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ABSTRACT
Ordinary differential equations (ODEs) arewidely used tomodel the dynamic behavior of a complex system.
Parameter estimation and variable selection for a “Big System”with linear ODEs are very challenging due to
the need of nonlinear optimization in an ultra-high dimensional parameter space. In this article, we develop
a parameter estimation and variable selection method based on the ideas of similarity transformation and
separable least squares (SLS). Simulation studies demonstrate that the proposedmatrix-based SLSmethod
could be used to estimate the coefficient matrix more accurately and perform variable selection for a
linear ODE system with thousands of dimensions and millions of parameters much better than the direct
least squares method and the vector-based two-stage method that are currently available. We applied
this new method to two real datasets—a yeast cell cycle gene expression dataset with 30 dimensions
and 930 unknown parameters and the Standard & Poor 1500 index stock price data with 1250 dimensions
and 1,563,750 unknown parameters—to illustrate the utility and numerical performance of the proposed
parameter estimation and variable selection method for big systems in practice. Supplementary materials
for this article are available online.

1. Introduction

Ordinary differential equations (ODEs) are widely used to
model the dynamic behavior of a complex system (Butcher
2014; Commenges et al. 2011; De Jong 2002; Hemker 1972;
Holter et al. 2001; Huang, Liu, andWu 2006; Lavielle et al. 2011;
Li et al. 2011; Lu et al. 2011; Ramsay et al. 2007). It is typical that
the parameters that characterize the system must be estimated
from the data in many real-world applications. Parameter esti-
mation of ODEs, also known as the inverse problem, has been
studied by using the least squares (LS) (Li, Osborne, and Prvan
2005; Xue, Miao, and Wu 2010), the likelihood (Commenges
et al. 2011; Lavielle et al. 2011), and Bayesian (Putter et al. 2002;
Huang and Wu 2006; Huang, Liu, and Wu 2006; Huang, Wu,
and Acosta 2010) approaches. Several other methods, such
as the principal differential analysis and generalized profiling
approaches (Ramsay et al. 2007; Poyton et al. 2006; Ramsay
1996; Ramsay and Silverman 1998) and the two-stage meth-
ods (Hemker 1972; Varah 1982; Chen and Wu 2008a, b; Liang
and Wu 2008) are also proposed.

As an example, ODE is one of the popular models to quan-
tify the dynamic gene regulatory networks (DGRNs) (Bonneau
et al. 2006; Li et al. 2011; De Jong 2002; Sakamoto and Iba
2001; Yeung, Tegnér, and Collins 2002; Voit 2000; Holter
et al. 2001; Spieth, Hassis, and Streichert 2006). based on
the high-dimensional time-course gene expression data from
microarray (Schena et al. 1995; Lockhart et al. 1996) and
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RNA-seq (Wang, Gerstein, and Snyder 2009; Garber et al.
2011). However, due to the high computational cost and model
identifiability issues, most of the aforementioned parameter
estimation methods are only good for small-scale systems
containing at most a few dozens of variables (De Jong 2002;
Sakamoto and Iba 2001; Yeung, Tegnér, and Collins 2002; Voit
2000; Holter et al. 2001; Spieth, Hassis, and Streichert 2006).
Recently, Lu et al. (2011) developed a procedure for recon-
structing DGRNs based on linear homogeneous ODE systems.
In this approach, differentially expressed genes (DEGs) are first
clustered into co-expressed modules (Luan and Li 2003; Ma
et al. 2006) based on temporal patterns of their expressions
to reduce the dimension and ease the identifiability problem.
In general, for a d-dimensional linear ODE system, there are
p = d2 + d parameters that need to be estimated. Here, d2 is
the total number of unknown parameters in the ODE coeffi-
cient matrix and d is the number of initial conditions of the
state variables that also need to be estimated. As an exam-
ple, even after dimension-reduction, the resulted ODE-based
DGRN for the yeast cell cycle application in Lu et al. (2011)
still contains d = 41 dimensions (co-expression modules) and
1722 unknown parameters that need to be estimated from the
discrete, noisy time-course gene expression data. An important
fact that we would like to point out is that the solutions to
linear ODE systems are matrix exponential functions (Butcher
2014) that are highly nonlinear. If we directly use the standard
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nonlinear least squares (NLS) approach (Xue, Miao, and Wu
2010) to estimate the parameters in the linear ODE system,
we need to compute the matrix exponentials to evaluate the
discrepancy between the observed variable and its correspond-
ing prediction (or estimate) based on the model. However,
matrix exponentials are known to be numerically unstable and
cannot be computed efficiently (Moler and Van Loan 2003).
As an alternative, we may numerically solve the ODE system
repeatedly, using methods such as the Runge–Kutta algorithm,
to evaluate the NLS objective function. However, such a high-
dimensional NLS problem is not only hard to solve from a
computational perspective, but is also prone to being trapped
in local optima, which may be far away from the true global
solution.

Based on the above considerations, Lu et al. (2011) applied
the two-stage method (Chen and Wu 2008a, 2008b; Liang
and Wu 2008) to decouple the ODE coefficient matrix into d
number of d-dimensional vectors; then they applied the SCAD
method (Fan and Li 2001) for parameter estimation and variable
selection simultaneously for each of the row-vectors (equations)
separately. This approach is straightforward to implement and
computationally efficient. However, such a vector-based variable
selection method ignores the wealth of structural information
that is inherently possessed in the ODE coefficient matrix, and
it heavily depends on the good estimation of the derivatives
of state variables that are sensitive to measurement errors.
Consequently, it often leads to inaccurate parameter esti-
mation and poor variable selection results (Ding and Wu
2014).

In this article, we propose a novel matrix-based approach to
avoid the poor estimates of the vector-based two-stage method
and the computational problem of the NLS method (Xue, Miao,
and Wu 2010). At the heart of the proposed method is a special
form of the separable least squares (SLS) method (Ruhe and
Wedin 1980) based on the Jordan Canonical Decomposition
(JCD) of the coefficient matrix, which essentially transforms
the original nonlinear optimization problem into an equivalent
problem in which only d number of eigenvalues, instead of all
d2 + d parameters, need to be estimated via a nonlinear opti-
mization algorithm. The rest can be obtained by a closed-form
formula with little computational cost. We further exploit the
analytic form of the solution to the linear ODE system after the
similarity transformation (ST) used in JCD to avoid numeri-
cally solving the original ODE system in evaluating the NLS
objective function. Moreover, the derived analytic form of the
objective function has analytic gradients that can be computed
stably and efficiently. The estimates of the original unknown
parameters are recovered from the closed-form functions of
eigenvalue estimates of the coefficient matrix. In simulation
studies, we show that the new approach is not only much faster,
but also reaches the global optima much more frequently and
produces more accurate and stable estimates than the alterna-
tive methods. Finally, we apply the proposed method to two
real-world applications, one is a DGRN modeling with d = 30
dimensions and p = 930 unknown parameters, and another is
stock market system modeling with d = 1250 dimensions and
p = 1,563,750 unknown parameters, to demonstrate that large
linear ODE systems can be recovered well using the proposed
approach.

2. Models andMethods

2.1. Model Description

Weconsider the parameter estimation problem for the following
high-dimensional homogeneous linear ODE system⎧⎨

⎩
dx(t )
dt

= Ax(t ), ∀t ∈ [T1,T2],

x(T1) = x0,
(1)

where

x(t ) = (x1(t ), x2(t ), . . . , xd(t ))T (2)

is a d-dimensional state variable vector on a range satisfying

0 ≤ T1 < T2 < ∞.

The coefficient matrix A ∈ R
d×d and initial condition x0 ∈ R

d

are the unknown parameters in the system, which need to be
estimated using the observed data.

In real-world applications, we assume that x(t ) are measured
with independent errors at finite time points (t1, t2, . . . , tn), and
the measurement errors at each time point follow a Gaussian
distribution with nonsingular covariance matrix �ε , that is,

yi(t j) = xi(t j) + εi j, ε· j ∈ R
d ∼ N(0, �ε ),

i = 1, . . . , d; j = 1, . . . , n. (3)

For convenience, we denote the d × n-dimensional data matrix
{yi(t j)} collectively as y.

Based on the maximum likelihood principle, the inverse
problem of estimatingA and x0 can be formulated as the follow-
ing nonlinear weighted least squares minimization problem

min
A,x0

∥∥y(t ) − x (A, x0) (t )
∥∥2

�ε
. (4)

Depending on the context, yi(t ) can either represent the
observed curves or discrete data at time t ; x(A, x0)(t ) := etAx0
is the solution curve of the ODE system (1) with parameters
A and x0. The dimension of the above optimization space
is p = d2 + d. Two typical choices of norm ‖ · ‖�ε

used in
Equation (4), the weighted Euclidean-metric for discrete obser-
vations and the weighted L2-metric for functions, are given in
the supplementary text (Section S2).

2.2. Similarity Transformation and Separable
Least-Squares

The optimization problem (4), in principle, can be numerically
solved directly via any suitable nonlinear optimization algo-
rithm designed for NLS problems, which is termed as the “direct
LS method” in this study. In practice, when the parameter space
is large (e.g., d ≥ 100), the dimension of the nonlinear opti-
mization problem could be very large (p = d2 + d � 10, 100 if
d � 100), which is difficult to solve numerically and likely to be
trapped in local solutions. In this section, we propose a method
based on the ST and SLS, aiming to reduce the nonlinear opti-
mization dimension significantly, so that we could expand our
capability to handle big ODE systems.
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For ODE system (1), we further assume that the coefficient
matrix A has no multiplicity in its spectrum (no two eigen-
values are exactly identical). This assumption does not lead
to much loss of generality, because such matrices only form
a zero-measure set (w.r.t. either dμ, the standard Lebesgue
measure on R

d×d , or any probability measure that is absolutely
continuous w.r.t. dμ, such as the probability measure associated
with real random matrices such as Ginibre ensemble, Gaussian
orthogonal ensemble, Wishart ensemble, etc.) in the space of all
d-by-d matrices (Ginibre 1965; Lehmann and Sommers 1991;
Tao 2012).

Remark. We would like to point out that if A does have mul-
tiplicity in its spectrum, then there exist other coefficient
matrices, which can generate exactly the same curves (or data
points). In other words, the system is theoretically not identi-
fiable. If no other structural information of A is given a priori,
we will not be able to recover A even if we are given infinitely
many observations without noise.

Under this assumption, the real Jordan canonical form of A
is

A = Q�Q−1, (5)

where� is a block diagonalmatrixwith only two types of blocks:
a 1 × 1 block containing one real eigenvalue of A; or a 2 × 2
block [ a b

−b a], which corresponds with a pair of conjugate com-
plex eigenvalues a ± bi. We can always choose an appropriate
arrangement ofQ such that the diagonal blocks� are organized
as follows:

� =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a1 b1
−b1 a1

. . .
ak bk

−bk ak
c1

. . .
cd−2k

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (6)

where k ≤ n
2 is a nonnegative integer indicating the number of

2 × 2 blocks in �.

Theorem 2.1. The optimization problem (4) is equivalent to

min
�,Q

∥∥y(t ) − QTx(�, e)(t )
∥∥2

�ε
, (7)

where e is a constant vector formed by k pairs of (0, 1)T ’s and
d − 2k of 1’s as follows:

e = (

k of (0, 1)s︷ ︸︸ ︷
0, 1, . . . , 0, 1,

d − 2k of 1’s︷ ︸︸ ︷
1, . . . , 1 )T . (8)

Proof. Please see the supplementary text (Section S6.1). �
Remark. It is worth noting that Theorem 2.1 converts the origi-
nal optimization problem (4) with d2 + d unknown parameters
into the optimization problem (7), which also has a total number
of d2 + d unknown parameters (i.e., d2 unknown parameters in
Q and d eigenvalues in �). Our current choice of e in Equa-
tion (8) ensures that the new transformed ODE system has a

simple solution (see below), which enables us to derive a closed-
form solution forQ (see Equation (13)) when� is given.We can
then apply the separable LS method to estimate �, which is a
nonlinear optimization of only d unknown parameters. After�

is estimated,Q (with d2 unknown parameters) can be computed
by closed-form solution Equation (13) with very little computa-
tional cost.

It is well known that for the given block-diagonalized matrix
�, the ODE system⎧⎨

⎩
dx(t )
dt

= �x(t ), ∀t ∈ [T1,T2],

x(T1) = e,
(9)

has the following solution:{
x2 j−1(�, e)(t ) = exp(a jt ) sin b jt,
x2 j(�, e)(t ) = exp(a jt ) cos b jt,

j = 1, 2, . . . , k, (10)

x j(�, e)(t ) = exp(c j−2kt ), j = 2k + 1, 2k + 2, . . . , d.

(11)

Here, xi(�, e)(t ) is the ith component of the solution vector
x(�, e)(t ), and e is a constant vector given in (8).

Notice that for a fixed �, optimizing the objective function
in (7) with respect to Q can be reduced to a linear regression
problem with a closed-form solution, that is, for a given �

min
Q

∥∥y(t ) − QTx(�, e)(t )
∥∥2

�ε
(12)

gives a closed-form solution (see Supplementary Text Sec-
tion S6.2 for the deduction).

Q(�) = 〈x(�, e)(t ), x(�, e)(t )〉−1 · 〈
x(�, e)(t ), y(t )

〉
. (13)

Using the closed-form solutions (10), (11), and (13), the opti-
mization problem (7) can be transformed into an equivalent
problem that only involves � by the separable LS principle

min
�

∥∥y(t ) − QT (�)x(�, e)(t )
∥∥2

�ε
. (14)

Despite the fact that � is a d × d matrix, it only contains d
unknownparameters that need to be estimated, due to its special
structure. Moreover, the objective function (14) is continuously
differentiable with respect to the parameters in�. Therefore, we
can derive the analytical formulas for the gradients of parame-
ters, which will accelerate the nonlinear optimization procedure
dramatically (see Supplementary Text, Section S6.4).

Once we obtain �̂, an estimate of � that minimizes (14), we
can immediately obtain Q̂, the regression estimate of matrix Q,
from Equation (13). The estimates of the original ODE coeffi-
cient matrix and initial conditions can then be computed as

Â = Q̂�̂Q̂
−1

, x̂0 = Q̂e, (15)

where e is given in (8).
The following theorem shows that Â, x̂0 are indeed the opti-

mal solution of (4):

Theorem 2.2. �̂ is a minimizer of (14) if and only if (Â, x̂0) gen-
erated by Equation (15) is a minimizer of (4).

Proof. See the supplementary text (Section S6.3). �
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Based on the bijection between the local minimizers of origi-
nal LS problem (4) and the reformulated problem (14), together
with the fact that the two objective functions have identical val-
ues at corresponding local minimizers, we obtain the following
corollary immediately.

Corollary 2.3. �̂ is a global minimizer of (14) if and only if
(Â, x̂0) generated by Equation (15) is a global minimizer of (4).

The essence of Theorem 2.2 and Corollary 2.3 is that the
original NLS optimization problem (4), which is of dimension
d2 + d, is equivalent to an eigenvalue estimation problem,which
is a nonlinear optimization problem of dimension d. This is a
dramatic dimension reduction for the nonlinear optimization
problem. We require the number of distinct data points n > d
to avoid the identifiability problem, although the total number
of unknown parameters p = d2 + d can bemuch greater than n.
We provide the pseudocode of the parameter estimation algo-
rithm, called ST-SLS, in the Supplementary Text (Section S1).
While we choose the Levenberg–Marquardt Algorithm (LMA)
to solve the reformulated optimization problem (14) in the ST-
SLS Algorithm based on its flexibility, it can be replaced by any
suitable optimization algorithm in principle.

We would like to point out that although the above method
is developed for the homogeneous linear ODE model (1), it can
be applied to heterogeneous linear ODE models with a simple
mathematical technique that adds an additional constant term
to the state variable x(t ). Detailed discussion is given in the sup-
plementary text (Section S4).

2.3. Asymptotic Variance and Inference

In this section, we provide the asymptotic variance-covariance
matrix estimation for Â, which represents the uncertainty in
parameter estimation. The proofs of the two theorems in this
section are provided in the Supplementary Text (Section S6.5).

In what follows we consider A as vec(A), which is a d2-
dimensional vector of parameters such that vec(A)(l−1)d+k :=
Alk. We define D(A, t ) as the following d × d2-dimensional
matrix function

Di,(l−1)d+k(A, t ) = ∂
(
etAx0

)
i

∂Akl
,

i = 1, . . . , d; l = 1, . . . , d; k = 1, . . . , d. (16)

Apparently, Di,(l−1)d+k(A, t ) is the Jacobian matrix of the solu-
tion curves, x(t ) := etAx0, with respect to A evaluated at time t .
We can then express the total Fisher information matrix of A as
a function of D(A, t ).

Theorem 2.4. Given x0 and �ε (covariance matrix of the mea-
surement error), the total Fisher information matrix pertain to
the estimation of ODE system (1) is

I(A) =
n∑
j=1

DT (A, t j)�−1
ε D(A, t j). (17)

Obviously, DT (A, t j)�−1
ε D(A, t j) is positive-semidefinite

for all j. Because I(A) is a summation of positive-semidefinite

matrices, it must be positive-semidefinite. Consequently, I(A) is
positive-definite as long as it is of full rank.

Based on Theorem 2.4, we have the following asymptotic
results for Â.
Theorem 2.5. Assume that

(a) Â is a unique global minimizer of (14).
(b) I(A), the total Fisher information matrix, is of full-rank

(hence positive-definite).
(c) The ODE system (1), given that A is the true system

matrix and x0 is the true initial condition, is identifiable
in the following sense. If there is a matrix B such that
et jBx0 = et jAx0 for all j = 1, 2, . . . , n, then B = A.

With these assumptions, when n → ∞, Â converges in dis-
tribution to a normal distributionwith the correctmean (A) and
covariance matrix I(A)−1

Â ∼ AN
(
A, I(A)−1) . (18)

By definition, the asymptotic variance of Âi j is the
diagonal element of I(A)−1. More specifically, var(Âi j) =
I(A)−1

( j−1)d+i, ( j−1)d+i asymptotically. With these variance esti-
mates, we can test the null hypothesisH0,i j : Ai j = 0 against the
corresponding alternative hypothesis H1,i j : Ai j �= 0 by using
the standardized network strength, zi j := Ai j√

var(Âi j )
, as the test

statistic. Such a statistic follows an asymptotic standard normal
distribution underH0,i j . Because we need to test a large number
(d2) of hypotheses, a suitable multiple testing procedure, such
as the Holm–Bonferroni procedure (Holm 1979), Šidák proce-
dure (Šidák 1967), Benjamini–Hochberg procedure (Benjamini
and Hochberg 1995) needs to be applied to control for the
overall Type I error. The confidence interval for parameter
estimates could also be constructed based on the asymptotic
results.

2.4. Variable Selection

For problems with a priori information that the coefficient
matrix A is a sparse matrix, it is advantageous to add a regular-
ized term imposing sparsity on the coefficient matrix estimate.

min
A,x0

∥∥y(t ) − x(A, x0)(t )
∥∥2

�ε
+ ρ(A). (19)

Possible choices of the penalty term ρ(A) include least absolute
shrinkage and selection operator (LASSO) (Tibshirani 2011),
smoothly clipped absolute deviation (SCAD) (Fan and Li 2001),
minimax concave penalty (MCP) (Zhang 2010), etc.

Taking the ST as we did in previous sections leads to

min
�

∥∥y(t ) − QT (�)x(�, e)(t )
∥∥2

�ε
+ ρ

(
Q(�)�Q−1(�)

)
,

(20)
where Q(�) is defined by (13), respectively. We can apply the
same optimization algorithm to solve the above problem.

Notice that minimizing the objective function in (20) should
result in a sparse estimate for matrix A theoretically. However,
we still need to use the separable LS estimate (13) for Q, which
is the optimal solution of (12), instead of (20). This approxima-
tion may not shrink the estimates of true zero-elements of A to
exactly zero. Thus, we need to determine a numerical threshold
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c such that if |Âi j| < c, we replace Âi j by zero. Similar idea has
been adopted for removing estimates with small nonzero values
due to numerical errors for L1 regularized regression algorithms
such as LASSO (Yukawa et al. 2012; Combettes andWajs 2005).
One simple method for determining the threshold is to use the
variance estimate in (17) and (18) in Section 2.3 to formulate
an asymptotic z-test to check whether Ai j �= 0. However, this
method is not applicable to large networks or systems, because
it requires the estimation of a d2 × d2-dimensional covariance
matrix which is computationally infeasible when d is large. An
alternative way is to select a threshold to classify the estimated
coefficients into two groups: zero and nonzero groups, based on
standard classification methods such as the K-nearest-neighbor
algorithm.

Note that the closed-form gradient of parameters for the
objective function (20) is not available. Therefore, a derivative-
free optimization (DFO) algorithm such as the NEWUOA
(Powell 2006; Zhang, Conn, and Scheinberg 2010) needs to be
used and the computational cost is higher compared to that
of the ST-SLS Algorithm in this case (see more discussions in
the supplementary text, Section S3). The pseudocode of ST-SLS
with variable selection (ST-SLS-VS) is provided in the supple-
mentary text (Section S1).

3. Simulation Studies

3.1. Design of Simulation Experiments

In this section, we compare the proposed ST-SLS and ST-SLS-
VS methods based on the eigenvalue estimation framework
with the existing methods via simulation studies with different
dimensions and different noise levels. Notice that it is not trivial
to design high-dimensional ODE simulation experiments. To
generate reasonable ODE simulation models, special cares must
be taken to avoid the collinearity of the simulated system and
ease the identifiability problem. In particular, the eigenvalues
of the coefficient matrix A need to be bounded away from
each other. Based on these considerations, we obtain A by first
generating its eigenvalues with good properties, then randomly
generating its eigenvectors. More specifically, we first generate
the eigenvalues by their real parts and imaginary parts sepa-
rately. The real part of each eigenvalue should be nonpositive
to make the system stable. But it cannot be too negative, other-
wise the ODE solution as an exponential function of time will
decay to zero very rapidly, which may produce an ODE system
numerically unidentifiable (Miao et al. 2011). In our simulation
experiments, the real parts of eigenvalues are generated from a
uniformdistribution on [−0.7, 0]. The imaginary parts of eigen-
values are only required to be bounded away from each other.
For example, a typical choice, employed in our simulation stud-
ies, is±2π,±4π, . . . ,±dπ with a small Gaussian noise added.
Once � is generated, we multiply it by a randomly generated
nonsingular matrix Q to create the coefficient matrix, that is,

A = Q�Q−1. (21)

Technically Q can be any invertible square matrix, however, for
the variable selection experiment, the coefficient matrix should
be sparse. Hence, we use matrixQwith a special block-diagonal

structure, which guarantees the sparsity of both Q and its
inverse, consequently A can be generated as a sparse matrix.

Once the ODE coefficient matrix is generated, observed data
are generated from ODEmodel (1) using its analytical solution.
The time-points of observations are distributed evenly on the
interval [0, 1]. Random noise is added to the simulated data
from the ODE system, which is iid Gaussian noise with a distri-
butionN(0, (ασ )2), where σ is taken to be the sample standard
deviation of the original data, α controls the noise level, which
is taken as 0, 0.1, or 0.3, respectively; in which 0 stands for the
noise-free case. The dimension of simulation models is set as
d = 30, 100, 300, 1000, respectively. All results are given based
on 1000 random simulations, except for the 1000-dimensional
case, which is based on 100 simulations due to high computa-
tional cost. All simulations were performed on a laptop running
Xubuntu 14.04 operating system with 2.5 GHz CPU and 8 GB
of RAM.

3.2. Parameter Estimation Comparisons

In this section, we present the results for parameter estima-
tion comparisons between the proposed ST-SLS method and
the direct-LS method from simulation studies. For fair compar-
isons, the LMA is employed as the optimization solver for both
the ST-SLS method (iteratively updating �) and the direct-LS
method (estimating A by directly minimizing the LS objective
function). Please refer to the supplementary text (Section S3)
for more details on the optimization algorithms.

The simulation results of parameter estimation compar-
isons are reported in Table 1. We compare the two methods in
computational cost, goodness of fit, and parameter estimation
accuracy for different ODE system dimensions (d) and different
noise levels (α). The computational cost is quantified by the
CPU time (in seconds) used to run the algorithms. The good-
ness of fit is evaluated by the relative residue sum-of-squares
(RRSS) of model fitting, which is the objective function value
at the final solution, divided by the squared Frobenius norm of
the data matrix. The overall parameter estimates are evaluated
by the relative estimation error (REE), which is defined as

REE(A) = ‖Â − A‖F
‖A0‖F × 100%,

REE(x0) = ‖x̂0 − x0‖2
‖x0‖2 × 100%, (22)

where (A, x0) are the true parameters and (Â, x̂0) are their
corresponding estimates.

From Table 1, we see that, for the noise-free case (α = 0),
both methods for all the dimensions produced good parameter
estimateswith perfect fit. The computational time increaseswith
the system dimension (d) as expected. This demonstrates that
both methods are good under the ideal case of no measurement
error. When the measurement noise is added to the data, the
direct-LS method produces poor results. The relative error of
fitting (RRSS) of the direct-LS method could go up to 30–45%,
and the estimation error (REE) could be 6- to 12-fold difference
between the estimate and the true value of the coefficient matrix
A. This indicates that the direct-LS method likely converges to
local solutions which can be far away from the true solution.
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Table . Parameter estimation comparisons between the direct-LS method and our new ST-SLS method.

Direct-LS ST-SLS

Dimension(p) Noise(α) Time in second RRSS(%) REE(A)(%) REE(x0)(%) Time in second RRSS(%) REE(A)(%) REE(x0)(%)

      .   
 . () () () () .(.) .(.) .(.) .(.)
 . () () () () .(.) .(.) .(.) .(.)
      .   
 . () () () () .(.) .(.) .(.) .(.)
 . () () () () .(.) .(.) .(.) .(.)
  — — — —    
 . — — — — (.) .(.) .(.) .(.)
 . — — — — (.) .(.) .(.) .(.)
  — — — —    
 . — — — — () .(.) .(.) .(.)
 . — — — — () .(.) .(.) .(.)

The computational cost (CPU time in second), relative RSS (RRSS) and REE are given as a percentage, based on the average of  simulation runs (with the standard
deviation in brackets) for most cases except for the Direct-LS method with d = 100 and the ST-SLS method with d = 1000, of which only  simulation runs were used
due to the high computational cost.

For the cases of higher dimensions (d = 300 and 1000), the
direct-LS method does not converge and fails to obtain the
estimates. On the contrary, our new ST-SLS method produces
reasonable results for all the simulation cases. The relative RSS
of model fitting is very low (<1%) and much smaller than that
of the direct-LS method for all simulation cases, suggesting
that our new method fits the model very well. The REE of
coefficient matrix A ranges from<1% to 20.6% and the REE for
initial value estimates is even smaller. So, the ST-SLS algorithm
produces very good estimates for all unknown parameters. We
also observe that for both methods, the estimation for initial
state x̂0 is much better than the estimate of coefficient matrix A.
This is because the estimate of x0 is the fitted solution evaluated
at time t = 0 and the model fitting is always very good. In
addition, the proposed ST-SLS is very fast and produces results
in a few seconds for the cases of low or medium dimensions
(d = 10 to 100), which require many hours of CPU time for the
direct-LS method. For the high-dimensional case (d = 300 and
1000) for which the direct-LS method fails to obtain the results,
the ST-SLS algorithm is still able to obtain good results in a
few minutes (d = 300) or a few hours (d = 1000) on a regular
PC, which demonstrates the scalability of our new method for
handling large systems.

3.3. Variable Selection Comparisons

For high-dimensional ODE variable selection, the only existing
computationally feasible method is the two-stage method (Lu
et al. 2011). In this section, we compare our new ST-SLS-VS
algorithm (equipped with three different regularized terms)
with the two-stage method in terms of variable selection per-
formance for big ODE systems.

We performed 1000 simulation runs with different noise
levels for d = 30, 100, and 300, respectively; and 100 simu-
lation runs for d = 1000 due to the high computational cost.
The results based on the average of these simulation runs are
reported in Table 2. In this simulation study, we compared
the sensitivity (SEN) and specificity (SPE), which measure the
true and false positive rates of variable selection, respectively,
between the two-stagemethod (Lu et al. 2011) and the proposed
ST-SLS-VS methods.

As we pointed out in Section 2.4, no closed-form gradient
formula of the objective function (20) is available to implement
the ST-SLS-VS algorithm.We have to use aDFO algorithm, such
asNEWUOA (Powell 2006; Zhang, Conn, and Scheinberg 2010)
for optimization (see the supplementary text, Section S3), which
requires a higher computational cost. For example, the ST-SLS-
VS algorithm produced the results for an average of about 5
min for dimension d = 300 cases and 5–6 hrs for dimension
d = 1000 cases with a high noise level, which is slower than
that of the ST-SLS algorithm. The reason that the ST-SLS-VS
algorithm is slower is 2-fold: no closed-form gradient can be
used and the objective function is more complicated to evaluate.
We implemented the ST-SLS-VS algorithm using Fortran, while
the two-stage method is implemented in R, that is why we did
not compare the computational cost between the ST-SLS-VS
algorithm and the two-stage method. But in general, the two-
stage method is much faster because it converts the linear ODE
parameter estimation into linear regression model fitting.

From Tables 2 and 3, we can see that the sensitivity of the
two-stage method, ranging from 85% to 95%, is generally good
for most simulation cases, but its specificity is very low (rang-
ing from 44% to 67%) with noisy data. In comparison, the per-
formance of the proposed ST-SLS-VS methods was very stable,

Table . ODE variable selection comparisons between the -stagemethod and our
new ST-SLS-VS algorithm.

-Stage method ST-SLS-VS(LASSO)

Dimension(d) Noise(α) SEN% SPE% SEN% SPE%

  . .  
 . .(.) .(.) () ()
 . .(.) .(.) () ()
   .  
 . .(.) .(.) () ()
 . .(.) .(.) () (.)
  . .  
 . .(.) .(.) () (.)
 . .(.) .(.) (.) (.)
  . .  
 . .(.) .(.) (.) (.)
 . .(.) .(.) (.) (.)

Both sensitivity (SEN) and specificity (SPE) are given as a percentage based on 
simulation runs for the cases d = 30, 100, 300, and  simulation runs for the
case d = 1000with the standard deviation in brackets.
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Table . ODE variable selection comparisons between the -stagemethod and our
new ST-SLS-VS algorithm.

ST-SLS-VS(SCAD) ST-SLS-VS(MCP)

Dimension(d) Noise(α) SEN% SPE% SEN% SPE%

     
 . () () () ()
 . () () () ()
     
 . () () () ()
 . () () () ()
     
 . () (.) () (.)
 . (.) (.) (.) (.)
     
 . (.) (.) (.) (.)
 . (.) (.) (.) (.)

Both sensitivity (SEN) and specificity (SPE) are given as a percentage based on 
simulation runs for the cases d = 30, 100, 300, and  simulation runs for the
case d = 1000with the standard deviation in brackets.

and the three choices of regularization terms produced simi-
lar results. Our methods not only identified the exactly correct
results in all noise-free cases, but also had very good sensitiv-
ity (mostly higher than 80%) and specificity (97–100%) in other
cases. Overall, our new method outperforms the existing two-
stage method in variable selection.

4. Real Data Analysis

We applied the proposed ODE parameter estimation and vari-
able selection methods to two application datasets to illustrate
their utility and scalability for large-scale systems. The first one
is a set of time-course microarray data collected from yeast cul-
ture at stationary phase (Aragon et al. 2006) with amedium-size
systemof 30 dimensions and 930 unknownparameters. The sec-
ond one comprises of 10-year historic daily values of stocks that
were indexed by the Standard& Poor with a large system of 1250
dimensions and 1,563,750 unknown parameters.

4.1. Time-Course YeastMicroarray Data Analysis

The first application example is a subseries of time-course gene
expression data (Gene Expression Omnibus number GSE3688)
collected from yeast cells in stationary-phase cultures with
the oxidative stress exposure (Aragon et al. 2006). These data
were collected every 1-min for 35 min, with an additional final
time point at 60 min (a total of 37 time points) using microar-
ray. We applied the functional principal component analysis
approach (Wu and Wu 2013) and identified top 30 significant
genes related to cycle regulations (Spellman et al. 1998). Our
goal is to study the regulatory relationships among these 30
genes using a linear ODE model.

We applied our proposed methods and the developed ST-
SLS/ST-SLS-VS algorithms described in Section 2 to the gene
expression data and recovered a dynamic network for the top
30 significant yeast cell cycle-related genes. We obtained the
estimated dynamic system coefficient matrix (Â) and the stan-
dard deviation for each edge using Equations (17) and (18)
in Section 2.3. As discussed and suggested in Section 2.4, we
used the two-sided z-test with the Holm–Bonferroni multiple
testing procedure (Holm 1979) and determined the network

ZSP1

PHO89

PMP3

MIG2

DSN1

PIR3

SPC34
PUT1

YLR297W

SST2

YMR253C

PBI2

TOS7

SLK19

TRE2

YPR174C

Figure . Gene regulatory network reconstructed from the time-course yeast
microarray data. Different sizes of nodes indicate network degree, which is defined
as the number of adjacent edges of a node in the reconstructed network. Positive
(negative) regulations are colored in green (red).

sparsity by controlling the familywise error rate at 0.05. The
resulted network has a sparsity of 95% and is illustrated in
Figure 1. Note that 14 isolated genes (FLC2, PET9, RDH54,
BEM1, BUD3, NDC80, MMR1, CAR2, SPT21, GCV2, WHI3,
ARG1, GNT, and YKR012C) are not included in this plot. The
reconstructed gene regulatory network is provided in the Sup-
plementary Table S1.

From Figure 1, we see that SST2, PUT1, ZSP1, DSN1, and
SPC34 are central hub nodes with the largest number of adja-
cent edges (network degree). According to the Saccharomyces
Genome Database (Cherry et al. 1998), SST2 encodes GTPase-
activating protein for GPA1P, which is required to prevent
receptor-independent signaling of the mating pathway. The null
mutation of this gene leads to increased cell size and decreased
growth rate. PUT1 encodes proline oxidase and the mutation of
this gene results in the inability of yeast to grow when proline
is the sole nitrogen source. ZSP1 is a protein of unknown func-
tion but is known to interact with PHO88, which is a member
gene of the phosphate metabolism pathway. DSN1 is an essen-
tial component of theMINDkinetochore complex and is known
to play an important role in attachment of spindle microtubules
to kinetochore involved inmeiotic sister chromatid segregation.
SPC34 is a spindle pole component, which is an essential sub-
unit of the Dam1 complex (DASH complex). Both DSN1 and
SPC34 are components of the kinetochore and their connec-
tion is well established (Tanaka et al. 2005; Pramila et al. 2006).
The connection between SPC34 and SST2 has also been docu-
mented (Montpetit et al. 2005).

Other network connections identified by our methods are
novel and may help generate hypotheses for further investi-
gations. For example, ZSP1 is an under-studied gene which is
only known to interact with PHO88. We discovered that it had
a strong connection with PHO89, which is another member
gene in the phosphate metabolism pathway. This observation
suggests that ZSP1may play amore important role in phosphate
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metabolism than what we currently know. The strong connec-
tion between PUT1 and SST2 is somewhat surprising and
interesting because PUT1 and SST2 seem to fulfill very
different biological functions. PUT1 is critical for Saccha-
romyces cerevisiae to digest proline, which is the most abundant
source of nitrogen in grapes, the natural environment of wild
yeast (Huang and Brandriss 2000). SST2 is best known for its
function in regulating mating response, which seems to be
unrelated to proline digestion. However, SST2 is also known
to be involved in cell proliferation (Lopez et al. 1997) and
growth, especially in a nutrient-limited environment (Lopez
et al. 2001; Boer et al. 2003). Our findings suggest that PUT1
and SST2 might have an intimate relationship in the interplay
between nitrogen metabolism and cell growth. In addition, we
found that three genes (YLR297W, YMR253C, and YPR174C)
in the network have no clear biological annotation in literature.
Among them, YLR297W is a regulator of PUT1 and SST2, the
two most connected hub nodes. Our results may provide useful
insights for future experimental investigations of biological
functions of these genes.

4.2. Standard & Poor StockMarket Data Analysis

Traditionally stochastic differential equation (SDE)models such
as the Black–Scholes–Merton Model (Black and Scholes 1973;
Merton 1973; Øksendal 2013) is used formodeling stockmarket
price data. It is known that the correspondingODEmodel could
be used to describe themean behavior of the SDE (Ahmed 1998)
(Theorem 1 in Chapter 2). Here, we apply the linear ODEmodel
to stock price data from the S&P 1500 (also known as S&PCom-
posite 1500 Index) to investigate the long-termdynamic interac-
tions of stock price changes for the companies in the S&P 1500.
The data used in this study cover 10-year span of daily closing
price of these stocks from 2004 to 2014 (2668 trading days). The
original index contains 1501 stocks, of which 251 were removed
from the analysis due tomissingness andother data issues. Based
on the remaining 1250 stocks, we reconstructed a linear ODE
system of d = 1250 dimensions, or p = 1, 563, 750 unknown
parameters. Our variable selection algorithm produced a net-
work of sparsity of 97.3%. This reconstructed network is pro-
vided in Supplementary Table S2.

Table 4 lists the top 10 companies (nodes) that have the
highest network degree in this graph. One interesting obser-
vation is that most of these highly connected companies are
not the largest corporations by market capitalization, such as
Apple Inc. or Exxon Mobile. Instead, four of them provide the
basic IT infrastructure such as telephone service or network

hardware; two of them are related to healthcare services; three
provide financial services, which can also be considered as
the “infrastructure” for modern economy. In summary, most
connected companies are not the largest or most famous ones
indexed by the Standard & Poor, but those that provide the
fundamental infrastructure for the entire economy.

To better understand the interactions of these companies
from a more focused perspective, we divided the stocks into
sectors and reconstructed the subnetwork for each sector. More
specifically, we downloaded the list of stocks issued by 500
large-cap companies indexed by the Standard & Poor as of
October 12, 2015, among which 421 nodes (companies) are not
isolated nodes. These companies were further divided into nine
sectors according to the Global Industry Classification Standard
(GICS)SM. In subnetwork construction for each sector, we retain
edges with absolute strength greater than 95% of all edges to
make the results comparable across sectors. We define the hubs
as the top 10% most connected (measured by network degrees)
companies within each sector, which are listed in Table 5.
These subnetworks are illustrated in individual figures and are
provided as one compressed file (Supplementary File S3).

We noticed some interesting results from Table 5. For exam-
ple, Harman International Industries and Amazon are the two
most connected companies in the Consumer Discretionary sec-
tor as expected, because both companies have wide varieties of
products that may influence or be influenced by other indus-
trial leaders. However, it is somewhat surprising to see that
Wynn Resorts, which is a developer and operator of high-end
hotels and casinos, ranked the third among all 63 companies
in this category. Further investigation shows that all 13 connec-
tions related to theWynnResorts are inward connections, which
means that theWynn Resorts is highly dependent to the perfor-
mance ofmany other companies in this sector, but its stock price
does not have high impact to other companies. This observation
may suggest that we may use hotel and casino performance as a
“litmus test” of the overall fitness of consumer spending.

5. Discussion

In this article, we present a new ODE parameter estimation
and model selection framework, which is based on estimating
the eigenvalues of the linear ODE coefficient matrix instead
of directly estimating its entries. This new approach dramat-
ically reduces the dimension of the corresponding nonlinear
optimization problem from p = d2 + d to d, and the rest of
the d2 parameters can be obtained from a closed-form formula
that does not require extensive computation. As a result, our

Table . Top  most influential companies ranked by the network degree, which is defined as the number of adjacent edges of a node in the reconstructed network.

Company Category Network degree

TDS Telephone & Data Systems Inc IT infrastructure 
UVE Universal Insurance Holdings Inc Financial 
AKRX Akorn Inc Energy 
NDAQ Nasdaq OMX Group/The Financial 
GIS General Mills Inc Food 
ABAX Abaxis Inc Healthcare 
CMTL Comtech Telecommunications IT infrastructure 
NTGR Netgear Inc IT infrastructure 
NTCT Netscout Systems Inc IT infrastructure 
SBRA Sabra Health Care REIT Financial/Healthcare 
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Table . Most influential companies in each sector defined by the network degree, which is the number of its adjacent edges in the reconstructed network.

Company Sector Degree

HAR Harman Int’l Industries Consumer discretionary 
AMZN Amazon.com Inc Consumer discretionary 
WYNN Wynn Resorts Ltd Consumer discretionary 
GIS General Mills Consumer staples 
ADM Archer-Daniels-Midland Co Consumer staples 
CHK Chesapeake Energy Energy 
DO Diamond Offshore Drilling Energy 
RRC Range Resources Corp. Energy 
NDAQ NASDAQ OMX Group Financials 
ACE ACE Limited Financials 
FITB Fifth Third Bancorp Financials 
TMK Torchmark Corp. Financials 
BXP Boston Properties Financials 
PNC PNC Financial Services Financials 
ENDP Endo International Health care 
JNJ Johnson & Johnson Health care 
SYK Stryker Corp. Health care 
FLS Flowserve Corporation Industrials 
FLIR FLIR Systems Industrials 
ITW Illinois Tool Works Industrials 
NFLX Netflix Inc. Information technology 
PAYX Paychex Inc. Information technology 
BLL Ball Corp Materials 
T AT&T Inc Telecommunications services 
AEE Ameren Corp Utilities 
NEE NextEra Energy Utilities 
SCG SCANA Corp Utilities 

proposed algorithms aremuch faster andmore stable than com-
peting procedures and can be easily scaled up to handle large
ODE systems. Moreover, our reformulation of the problem pro-
vides closed-form gradients of the objective function that can be
used to further accelerate and stabilize the computation.

In simulation studies, we demonstrate that the new ST-SLS
method ismuch stabler and faster than the competingmethod to
locate the global solution of the high-dimensional optimization
problem, which leads to better performance for parameter esti-
mation for big ODE systems. The superior performance of our
new ST-SLS estimation method and the corresponding variable
selection algorithm is not only due to the capability of significant
dimension reduction and the availability of closed-form gradi-
ents of the objective function, but also the fact that the coupled
ODE information is used efficiently.

We also applied our new algorithms to two real-world appli-
cations to illustrate their usability in practice; one is the yeast cell
cycle gene expression datawith 30 dimensions and another is the
Standard & Poor Index stock price data with 1250 dimensions.
Our analysis results show that the newmethods could effectively
recover high-dimensional dynamic networks based on observed
time-course data.

Our proposed methods are applicable to the general high-
dimensional linear ODEmodel that is identifiable in theory, but
some attentions should be paid in practical implementations.
In practice, the linear ODE is theoretically identifiable if the
eigenvalues of the coefficient matrix are distinct; but the ODE
model may have numerical or statistical identifiability prob-
lems (Miao et al. 2011) when several eigenvalues have zero or
near-zero imaginary parts (e.g., more than two real eigenvalues
are present), this is because more real eigenvalues indicate
more exponential terms in the ODE solution and the power
of exponential terms is difficult to distinguish and identify
numerically, which is similar to the multicollinearity problem
in linear regression. Also, notice that our proposed methods

require the number of distinct data points to be greater than the
dimension of the ODE system, that is, n > d, although the total
number of unknown parameters p = d2 + d can be greater
than n. This requirement is needed to avoid the identifiability
problem. In general, the identifiability problem has to be dealt
before our method can be applied. Usually the model needs
to be modified or some variables can be combined to reduce
the identifiability problem, but this is beyond the scope of this
article. Motivated readers can find more information on this
topic in Miao et al. (2011).

In this Big Data era, it is a common task to build dynamic
relationships among many components or elements in a big
system based on more and more affordable frequent time-
course data, so that the complex networks can be reconstructed
and analyzed (Liu, Slotine, and Barabasi 2011; Barabasi, Gul-
bahce, and Loscalzo 2011). A linear ODE system is a sim-
ple yet powerful model that can be used to describe dynamic
relationships among elements of a big system. Future exten-
sion of similar ideas in this article to high-dimensional non-
linear ODE systems (Wu et al. 2014) and/or systems with par-
tially observed variables (Wu et al. 2015), although challeng-
ing, is warranted. We believe that the field of identification
and analysis of high-dimensional, complex dynamic systems
is still in its infancy despite its wide applications in practice.
We hope that our work will motivate more research in this
direction.

Supplementary Materials
Supplementary Text. This file includes the following supportingmaterial: (a)
algorithms for ST-SLS and ST-SLS-VS, (b) definitions of two norms used
in this study, (c) technical details of the optimization procedures used in
this study, (d) generalizations of the proposed methods for heterogeneous
linear ODE systems, (e) the closed-form gradient of the solutions curves
with respect to eigenvalues, and (f) detailed proofs of theorems.
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Supplementary Table S1. The gene regulatory network reconstructed from
the time-course yeast microarray data.

Supplementary Table S2. The overall stock interaction network recon-
structed from the Standard & Poor stock market data.

Supplementary File S3. Per-sector stock interaction sub-networks recon-
structed from the Standard & Poor stock market data.
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