000 times, we record the number of each solution for every solver,
and the success rates are presented in Tables 3, 4, 5, and 6.

It can be observed from the above tables that the four algorithms are not neces-
sarily convergent to same stationary points. In our tests, CBCD-C can always find
the global minimizer. We are not sure whether it is a coincidence or CBCD-C has the
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Table 6
Test results with random initial guesses.

Testing methods X∗ XI XII XIII Success rate

CBCD-C 1000 0 0 0 100%

GR-BB 656 344 0 0 65.6%

OptM 864 136 0 0 86.4%

MOptQR 774 226 0 0 77.4%

nice property of converging to a global minimizer with great probability. The random
initialization does increase the chance to find a global minimizer for the other three
algorithms.

5.6. Kohn–Sham total energy minimization. In the end of this section, we
compare GR-BB with the state-of-the-art solvers in solving Kohn–Sham total energy
minimization. Our test is based on the best MATLAB platform, to the best of our
knowledge, for electronic structure calculations, KSSOLV [34]. KSSOLV has a friendly
interface and allows researchers to investigate their own algorithms easily for different
steps in electronic structure calculations. Currently, the most widely used algorithm
for (5.11) is the self-consistent field (SCF) iteration, which is provided in KSSOLV.
This is an iterative method for solving the nonlinear eigenvalue problem (KKT system
of (5.11) briefly). Other methods focusing on discretized Kohn–Sham total energy
minimization including direct constrained minimization [35] and its improved version,
trust-region direct constrained minimization (TRDCM) [36] are also integrated in KS-
SOLV. TRDCM combines the trust-region and the subspace strategies to this special
optimization problem with orthogonality constraints, and its trust-region subprob-
lems restricted to a subspace are solved by SCF. GR-BB and MOptQR are selected
in this comparison as general solvers for optimization problems with orthogonality
constraints.

We select 18 testing problems with respect to different molecules, which are assem-
bled in KSSOLV. We run methods SCF and TRDCM with ε = 10−5,MaxIter = 200,
and other parameters taking their default values, while GR-BB and MOptQR improve
their stopping criteria with ε = 10−5, εx = 10−9, εf = 10−13,MaxIter = 1000 to get a
comparable solution with other methods. It is worth mentioning that here the sym-
metry of (1.2) is already achieved, since the total energy function is homogeneous and
hence without a linear term. The stopping rule is set as

∥∥(In −XX>)H(X)X
∥∥

F
< ε.

For all of the testing algorithms, we set the same initial guess X0 by using the func-
tion “getX0,” which is provided by KSSOLV. The numerical results are illustrated in
Tables 7 and 8.

Here, “Etot,” “KKT violation,” “Iteration,” and “CPU time(s)” represent the
total energy function value, the value of

∥∥(In −XX>)H(X)X
∥∥

F
, the number of it-

erations and the total running time in seconds, respectively. From the tables, we
observe that GR-BB outperforms the other algorithms, even the heuristic ones, in
most cases, and it obtains a comparable total energy function value and a lower KKT
violation. In particular, in the large size problem “ctube661,” GR-BB achieves the
same total energy function value and same magnitude KKT violation, but requires
much less CPU time than the others.
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Table 7
The results in total energy minimization.

Solver Etot KKT violation Iteration CPU time(s)

al, n = 16879, p = 12

SCF −1.5799906179e+01 8.68e-03 200 2509.48
TRDCM −1.5803817595e+01 8.15e-06 184 1595.83
MOptQR −1.5802118775e+01 8.42e-03 1000 2017.61
GR-BB −1.5802922328e+01 2.05e-03 1000 2070.80

alanine, n = 12671, p = 18

SCF −6.1161921213e+01 9.70e-07 15 204.20
TRDCM −6.1161921213e+01 5.91e-06 16 147.84
MOptQR −6.1161921213e+01 8.14e-06 65 142.70
GR-BB −6.1161921212e+01 9.78e-06 63 142.36

benzene, n = 8407, p = 15

SCF −3.7225751363e+01 7.85e-07 12 85.52
TRDCM −3.7225751363e+01 7.33e-06 14 71.13
MOptQR −3.7225751363e+01 8.38e-06 127 154.06
GR-BB −3.7225751362e+01 9.69e-06 50 60.38

c2h6, n = 2103, p = 7

SCF −1.4420491322e+01 1.12e-06 11 10.09
TRDCM −1.4420491322e+01 5.00e-06 12 7.61
MOptQR −1.4420491322e+01 5.56e-06 49 8.53
GR-BB −1.4420491321e+01 9.84e-06 43 7.58

c12h26, n = 5709, p = 37

SCF −8.1536091936e+01 1.52e-06 16 288.09
TRDCM −8.1536091937e+01 9.48e-06 15 171.38
MOptQR −8.1536091935e+01 9.51e-06 442 1296.05
GR-BB −8.1536091936e+01 8.85e-06 50 157.02

co2, n = 2103, p = 8

SCF −3.5124395801e+01 1.50e-06 11 11.92
TRDCM −3.5124395801e+01 7.63e-06 13 8.72
MOptQR −3.5124395800e+01 9.03e-06 39 7.53
GR-BB −3.5124395801e+01 6.94e-06 39 7.52

ctube661, n = 12599, p = 48

SCF −1.3463843176e+02 2.80e-06 13 532.25
TRDCM −1.3463843176e+02 5.77e-06 22 787.58
MOptQR −1.3463843177e+02 5.06e-06 533 3817.95
GR-BB −1.3463843176e+02 9.27e-06 68 493.53

glutamine, n = 16517, p = 29

SCF −9.1839425243e+ 01 2.88e-06 17 616.73
TRDCM −9.1839425244e+ 01 8.49e-06 15 479.34
MOptQR −9.1839425243e+ 01 7.26e-06 87 570.86
GR-BB −9.1839425243e+ 01 9.76e-06 75 499.92

graphene16, n = 3071, p = 37

SCF −9.3873673630e+01 5.28e-03 200 2008.61
TRDCM −9.4046217545e+01 6.12e-06 43 313.88
MOptQR −9.4046217540e+01 9.56e-06 693 1110.39
GR-BB −9.4046217543+01 8.35e-06 321 513.45D
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Table 8
The results in total energy minimization.

Solver Etot KKT violation Iteration CPU time(s)

graphene30, n = 12279, p = 67

SCF −1.7358503892e+02 3.18e-03 200 15344.80
TRDCM −1.7359510505e+02 9.77e-06 62 3768.22
MOptQR −1.6908746446e+02 3.87e+00 1000 11930.80
GR-BB −1.7359510453e+02 1.97e-04 1000 12027.63

h2o, n = 2103, p = 4

SCF −1.6440507246e+01 7.78e-07 9 5.48
TRDCM −1.6440507246e+01 8.22e-06 11 4.55
MOptQR −1.6440507245e+01 8.43e-06 44 5.13
GR-BB −1.6440507245e+01 9.89e-06 42 4.53

hnco, n = 2103, p = 8

SCF −1.6440507246e+01 7.08e-07 9 5.52
TRDCM −1.6440507246e+01 9.64e-06 11 4.27
MOptQR −1.6440507245e+01 9.20e-06 82 10.41
GR-BB −1.6440507246e+01 8.64e-06 40 5.11

nic, n = 251, p = 7

SCF −2.3543529955e+01 1.10e-06 12 3.13
TRDCM −2.3543529955e+01 9.33e-06 49 5.50
MOptQR −2.3543529955e+01 8.26e-06 100 2.84
GR-BB −2.3543529955e+01 9.56e-06 39 0.88

pentacene, n = 44791, p = 51

SCF −1.3189029495e+02 9.83e-07 15 2448.72
TRDCM −1.3189029495e+02 9.67e-06 23 2706.14
MOptQR −1.3189029495e+02 7.02e-06 355 9145.66
GR-BB −1.3189029495e+02 9.54e-06 100 2606.81

ptnio, n = 4609, p = 43

SCF −2.2678884273e+02 8.25e-07 70 1079.14
TRDCM −2.2678882962e+02 2.93e-04 200 1957.89
MOptQR −2.2678884235e+02 2.33e-05 1000 2281.22
GR-BB −2.2678884272e+02 9.68e-06 512 1159.91

qdot, n = 2103, p = 8

SCF 2.7702342351e+01 3.91e-02 200 175.16
TRDCM 2.7699896368e+01 2.72e-03 200 104.80
MOptQR 3.1736592205e+01 3.96e+00 1000 135.88
GR-BB 2.7700280932e+01 7.90e-04 1000 138.98

si2h4, n = 2103, p = 6

SCF −6.3009750460e+00 4.98e-07 13 12.42
TRDCM −6.3009750459e+00 7.39e-06 16 9.09
MOptQR −6.3009750460e+00 3.83e-06 75 11.67
GR-BB −6.3009750457e+00 6.58e-06 58 8.97

sih4, n = 2103, p = 4

SCF −6.1769279851e+00 8.83e-07 10 5.80
TRDCM −6.1769279850e+00 9.59e-06 10 4.50
MOptQR −6.1769279851e+00 3.76e-06 42 5.14
GR-BB −6.1769279850e+00 9.03e-06 36 4.41D
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6. Conclusion. In this paper, we propose a new first-order algorithmic frame-
work, Algorithm 1, for optimization problems with orthogonality constraints (1.1).
This algorithmic framework consists of two steps. In the first step, we choose a func-
tion value reduction approach to reduce the function value and keep the feasibility at
the same time, and hence the calculation related to the tangent space of the Stiefel
manifold can be waived. Second, a correction step is employed to guarantee that
any accumulation point of the iterates is a first-order stationary point. Moreover, for
some special cases, the correction step can be waived. We introduce two classes of
approaches. The difference of them is in the first step. We first put forward a gradient-
based scheme, whose global convergence can be guaranteed by a fixed step size and
hence line search is no longer needed. We recommend two particular algorithms, GR
and GP, from this class. The second class of algorithms is called CBCD, in which the
columnwise block coordinate update is conducted in a Gauss–Seidel manner. We also
propose novel ideas to solve the columnwise subproblem efficiently and guarantee the
global convergence. Preliminary experiments on two large classes of testing problems
including Kohn–Sham total energy minimization arising from electronic structure cal-
culations illustrate that our new algorithms have great potential.

However, how to design second-order methods to further enhance the performance
and obtain local minimizers is still under investigation. Global optimality under some
random assumptions is an attractive topic for future work. How to design Jacobian-
type CBCD methods is very important for the parallelization, as low scalability is an
inevitable bottleneck of existing approaches for solving optimization problems with
orthogonality constraints.

Acknowledgments. The authors would like to thank Zhaosong Lu, Ting Kei
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