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ABSTRACT
In this paper, we propose a generic algorithmic framework for
stochastic proximal quasi-Newton (SPQN) methods to solve non-
convex composite optimization problems. Stochastic second-order
information is explored to construct proximal subproblem. Under
mild conditions we show the non-asympotic convergence of the
proposed algorithm to stationary point of original problems and
analyse its computational complexity. Besides, we extend the proxi-
mal formof Polyak-Łojasiewicz (PL) inequality to constrained settings
and obtain the constrained proximal PL (CP-PL) inequality. Under CP-
PL inequality linear convergence rate of the proposed algorithm is
achieved. Moreover, we propose a modified self-scaling symmetric
rank one incorporated in the framework for SPQN method, which
is called stochastic symmetric rank one method. Finally, we report
some numerical experiments to reveal the effectiveness of the pro-
posed algorithm.
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1. Introduction

In this paper, we consider the following optimization problem:

min
x∈X

P(x) = F(x) + h(x), (1)

whereX is a closed and convex set inR
d and F(x) is an average of a number of component

functions, i.e.

F(x) := 1
n

n∑
i=1

fi(x). (2)

In particular, we are interested in the case when n is very large. Here, fi,i = 1, . . . , n, is
smooth and possibly non-convex function. And h is a simple non-smooth convex func-
tion. Such kind of problems is fundamental and popular inmachine learning and statistics,

CONTACT Xiao Wang wangxiao@ucas.ac.cn

© 2018 Informa UK Limited, trading as Taylor & Francis Group

http://www.tandfonline.com
https://crossmark.crossref.org/dialog/?doi=10.1080/10556788.2018.1471141&domain=pdf&date_stamp=2019-09-11
mailto:wangxiao@ucas.ac.cn


OPTIMIZATION METHODS & SOFTWARE 923

known as the regularized empirical risk minimization . Many interesting problems, for
example, the classification problem with sigmoid loss [4] and training neural networks
[13,20] which are non-convex, have attracted more attention. If the regularization term is
h(x) = λ‖x‖1, it can promotes sparse solution, such as lasso [56], sparse logistic regression
[53,60].

When h vanishes andX = R
d, the standard method to solve (1) and (2) is the gradient

descent (GD) method [12] which can be described as follows:

xk+1 = xk − η∇F(xk) = xk − η

n

n∑
i=1

∇fi(xk), (3)

where η is the stepsize at kth iteration. However, when n is very large, computing the full
gradient of F might be quite costly. To take advantage of the finite summation structure of
F, the stochastic gradient-based methods update iterates as:

xk+1 = xk − ηB−1
k gk, (4)

where gk is an estimation to ∇F(xk) and Bk is an approximation to the Hessian matrix
∇2F(xk). If Bk = Id, (4) falls to the standard stochastic gradient (SG) method [44]. If Bk is
some approximation generated based on stochastic gradients, (4) turns to stochastic quasi-
Newton (SQN) methods. Although the computational cost per iteration in SG methods
is lower, a lot of research has shown the superior overall performance of SQN methods,
especially its advantages on highly nonlinear and ill-conditional problems [6,26,27]. Pop-
ular methods include oLBFGS [49], SGD-QN [7], RES [36], SQN [9], SdLBFGS [57], and
SC-L-BFGS [15]. For details interested readers are referred to [57]. Although SG methods
always make rapid progress in early iterations, it is slow and unstable near the optima due
to the stochastic variance. To deal with this drawback, kinds of variance reduction tech-
niques are proposed, such as SAG [48], SVRG [22,41], SDCA [51], SAGA [16,42], MISO
[33] and so on. They can achieve the globally linear convergence rate when solving strongly
convex problems. Recently, SQNmethods based on variance reduction attract much inter-
est, including SLBFGS [37], LiSSA [1], SdLBFGS-VR [57], and IQN [35]. It is shown that
LiSSA [1] and IQN [35] can achieve globally linear convergence rate and locally super-
linear convergence rate in strongly convex case. In addition, both SdLBFGS-VR [57] and
SC-L-BFGS [15] have shown nice performances for solving general non-convex problems.

For general composite optimization (1) and (2), the well-known proximal gradient
descent (Prox-GD) [34] method updates iterates as:

xk+1 = proxh(x
k − η∇F(xk)), (5)

where proxh(y) = argminy{h(y) + 1
2‖x − y‖2}. In order to utilize the second-order infor-

mation of the objective function, the proximal Newton-type methods attract more atten-
tion. Thosemethods normally use the following piecewise quadratic model at kth iteration
to approximate the objective function:

Qk(y) = F(xk) + 〈∇F(xk), y − xk〉 + 1
2 (y − xk)TBk(y − xk) + h(y), (6)

where Bk is (or an approximation to) the Hessian ∇2F(xk). Such methods include prox-
imal Newton or quasi-Newton methods [5,19,29,30], as well as projected Newton-type
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methods [28,46,47] for constrained problems. It has been shown in [29] that the proxi-
mal Newton-type methods can achieve q-quadratical and q-superlinear convergence rates
under standard assumptions if the approximate model (6) is minimized exactly. Since it
is normally impractical to approximate model (6) exactly for general matrices Bk, Lee
et al. [29] also consider inexact proximal Newton-type methods and show that q-linear
and q-superlinear convergence rates can also be achieved under mild conditions. When
h = λ‖x‖1, there are a line of research on efficient proximal Newton-type methods for
solving (1), including glmnet [17], QUIC [21], IMRO [24], BAS [8], and SQA [11]. These
methods are designed to exploit the specific form of h or the structure of hessian of spe-
cific function to solve (6)more efficiently.Most of abovementionedworks consider inexact
minimizer of (6) except [5] and [24]. To obtain exact minimizer of (6), Bk [5,24] is set as
a summation of a diagonal matrix and a rank one matrix. Note that all above mentioned
methods require the full gradient ∇F(x), which in many cases is time-consuming. Proxi-
mal stochastic gradient methods, which use stochastic gradient gk to approximate ∇F(xk)
in (6), attract much interest due to its advantages capturing the finite-sum structure of the
original problem, such as RSPG [18], Prox-SVRG [43,58], SAGA [42], Prox-SDCA [50],
and Natasha [2,3]. Motivated by the successful applications of stochastic quasi-Newton
methods for smooth problems, we have reason to believe that exploring second-order
information based on stochastic proximal gradient methods will help yield better perfor-
mances. Some recent works [31,32,45,52] study stochastic proximal quasi-Newton (SPQN)
methods for solving convex composite optimization.However, literatures focusing on non-
convex problems are very limited. The key challenge to face is how to construct an effective
Hessian approximation Bk such that the proximal quadratic model (6) is easy to be min-
imized and the global convergence of the proposed algorithm can be guaranteed. As is
known, symmetric rank one (SR1) method is one of the most important quasi-Newton
methods in nonlinear optimization. It shows superior performances when solving non-
convex problems [14,25] . Inspired by this, we will in this paper explore the potential
of an SPQN method integrated with symmetric rank one update for solving non-convex
composite optimization (1) and (2).

To ensure the proximal model (6) uniquely minimized, we normally require Bk to
be a symmetric positive definite matrix. However, the classic SR1 update cannot guar-
antee the positive definiteness of Bk, even though curvature condition yTk sk > 0 holds
where sk = xk+1 − xk and yk = ∇F(xk+1) − ∇F(xk). In deterministic settings, we always
exploit line search or trust region technique to guarantee the convergence of SR1 method.
However, these techniques are impractical in stochastic settings, since the exact function
and gradient values are not attainable. Osborne and Sun [39] have proposed a Davi-
don’s optimal condition of self-scaling symmetric rank one (OCSSR1) method. They
prove that the positive definiteness of Bk can be perserved provided that the curvature
condition is satisfied. So now the question is how to satisfy the curvature condition.
There are two widely used techniques in deterministic optimization: skipping [38] and
damping [40]. However, the latter is more popular in stochastic optimization, such as
SdLBFGS [57], RES [36], SC-BFGS [15]. In our work, we will apply the damping tech-
nique to propose a scheme to construct uniformly positive definite Hessian approxima-
tion Bk.

Contributions. Our contributions in this paper are in several folds.
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(i) We present a generic algorithm framework SPQN for stochastic proximal
quasi-Newton methods for solving general non-convex composite optimization
problem (1) and (2). We employ the operator DX

h (see (11)) to present a new con-
vergence criterion to analyse theoretical properties of SPQN, which is different from
generalized projection operator widely used in literatures[18,43]. Application ofDX

h
can yields lower complexity bound than previous works.

(ii) We extend the proximal form of Polyak–Łojasiewicz (PL) inequality [23] to con-
strained settings, named as constrained proximal Polyak–Łojasiewicz (CP-PL)
inequality. For problems satisfying this inequality, SPQN can achieve globally linear
convergence rate.

(iii) We propose a modified self-scaling SR1 (MSSR1) method that falls into the frame-
work of SPQN, which we call stochastic symmetric rank one (StSR1) method. This
method provides an update strategy to generate uniformly positive definite Hessian
approximation Bk. Such Bk can make the subproblem solved more easily at each
iteration. We also present explicit expressions for accurate solution of subproblem.

Organization. This paper is organized as follows. In Section 2 we present some pre-
liminary definitions and properties of operator DX

h ; In Section 3 we present the SPQN
algorithm and give its theoretical properties; In Section 4 we present an MSSR1 method
to update the Hessian approximations; In Section 5 we report some numerical results to
show the efficiency of StSR1; Finally, we draw some conclusions in Section 6.

Notation. Throughout this paper, we use 〈·, ·〉 to denote the Euclidean inner product,
‖ · ‖ to denote the usual Euclidean norm, i.e. ‖ · ‖2, unless otherwise specified. We denote
Id as the identity matrix on R

d×d. For any real value r, we use �r� and 	r
 to denote
the nearest integer to r from above and below, respectively. For any A ∈ R

d, the notation
A−1 represents its inverse. The expectation with respect to a random variable ξ is denoted
by Eξ [·]. For any function f , g : Rd �−→ R

d, the compostion function f ◦ g is defined by
f ◦ g(x) = f (g(x)) for any x ∈ R

d. For a given A ∈ R
d×d, tr(A) denotes the sum of all

diagonal elements of A, λmin(A) and λmax(A) denote the smallest and largest eigenvalues,
respectively.

2. Preliminaries

We first give the following assumption which is required throughout this paper.

AS1 (a) each fi is twice continuously differentiable, bounded below and L-smooth, i.e.
there is a constant L>0 such that ‖∇fi(x) − ∇fi(y)‖ ≤ L‖x − y‖, ∀ x, y ∈ X .

(b) h(x) is lower semi-continuous ,1 convex but possibly non-smooth;
(c) X is a closed convex subset of R

d.

From AS1(a), we can obtain an important property of F, that is

F(y) ≤ F(x) + 〈∇F(x), y − x〉 + L
2
‖y − x‖2, ∀x, y ∈ X . (7)

Hence, F is also L-smooth. Here we assume that L is independent of n. For twicely
differentiable functions, the property of L-smoothness means that the Hessian of the
function is uniformly bounded, which is quite general in the nonlinear optimization.
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It is popular in literatures to use the generalized projected gradient to analyse the con-
vergence of algorithms for non-convex constrained composite optimization [18,43]. The
generalized projected gradient PX (x, g,α) [18] is normally defined as

PX (x, g,α) = α(x − x+), (8)

where

x+ = argmin
y∈X

{
〈g, y − x〉 + α

2
‖y − x‖2 + h(y) − h(x)

}
(9)

with α > 0. In this paper, however, we analyse the theoretical performances of the pro-
posed algorithm from a different point of view. This is motivated by the proximal PL
inequality [23]: there exists a constant μ > 0 such that

1
2Dh(x, L) ≥ μ(P(x) − P∗), (10)

where

Dh(x,α) = −2αmin
y

{
〈∇F(x), y − x〉 + α

2
‖y − x‖2 + h(y) − h(x)

}
∀α > 0. (11)

Here P∗ is the optimal value of objective function without any constraint. Notice that dif-
ferent from PX , the operatorDh is defined on function value at minimizer rather than the
optimal point x+. We now extendDh to the constrained case. Here, we define an operator
DX

h :

DX
h (x, g,B,α) = −2αmin

y∈X

{
〈g, y − x〉 + α

2
‖y − x‖2B + h(y) − h(x)

}
, ∀ α > 0, x ∈ X ,

(12)
where B ∈ R

d×d is symmetric positive definite. The definition DX
h (x, g,B,α) is different

from that ofDh(x,α) in (11). The first difference is that we extend the l2-norm to general
B-norm as the proximal term in DX

h (x, g,B,α). The other is that ∇F(x) is replaced by
any vector g ∈ R

d. As is known when h is convex and the matrix B is symmetric positive
definite, the definition ofDX

h is reasonable.
Next, we give some important properties of the operator DX

h and characterize its
relationship with PX . All the proofs are given in the appendix.

Lemma 2.1: If x+ is given by (9), then for any x ∈ X , we have

〈g,PX (x, g,α)〉 ≥ ‖PX (x, g,α)‖2B + α(h(x+) − h(x)). (13)

Lemma 2.2: For any fixed B � 0, we have

DX
h (x, g,B,α) ≥ ‖PX (x, g,α)‖2B, ∀x ∈ X , α > 0. (14)
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Lemma 2.3: For differentiable function f and convex function h, for fixed x, g, B, we have

DX
h (x, g,B,α2) ≥ DX

h (x, g,B,α1), ∀ α2 ≥ α1 > 0. (15)

Lemma 2.3 shows the monotonicity of the operator DX
h (x, g,B,α2) for fixed x,g and

B. The inequality (15) has been shown for unconstrained case (refer to the Lemma 1 of
Appendix E in [23]).We extend the result to constrained case and give amore simple proof
than the prior literatures.

Definition 2.1: A Constrained Proximal Polyak-Łojasiewicz (CP-PL) inequality holds if
there exists a constant μ > 0 such that

1
2DX

h (x,∇F(x), Id, L) ≥ μ(P(x) − P∗), ∀x ∈ X , (16)

where P∗ is the optimal value of problem (1) and (2).

It follows from Lemma 2.2 that DX
h is non-negative, which implies (2.1) is reasonable.

We note that such a function P that satisfies (2.1) can be nonconvex. There are various
functions that satisfy (2.1). In particular, all γ -strongly convex functions on the feasible set
X satisfy the CP-PL inequality with μ = λ.

In the followings, we use DX
h to analyse the theoretical properties of the proposed

algorithm. First, we give the definition of ε-approximate solution.

Definition 2.2: A point x̄ ∈ X is said to be an ε-approximate solution of (1) and (2), if

E[DX
h (x̄,∇F(x̄), Id,α)] ≤ ε.

In this paper, we assume that the stochastic gradient can be obtained by a stochastic
first-order oracle SFO [18]. SFO takes an index i ∈ [n] and a point x ∈ R

d, and returns
∇fi(x). For problem (1) and (2), we assume that a constrained proximal oracle(CPO) can
be obtained by taking a point x then returns an output of DX

h .

3. A framework for SPQNmethods for non-convex composite optimization

In this section, we propose a general framework for SPQN methods for non-convex com-
posite optimization (1) and (2). We first present the pseudocode of SPQN for solving
problem (1) and (2) as Algorithm 3.1.
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Algorithm 3.1 SPQN(x0,B0,T,m, b, η)
1: Input: starting vector x̂0 = x0m = x0 ∈ X , initial matrix B10 = B0, inner loop update

frequencym, batch size b and learning rate η

2: for t = 0, 1, . . . , S − 1 do
3: Set xt+1

0 = xtm
4: Calculate ĝ = 1

n
∑n

i=1 ∇fi(x̂t)
5: for j = 0 tom − 1 do
6: Pick a minibatch set Mt

j uniformly at random from {1, 2, . . . , n}(with replace-
ment) such that |Mt

j | = b
7: Calculate gt+1

j = 1
b
∑

i∈Mj
(∇fi(xt+1

j ) − ∇fi(x̂t)) + ĝ
8: Obtain the exact solution xt+1

j+1 of the following subproblem

min
y∈X

〈
gt+1
j , y − xt+1

j

〉
+ 1

2η

∥∥∥y − xt+1
j

∥∥∥2
Bt+1
j

+ h(y) − h(xt+1
j ) (17)

9: Generate a symmetric positive definite matrix Bt+1
j+1

10: end for
11: Set x̂t+1 = xt+1

m
12: end for

13: Output: xa, uniformly chosen from
{{

xt+1
j

}m−1

j=0

}S−1

t=0

Notice that SPQN algorithm is a two-loop procedure. At each outer iteration, we choose
a candidate point x̂t at which the full gradient∇F(x̂t) is calculated. This full gradient is used
in each inner iteration to construct a stochastic gradient gt+1

j . It is easy to check that the
conditional expectation satisfies E[gt+1

j |xt+1
j ] = ∇F(xt+1

j ). The subproblem is built based
on aHessian approximationmatrixBt+1

j , aboutwhichwe need the following assumption.

AS2 For any t = 0, . . . , S − 1, j = 0, . . . ,m − 1, Btj is independent ofM
t
j and there exist

two positive constants λ, λ such that

λId � Btj � λId.

The assumption AS2 is quite common for the quasi-Newton methods in stochastic
optimization [15,57]. We will specify the way to construct B in Section 4.

3.1. Theoretical properties

In this part, we will analyse the theoretical convergence properties of SPQN.

Theorem 3.1: Under assumptions AS1–AS2, assume cm = 0, cj = cj+1(1 + (1/β)) +
(2L2/bθ) (β , θ > 0), η ≤ (λ/(θ + L + 2c0(1 + β))), and T= Sm. Then for the output xa
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of SPQN, we have

E

[
DX

g

(
xa,∇F(xa), Id,

λ

η

)]
≤ 2λ(P(x0) − P∗)

ηT
, (18)

where P∗ is the optimal value of problem (1) and (2).

If we set η equal to its upper bound, that is η = λ/(θ + L + 2c0(1 + β)), η may depend
on n, because both β and θ may depend on n. In order to explicitly express the dependence,
we appropriately give some specific value ofm,β and θ as follows.

Theorem 3.2: Under the same conditions as Theorem 3.1, further assume that m =
	nr
(r > 0), β = nr, θ = Lnr/

√
b, then there exists a constant ν > 0 such that η =

(νλ
√
b/Lnr), and

E

[
DX

h

(
xa,∇F(xa), Id,

λ

η

)]
≤ 2Lλnr

νλ
√
bT

(P(x0) − P∗). (19)

Corollary 3.1 (Complexity): Under the same conditions as Theorem 3.2, assume that b =
n2/3, m = n1/3, then the step size η ≤ (νλ/L). Therefore, the SFO and CPO complexity of
Algorithm 3.1 to achieve an ε-approximate solution of (1) and (2) are O(n + (κ1n2/3/ε))
and O(κ1/ε), respectively, where κ1 = λ/λ.

Recall that the initial proximal SVRG method for non-convex composite optimization
achieves the SFO complexityO(n + (n2/3/ε)) [43]. Compared with this, SPQN achieves
a similar result which adds the coefficient κ1 which to some extent reflects the condition
number of Hessian approximations. If we choose all Hessian approximations equal to the
identity matrix and X = R

d, SPQN turns to initial proximal SVRG and the complexity
bound becomes the same as that of [43].

3.2. Linear convergence rate under CP-PL inequality

In this subsection, we analyse the convergence rate of SPQNmethod for solving problems
satisfying the CP-PL inequality (16). We now present a variant algorithm GD-SPQN.

Algorithm 3.2 GD-SPQN(x0,B0,T,m, bη)
1: Input: starting vector x̂0 = x0m = x0 ∈ X , initial matrix B0, innerloop update fre-

quencym and learning rate η

2: for k = 0, 1, . . . ,K − 1 do
3: xk+1 = SPQN(xk,Bk,T,m, b, η)
4: end for
5: Output: xK

The following theorem shows the globally linear convergence rate of GD-SPQN.
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Theorem 3.3: Under the same conditions as Theorem 3.2, assume the CP-PL inequality (16)
holds with the parameter μ > 0 and set the parameter T as T = �((Lλ)/(2μνλ))(nr/

√
b)�,

then we have

E[P(xk) − P∗] ≤ (2−k)[P(x0) − P∗)]. (20)

Corollary 3.2 (Complexity): Under the same conditions as Theorem 3.3, the SFO
and CPO complexity of GD-SPQN to achieve ε-approximate solution are O((n +
κ1κ2((n/

√
b) + nr

√
b)) log(1/ε)) and O((κ1κ2nr/

√
b) log(1/ε)), respectively, where κ1 =

(λ/λ), κ2 = L/μ.

4. Amodified self-scaling SR1method

In this section, we propose a modified self-scaling symmetric rank one (MSSR1) method
to generate the Hessian approximation satisfying the assumption AS2. In deterministic
optimization, the classic SR1 method for minimizing f (x) calculates iterates through (4)
where the quasi-Newton matrix Bk is updated by

Bk+1 = Bk + (yk − Bksk)(yk − Bksk)T

(yk − Bksk)Tsk
,

where sk = xk+1 − xk and yk = ∇f (xk+1) − ∇f (xk). By setting Hk = B−1
k , the inverse

update of SR1 is formulated by

Hk+1 = Hk + (sk − Hkyk)(sk − Hkyk)T

(sk − Hkyk)Tyk
.

For related works on the SR1 methods interested readers are referred to [10,14,25]. Com-
pared with other quasi-Newton methods, SR1 method normally shows superior perfor-
mance on solving non-convex problems [10,14]. However, classic SR1 method has a major
drawback that it cannot guarantee the positive definiteness of quasi-Newtonmatrices even
even though the curvature condition sTk yk > 0 is satisfied. Many works are proposed to
modify the SR1 update to preserve positive definiteness, see [54]. There are some suc-
cessful attempts in a trust region or line search framework to avoid the loss of positive
definiteness [10,25]. These techniques, however, are impractical to implement in stochas-
tic settings, since exact function and gradient values are not accessible. Another important
approach to preserve positive definiteness of the SR1 update is to scale the current update
[39,55]. Osborne and Sun [39] propose a self-scaling SR1method, OCSSR1, which updates

Hk+1 = τHk + (sk − τHkyk)(sk − τHkyk)T

(sk − τHkyk)Tyk
, (21)

where the scalar scaling parameter τ can be chosen as τ = (a/b) −
√

(a/b)2 − (a/c), with
a = sTk Bksk, b = yTk sk and c = yTk Hkyk. Sun [55] presents a limited memory variant of
OCSSR1 method. Combining with the scaling strategy, it could not only adjust the eigen-
value distribution of updating matrices to improve the SR1 algorithm, but also maintain
the positive definiteness of updating matrices. So the key issue lies on how to guarantee
the curvature condition sTk yk > 0. In our iterative framework, we refer a special damping



OPTIMIZATION METHODS & SOFTWARE 931

technique in SC-BFGS [15] that the vector vk is defined to be the linear combination of sk
and ηyk, that is

vk = βsk + (1 − β)ηyk
for some β ∈ [0, 1] satisfying the condition that there exist constants θ1 ∈ (0, 1), θ2 ∈
(1,∞) such that

θ1 ≤
vTj sj
sTj sj

,
vTj vj

vTj sj
≤ θ2. (22)

Then by replacing yk with vk in (21) we obtain a modified self-scaling SR1(MSSR1)
method.

For the unconstrained case, i.e.X = Rd, the subproblem (17) is equivalent to solve the
following scaled proximal operator per iteration:

x̃ = proxH
−1

h (x − ηHg),

where H is the inverse of B. However, it is often difficult to solve this scaled proximal
operator precisely for general symmetric positive definite matrix B. Theorem 7 in [5]
shows that if H has special structure with a diagnosed matrix plus a rank one correction,
i.e. H = D + uuT , it is possible to implement the calculation of this proximity operator
efficiently. The next theorem extends the result to the case H = D − uuT .

Theorem 4.1: Let h be a proper and lower semi-continuous convex function, and H = D +
σuuT (σ is +1 or −1), where D is a diagonal matrix with positive diagonal elements and
u ∈ R

d. Then we have

proxHh (x) = D−1/2 ◦ proxh◦D−1/2(D1/2x − σv),

where v = αD−1/2u and α is the unique root of the function

p(α) = 〈u, x − D−1/2 ◦ proxh◦D−1/2 ◦ D1/2(x − σαD−1u)〉 + α,

which is a Lipschitz continuous and strictly increasing function on R.

The proof refers to appendix. Becker and Fadili [5] prove the case that σ = 1. In our
numerical experiments, we compute proxHh corresponding to the case σ = −1. It follows
from Theorem 4.1 that for special h, such as L1 norm, L∞-ball, box constraint and positive
constraint, the scaled operator proxHh will be easily handled and can be expected to be
computed exactly at cost of d log(d) [5].

In order to obtain a minimizer of (6) efficiently, we now propose a modified self-scaling
symmetric rank one (MSSR1) method with Hk in (21) set as the identity matrix Id, which
yields the zero memory form of OCSSR1 method. We generate the auxiliary stochastic
gradient at xt+1

j+1 with the sampling in previous jth iteration:

ḡt+1
j+1 := 1

b

∑
i∈Mj

∇fi(xt+1
j+1).

The stochastic gradient difference yj is defined as

yj := ḡt+1
j+1 − gt+1

j . (23)
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Algorithm 4.1Modified self-scaling symmetric rank one (MSSR1)
1: Input: Given ε > 0, θ1 ∈ (0, 1) and θ2 ∈ (1,∞)

2: Set sj = xt+1
j+1 − xt+1

j , yj = ḡt+1
j+1 − gt+1

j
3: Compute βj = argmin

{
β ∈ [0, 1] | v(β) = βsj + (1 − β)ηyj satisfies (22)

}
4: Set vj = v(βj)

5: Compute τ = sTj sj
vTj sj

− (
(sTj sj)

2

(vTj sj)2
− sTj sj

vTj vj
)
1
2 and ρ = vTj sj − τvTj vj

6: if ρ ≤ ε
∥∥sj − τvj

∥∥ ∥∥vj
∥∥

then
7: set uj = 0
8: else
9: set uj = sj−τvj√

ρ

10: end if
11: Set Ht+1

j+1 = τId + ujuTj

The following theorem shows that Ht+1
j+1 generated by MSSR1 is symmetric and uni-

formly positive definite.

Theorem 4.2: Let Ht+1
j+1 be updated by MSSR1. Then we have

λId � Ht+1
j+1 � λId,

where λ = 1/(2dθ2), λ = τd + 1/(εθ1).

Since yj defined in (23) is independent of current random sampling setMj+1, together
with Theorem 4.2 it follows that Ht+1

j+1 satisfies AS2. According to Sherman-Morrison
formula, Bt+1

j+1 is guaranteed to satisfy the assumption AS2. Therefore, the theoretical prop-
erties of StSR1method, which appliesMSSR1method to update theHessian inversematrix
in the framework of SPQN, can be guaranteed based on the analysis in Section 3.

5. Numerical experiments

In this section, we empirically test the StSR1 method which is the MSSR1 update incor-
porated in the framework of SPQN and compare its performance with some related
algorithms.

We consider the following sparse non-convex support vector machine (SVM) problem
with a sigmoid loss function considered in [59]:

P(x) = 1
n

n∑
i=1

(1 − tanh(bi〈ai, x〉)) + λ‖x‖1, (24)

where {(ai, bi)}ni=1 is a training sample set with ai ∈ R
d being the feature vector and

bi ∈ {−1,+1} being the corresponding label. And λ ≥ 0 is the regularization parameter.
In our numerical experiments, we compare StSR1 to Prox-SVRG [43] and standard proxi-
mal gradient method, abbreviated as Prox-GD [34]. All the methods were implemented in
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Table 1. Summary of datasets and regularization parameters used in
numerical experiments.

Dataset n/N d λ

rcv1.binary 13,495/20,242 47,236 10−5

w6a 17,188/49,749 300 10−5

real-sim 48,206/72,309 20,958 10−5

Matlab 2014b underWindows 7 operating system onDell desktop with Intel(R) Core(TM)
i7-4790U CPU @3.6GHz, 8GB Memory.

For the problem (24), algorithms were tested with different input parameters. We
report the squared norm of gradient (training data) and accuracy(percentage of correctly
classified testing data) as criterions to measure the performance of tested algorithms.
For all those algorithms, we compare these criterions against the number of effective
pass through the data, that is SFO calls divide by n. The algorithms were terminated
when the total number of component gradient evaluations, i.e. SFO, is larger than
the maximum value we set. We run n proximal SGD iterations and obtain an iterate
as the starting point for all algorithms, suggested in [43]. For MSSR1, all the combi-
nation of θ1 ∈ {2−3, 2−4, 2−5, 2−6, 2−7} and θ2 ∈ {21, 22, 23} were tested. For the mini-
batch size b, we test on b ∈ {1, n1/3/2, n1/3, 2n1/3, 3n1/3}. Moreover, we set ε = 10−12.
In the experiments, we choose the same range of stepsize for Prox-SVRG and Prox-
GD methods, that is η ∈ {10−2, 10−1, 1, 101, 102}, and choose η ∈ {2−2, 2−1, 1, 21, 22}
for StSR1.

In Table 1, we list three datasets from LIBSVM website2 we tested in our numerical
experiments. Here, n denotes the number of the training data and N denotes the number
of the whole data including both training and testing data. And d is the dimension of the
dataset. The regularization parameter λ = 10−5 is set for every dataset. For the dataset
w6a, we use the training data and testing data from the website provided. For the datasets
real-sim and rcv1.binary, we use 2/3 of the data as the training data, and the remaining 1/3
as the testing data.

5.1. Experiment results on rcv1.binary

In this subsection, we compare StSR1, Prox-GD and Prox-SVRG on rcv1.binary dataset
for solving (24). Firstly, we compare the impact of the input parameters (b, θ1, θ2, η) on
StSR1. In Figure 1, we compare StSR1 with different minibatch size b. The input parame-
ters (θ1, θ2, η) = (2−5, 22, 1). The best batchsize b = 0.5n1/3 is achieved according to the
accuracy in the right figure.Moreover, Figure 1 shows that theminibatch technique usually
provides better performance in practice and make the algorithm more stable.

The impact of parameter θ1 for MSSR1 method on rcv1.binary is shown in Figure 2.
The parameter θ1 is chosen from the set {2−3, 2−4, 2−5, 2−6, 2−7}. Other used parameters
are set as (b, θ2, η) = (0.5n1/3, 22, 1). From Figure 2 we can see that StSR1 method is not
sensitive to θ1, although smaller θ1 can achieve a better performance. However, the smaller
θ1 may hurt the accuracy according to Figure 2. Overall speaking, the best θ1 is achieved
at θ1 = 2−6. In our numerical experiments, we find that for any θ2 ∈ {2, 22, 23} the same
performance can be achieved. Thus, we fix θ2 = 22 in all following experiments.
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Figure 1. Comparisonon rcv1.binarydatasetwithdifferentminibatch sizeb for StSR1method. The input
parameters are set as (θ1, θ2, η) = (2−5, 22, 1).

Figure 2. Comparison on rcv1.binary dataset with different θ1 for StSR1 method. The input parameters
are set as (b, θ2, η) = (0.5n1/3, 22, 1).

Figure 3 shows the influence of stepsize on rcv1.binary dataset. We can observe
that StSR1 is not very sensitive to stepsize but prefer smaller stepsize. Thus, we set
the exponential change of stepsize is based on 2, that is η ∈ {2−2, 2−1, 1, 21, 22}. The
best chosen stepsize η is η = 1. The other input parameters are set as (b, θ1, θ2) =
(0.5n1/3, 2−6, 22).

In Figure 4, we compare the three methods StSR1, Prox-GD and Prox-SVRG on
rcv1.binary dataset. To fairly compare all the three algorithms, we test them with their
best parameter settings. For StSR1 the best performance is achieved with parameters
set as (b, θ1, θ2, η) = (0.5n1/3, 2−6, 22, 1), while for Prox-GD, the best performance is
achieved when η = 102. And according to the accuracy Prox-SVRG performs best when
η = 10. Figure 4 shows that StSR1 performs better compared to best-tuned Prox-GD and
Prox-SVRG.
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Figure 3. Comparison on rcv1.binary dataset with different stepsize η for StSR1 method. The input
parameters are set as (b, θ1, θ2) = (0.5n1/3, 2−6, 22).

Figure 4. Comparison of StSR1, Prox-GD, and Prox-SVRG on the rcv1.binary dataset. For StSR1 input
parameters are set as (b, θ1, θ2, η) = (0.5n1/3, 2−6, 22, 1), while η = 102 for Prox-GD and η = 10 for
Prox-SVRG.

5.2. Numerical experiments onw6a and real-sim datasets

In this subsection, we compare the performance of StSR1, Prox-GD and Prox-SVRG
on w6a and real-sim dataset. Similar to subsection (5.1), we consider the input param-
eters (b, θ1, θ2, η). The best performance is achieved with the input (b, θ1, θ2, η) =
(n1/3, 2−5, 22, 1) for StSR1 on the two datasets, and for Prox-SVRG and Prox-GD the best-
tuned stepsizes are η = 10 and η = 102, respectively. Again, better performance of StSR1
is demonstrated in both Figures 5 and 6.

6. Conclusion

In this paper, we proposed a general framework, SPQN, for stochastic proximal quasi-
Newton methods to solve non-convex composition optimization problems. In SPQN,
iterates are updated through solving a scaled proximal operator, which is designed based
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Figure 5. Comparison of StSR1, Prox-GD, andProx-SVRGon thew6adataset. For StSR1 input parameters
are set as (b, θ1, θ2, η) = (n1/3, 2−5, 22, 1), while η = 102 for Prox-GD and η = 10 for Prox-SVRG.

Figure 6. Comparison of StSR1, Prox-GD, and Prox-SVRGon the real-simdataset. For StSR1 input param-
eters are set as (b, θ1, θ2, η) = (n1/3, 2−5, 22, 1), while η = 102 for Prox-GD and η = 10 for Prox-SVRG.

on a symmetric positive definite quasi-Newton matrix. We analysed its theoretical prop-
erties and proved the global linear convergence rate under CP-PL inequality. Moreover,
we proposed a modified self-scaling symmetric rank one (MSSR1) method to update the
quasi-Newton matrix, which is incorporated in the framework of SPQN called StSR1
method. In this way, not only the quasi-Newton matrix could satisfy the assumption
required to guarantee the convergence of SPQN, but also the proximal subproblem could
be solved very efficiently. Finally we reported some numerical results which show the
comparable performance of StSR1 method to proximal SVRG and proximal GDmethods.

Notes

1. We say a real-valued function f is lower semi-continuous if lim infx→x0 f (x) ≥ f (x0).
2. https://www.csie.ntu.edu.tw/cjlin/libsvmtools/datasets/

https://www.csie.ntu.edu.tw/cjlin/libsvmtools/datasets/
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Appendices

Appendix 1. Proofs of lemmas in Section 2

Proof of Lemma 2.1.: Recall that PX (x, g,α) is defined in (8). According to optimality conditions
for (9), there exists a subgradient z ∈ ∂h(x+) such that

〈g + αB(x+ − y) + z, y − x+〉 ≥ 0, for any y ∈ X .

Let y= x and apply the convexity of h at x+. Then we have

〈g, x − x+〉 ≥ α〈B(x − x+), x − x+〉 + 〈z, x+ − x〉

≥ 1
α

‖PX (x, g,α)‖2B + h(x+) − h(x).

Then the relationship between PX and x+ yields (13). �
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Proof of Lemma 2.2.: Recalling the definitions DX
h (x, g,B,α) in (12) and PX (x, g,α) in (8), we

have,

DX
h (x, g,B,α) = −2α

{
〈g, x+ − x〉 + α

2
‖x+ − x‖2B + h(x+) − h(x)

}

= −2α
{〈

g,− 1
α
PX (x, g,α)

〉
+ 1

2α
‖PX (x, g,α)‖2B + h(x+) − h(x)

}

= 2〈g, PX (x, g,α)〉 − ‖PX (x, g,α)‖2B − 2α(h(x+) − h(x))

≥ 2‖PX (x, g,α)‖2B + 2α(h(x+) − h(x)) − ‖PX (x, g,α)‖2B − 2α(h(x+) − h(x))

= ‖PX (x, g,α)‖2B,

where the first equality follows from the fact that the minimizer of big brace is at x+ and the
inequality follows from Lemma 2.1. �

Proof of Lemma 2.3.: For simplicity, we denote G(y) := 〈g, y − x〉 + (α/2)‖y − x‖2B + h(y) −
h(x). Since h is convex onX and B is a symmetric positive definite matrix, soG(y) is strongly convex
on X . Thus, for any closed and convex subset X , the minimizer of G(y) exists.

For any α1 > 0, there exists y1 ∈ X such that

DX
h (x, g,B,α1) = −2α1

{
〈g, y1 − x〉 + α1

2
‖y1 − x‖2B + h(y1) − h(x)

}
.

Let y2 satisfies the following equality

α2(y2 − x) = α1(y1 − x),

or y2 can be written as the linear combination of x and y, that is,

y2 = x + α1

α2
(y1 − x) = α1

α2
y1 + α2 − α1

α2
x.

For any 0 < α1 ≤ α2, y1 and x ∈ X , X is closed convex subset of R
d, so we have y2 ∈ X . Applying

the convexity of h on X , we can obtain

h(y2) ≤ α1

α2
h(y1) + α2 − α1

α2
h(x), (A1)

which is equivalent to

α2[h(y2) − h(x)] ≤ α1[h(y1) − h(x)]. (A2)

Since y2 ∈ X , we have

− 2α2

{
〈g, y2 − x〉 + α2

2
‖y2 − x‖2B + h(y2) − h(x)

}
≤ −2α2 min

y∈X

{
〈g, y − x〉 + α2

2
‖y − x‖2B + h(y) − h(x)

}
= Dh(x, g,B,α2).

(A3)
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Using the definition of y2, we obtain,

− 2α2

{
〈g, y2 − x〉 + α2

2
‖y2 − x‖2B + h(y2) − h(x)

}

= −2
{
〈g,α2(y2 − x)〉 + α2

2
2

‖y2 − x‖2B + α2[h(y2) − h(x)]
}

= −2
{
〈g,α1(y1 − x)〉 + α2

1
2

‖y1 − x‖2B + α2[h(y2) − h(x)]
}

≥ −2α1

{
〈g, y1 − x〉 + α1

2
‖y1 − x‖2B + h(y1) − h(x)

}
= Dh(x, g,B,α1),

(A4)

where the inequality follows from (A2). Then together with (A3) and (A4), it yields the result of
Lemma 2.3. �

Appendix 2. Proofs of theorems and corollary in Section 3

In order to analyse the convergence of SPQN, we first give two lemmas.

Lemma A.1: Given ξ as a random variable, assume that H(y, ξ) is uniformly bounded below and y is
independent of ξ , then we have

Eξ min
y∈X

{H(y, ξ)} ≤ min
y∈X

EξH(y, ξ). (A5)

Proof: Since the random variable ξ is independent of y, for any fixed ŷ ∈ X , we have

min
y∈X

{H(y, ξ)} ≤ H(ŷ, ξ). (A6)

Then taking expectation on both sides of (A6) with respect to ξ , we have

Eξ min
y∈X

{H(y, ξ)} =
∫

ξ

min
y∈X

{H(y, ξ)} dP ≤
∫

ξ

H(ŷ, ξ) dP = EξH(ŷ, ξ).

Hence,
Eξ min

y∈X
{H(y, ξ)} ≤ min

y∈X
EξH(y, ξ).

�

Let

H(y, ξ) = 〈gk, y − xk〉 + α

2
‖y − xk‖2Bk + h(y) − h(xk).

Since the random variable ξ comes from the computation of stochastic gradient gk, Lemma A.1
implies the following result.

Lemma A.2: Assume that ξ is a random variable and is generated during the computation of gk. Fur-
ther assume that E[gk|xk] = ∇F(xk) and Bk is a symmetric positive definite matrix and independent
of ξ . Then for any α > 0, taking conditional expectation on H(y, ξ) with respect to ξ yields

E{DX
h (xt+1

j , gt+1
j ,Bt+1

j ,α)} ≥ DX
h (xt+1

j ,∇F(xt+1
j ),Bt+1

j ,α). (A7)
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Proof: Due to the convexity of h onX ,H(y, ξ) is uniformly bounded belowwith respect to y. Notice
that y is independent of ξ . Then it follows from Lemma A.1 that

Emin
y∈X

{
〈gk, y − xk〉 + α

2
‖y − xk‖2Bk + h(y) − h(xk)

}

≤ min
y∈X

E

{
〈gk, y − xk〉 + α

2
‖y − xk‖2Bk + h(y) − h(xk)

}

= min
y∈X

{
〈∇F(xk), y − xk〉 + α

2
‖y − xk‖2Bk + h(y) − h(xk)

}

= − 1
2α

DX
h (xk,∇F(xk),Bk,α),

which implies (A7). �

We now give the proof of Theorem 3.1.

Proof of Theorem 3.1.: By using the L-smoothness of F, we have

F(xt+1
j+1 ) ≤ F(xt+1

j ) + 〈∇F(xt+1
j ), xt+1

j+1 − xt+1
j 〉 + L

2
‖xt+1

j+1 − xt+1
j ‖2

≤ F(xt+1
j ) + 〈∇F(xt+1

j ) − gt+1
j + gt+1

j , xt+1
j+1 − xt+1

j 〉 + L
2
‖xt+1

j+1 − xt+1
j ‖2

≤ F(xt+1
j ) + 〈gt+1

j , xt+1
j+1 − xt+1

j 〉 + L
2
‖xt+1

j+1 − xt+1
j ‖2 + 〈∇F(xt+1

j ) − gt+1
j , xt+1

j+1 − xt+1
j 〉

≤ F(xt+1
j ) + min

y∈X

{
〈gt+1

j , y − xt+1
j 〉 + 1

2η
‖y − xt+1

j ‖2Bt+1
j

+ h(y) − h(xt+1
j )

}

+
(
L
2
‖xt+1

j+1 − xt+1
j ‖2 − 1

2η
‖xt+1

j+1 − xt+1
j ‖2Bt+1

j

)

+ 〈∇F(xt+1
j ) − gt+1

j , xt+1
j+1 − xt+1

j 〉 + h(xt+1
j ) − h(xt+1

j+1 )

≤ F(xt+1
j ) + min

y∈X

{
〈gt+1

j , y − xt+1
j 〉 + 1

2η
‖y − xt+1

j ‖2Bt+1
j

+ h(y) − h(xt+1
j )

}

+
(
L
2

− λ

2η

)
‖xt+1

j+1 − xt+1
j ‖2 + 〈∇F(xt+1

j ) − gt+1
j , xt+1

j+1 − xt+1
j 〉 + h(xt+1

j ) − h(xt+1
j+1 ),

(A8)
where the fourth inequality follows from the definition of xt+1

j+1 , that is,

xt+1
j+1 = argmin

y∈X

{
〈gt+1

j , y − xt+1
j 〉 + 1

2η
‖y − xt+1

j ‖2Bt+1
j

+ h(y) − h(xt+1
j )

}
.

Re-arranging (A8) and shifting the h(xt+1
j+1 ) to the left side, we obtain

P(xt+1
j+1 ) ≤ P(xt+1

j ) + min
y∈X

{
〈gt+1

j , y − xt+1
j 〉 + 1

2η
‖y − xt+1

j ‖2Bt+1
j

+ h(y) − h(xt+1
j )

}

+
(
L
2

− λ

2η

)
‖xt+1

j+1 − xt+1
j ‖2 + 〈∇F(xt+1

j ) − gt+1
j , xt+1

j+1 − xt+1
j 〉.
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Taking expectation upon the both side of above inequality conditioned on xt+1
j and applying the

Lemma A.2 with α = 1/η, we have

E[P(xt+1
j+1 )] ≤ E[P(xt+1

j )] +
(
−η

2

)
DX

h

(
xt+1
j ,∇f (xt+1

j ),Bt+1
j ,

1
η

)

+
(
L
2

− λ

2η

)
E‖xt+1

j+1 − xt+1
j ‖2 + E〈∇F(xt+1

j ) − gt+1
j , xt+1

j+1 − xt+1
j 〉

≤ E[P(xt+1
j )] − η

2
DX

h

(
xt+1
j ,∇f (xt+1

j ),Bt+1
j ,

1
η

)
+

(
L
2

− λ

2η

)
E‖xt+1

j+1 − xt+1
j ‖2

+ 1
2θ

E‖∇F(xt+1
j ) − gt+1

j ‖2 + θ

2
E‖xt+1

j+1 − xt+1
j ‖2

≤ E[P(xt+1
j )] − η

2
DX

h

(
xt+1
j ,∇F(xt+1

j ),Bt+1
j ,

1
η

)

+
(

θ

2
+ L

2
− λ

2η

)
E‖xt+1

j+1 − xt+1
j ‖2 + 1

2θ
E‖∇F(xt+1

j ) − gt+1
j ‖2, (A9)

where the second inequality uses Cauchy–Schwarz inequality 2〈a, b〉 ≤ (1/θ)‖a‖2 + θ‖b‖2.
We now estimate the bound on E[‖∇F(xt+1

j ) − gt+1
j ‖2]:

E‖∇F(xt+1
j ) − gt+1

j ‖2 = E

∥∥∥∥∥∥
1
b

∑
i∈Mj

[∇fi(xt+1
j ) − ∇fi(x̂t) + ∇F(x̂t) − ∇F(xk+1

j )]

∥∥∥∥∥∥
2

≤ 2
b2

∑
i∈Mj

{
E‖∇fi(xt+1

j ) − ∇fi(x̂t)‖2 + E‖∇F(x̂t) − ∇F(xt+1
j )‖2

}

≤ 4L2

b
E‖xt+1

j − x̂t‖2. (A10)

Consider the Lyapunov function

Rt+1
j = E[P(xt+1

j ) + cj‖xt+1
j − x̂t‖2].

Note that

E[‖xt+1
j+1 − x̂t‖2] = E[‖xt+1

j+1 − xt+1
j + xt+1

j − x̂t‖2]

≤ (1 + β)E[‖xt+1
j+1 − xt+1

j ‖2] +
(
1 + 1

β

)
E[‖xt+1

j − x̂t‖2], (A11)

where the inequality is due to the fact that ‖a + b‖2 ≤ (1 + β)‖a‖2 + (1 + (1/β))‖b‖2.
Combining the inequalities (A9), (A10), and (A11), we have

E[P(xt+1
j+1 )] + cj+1E[‖xt+1

j+1 − x̂t‖2]

≤
{
E[P(xt+1

j )] +
(
cj+1

(
1 + 1

β

)
+ 2L2

bθ

)
E‖xt+1

j − x̂t‖2
}

− η

2
Dh

(
xt+1
j ,∇F(xt+1

j ),Bt+1
j ,

1
η

)

+
(

θ

2
+ L

2
− λ

2η
+ cj+1(1 + β)

)
E‖xt+1

j+1 − xt+1
j ‖2

≤ {E[P(xt+1
j )] + cjE‖xt+1

j − x̂t‖2} − η

2
Dh

(
xt+1
j ,∇F(xt+1

j ),Bt+1
j ,

1
η

)
. (A12)
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The second inequality of (A12) follows from the fact that according to the definition of cj, the
sequence of {cj}mj=0 is decreasing and η ≤ (λ/(θ + L + 2c0(1 + β))) ≤ (λ/(θ + L + 2cj+1(1 + β))).
Consequently, θ/2 + L/2 − λ/2η + cj+1(1 + β) ≤ 0 for all j ∈ [m].

Re-arranging (A12) and use the definition of Lyapunov function Rt+1
j , we have

DX
h

(
xt+1
j ,∇F(xt+1

j ),Bt+1
j ,

1
η

)
≤ 2

η
E[Rt+1

j − Rt+1
j+1 ].

Summing up the above inequality, for j = 0, 1, . . . ,m − 1, we have,

m−1∑
j=0

DX
h

(
xt+1
j ,∇F(xt+1

j ),Bt+1
j ,

1
η

)
≤ 2

η
E[Rt+1

0 − Rt+1
m ]. (A13)

Recalling the update rule that x̂t+1 = xt+1
m , if we choose cm = 0, we have

E[Rt+1
0 ] = E[P(xt+1

0 ) + c0‖xt+1
0 − x̂t‖2] = E[P(x̂t)],

and

E[Rt+1
m ] = E[P(xt+1

m ) + cm‖xt+1
m − x̂t‖2] = E[P(xt+1

m )] = E[P(x̂t+1)].

Thus, if follows from (A13) that

m−1∑
j=0

Dh

(
xt+1
j ,∇F(xt+1

j ),Bt+1
j ,

1
η

)
≤ 2

η
E[P(x̂t) − P(x̂t+1)].

Summing up the above inequality for t = 0, 1, . . . , S − 1 and multiplying both sides with 1
T , we

obtain

1
T

S−1∑
t=0

m−1∑
j=0

DX
h

(
xt+1
j ,∇F(xt+1

j ),Bt+1
j ,

1
η

)
≤ 2E[P(x0) − P(x̂S)]

ηT
. (A14)

Notice that λId � Bt+1
j � λId, then we have ‖y − xt+1

j ‖2
Bt+1
j

≤ λ‖y − xt+1
j ‖2. Hence,

〈∇F(xt+1
j ), y − xt+1

j 〉 + 1
2η

‖y − xt+1
j ‖2Bt+1

j
+ h(y) − h(xt+1

j )

≤ 〈∇F(xt+1
j ), y − xt+1

j 〉 + λ

2η
‖y − xt+1

j ‖2 + h(y) − h(xt+1
j ) (A15)

for all y ∈ X . Consequently,

min
y∈X

{
〈∇F(xt+1

j ), y − xt+1
j 〉 + 1

2η
‖y − xt+1

j ‖2Bt+1
j

+ h(y) − h(xt+1
j )

}

≤ min
y∈X

{
〈∇F(xt+1

j ), y − xt+1
j 〉 + λ

2η
‖y − xt+1

j ‖2 + h(y) − h(xt+1
j )

}
.
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Here, it follows from the simple truth that if f1(y) ≤ f2(y) for all y, then min f1(y) ≤ min f2(y).
Recalling the definition DX

h (xt+1
j ,∇F(xt+1

j ),Bt+1
j ,α) with α = 1/η, we have

DX
h

(
xt+1
j ,∇F(xt+1

j ),Bt+1
j ,

1
η

)

≥ − 2
η
min
y∈X

{
〈∇F(xt+1

j ), y − xt+1
j 〉 + λ

2η
‖y − xt+1

j ‖2 + h(y) − h(xt+1
j )

}

= 1
λ
DX
h

(
xt+1
j ,∇F(xt+1

j ), Id,
λ

η

)
.

Thus, the above inequality and (A14) imply that

1
λT

S−1∑
t=0

m−1∑
j=0

DX
h

(
xt+1
j ,∇F(xt+1

j ), I,
λ

η

)

≤ 1
T

S−1∑
t=0

m−1∑
j=0

DX
h

(
xt+1
j ,∇F(xt+1

j ),Bk+1
j ,

1
η

)

≤ 2E[P(x0) − P(x̂S)]
ηT

.

Since the output xa is uniformly chose from {{xt+1
j }m−1

j=0 }S−1
t=0 , we obtain

E

[
DX
h

(
xa,∇F(xa), I,

λ

η

)]
= 1

T

S−1∑
t=0

m−1∑
j=0

DX
h

(
xt+1
j ,∇F(xt+1

j ), I,
λ

η

)

≤ 2λE[P(x0) − P(x̂S)]
ηT

≤ 2λE[P(x0) − P∗]
ηT

,

which completes the proof. �

Proof of Theorem 3.2.: Since cj = cj+1(1 + (1/β)) + (2L2/bθ) and cm = 0, we observe that

c0 = 2L2

bθ

(1 − (1 + 1
β
)m)

1 − (1 + 1
β
)

=
2L2β((1 + 1

β
)m − 1)

bθ
.

Usingm = 	nr
(r > 0), and β = nr , we have

c0 = 2L2

bθ
nr

((
1 + 1

nr

)	nr

− 1

)
≤ 2L2nr

bθ
(e − 1), (A16)

where the inequality uses the well-known fact that (1 + (1/t))t < e for t ¿ 0.
According to (A16), we have

2c0(1 + β) ≤ 4c0β ≤ 8L2n2r

bθ
(e − 1),

and then
λ

θ + L + 2c0(1 + β)
≥ λ

θ + L + 8L2n2r
bθ (e − 1)

.
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We require that η ≤ (λ/(θ + L + (8L2n2r/bθ)(e − 1)), applying the specific value of θ = Lnr/
√
b,

and there exists a constant ν > 0 (independent of n), such that η ≤ νλ
√
b/Lnr . If we choose the

upper bound of η, and applying to the result of Theorem 3.1, this yields the result we need. �

Proof of Corollary 3.1.: For the algorithm SPQN, we can obtain that the number of SFO and
CPO isO(n + bT + n(T/m)) andO(T), respectively. Ifm = n1/3 means that r = 1

3 in Theorem3.2.
Because the batchsize is b = n2/3, the stepsize can be a constant independent with n, that is
η ≤ νλ/L. In order to achieve ε-approximate solution, we know (2Lλ/νλ)(nr/

√
bT) ≤ ε, so T ≥

(κ1nr/
√
bε)where κ1 = (λ/λ). In Algorithm 3.1, we run n SGD iterations to obtain the initial point.

Thus if we choose b = n2/3 and r = 1
3 , the SFO and CPO complexity should beO(n + κ1n2/3/ε)

and O(κ1/ε), respectively. �

Proof of Theorem 3.3.: At each inner iteration, applying SPQN we obtain the convergence result

E

[
DX

h

(
xk+1,∇F(xk+1),

1
η

)]
≤ 2Lλ

νλ

(
nr√
bT

)
E[P(xk) − P∗]. (A17)

Since η ≤ (λ/(θ + L + 2c0(1 + β))), η ≤ (λ/L), thus

λ

η
≥ λL

λ
≥ L,

then it follows from Lemma 2.3 that

DX
h (xt+1

j ,∇F(xt+1
j ), Id, L) ≤ DX

h

(
xt+1
j ,∇F(xt+1

j ), Id,
λ

η

)
. (A18)

Applying the CP-PL inequality at x = xk+1, taking expectation on the both sides of (A18), we have

2μE[P(xk+1 − P∗)] ≤ E[DX
h (xk+1,∇F(xk+1), Id, L)]. (A19)

Then combining the above inequalities (A17)–(A19), and substituting the specific value of T , we
obtain

E[P(xk+1 − P∗)] ≤ 2Lλ
2μνλ

(
nr√
bT

)
E[P(xk) − P∗] ≤ 1

2
E[P(xk) − P∗].

Thus applying the above inequality recursively yields the result. �

Proof of Corollary 4.: For GD-SPQN, the SFO and CPO complexity are O(n + K(bT +
n(T/m))) and O(KT), respectively. In order to achieve ε-approximate solution, K = log(1/ε).
So if T = �(Lλ/(2μνλ))(nr/

√
b)�, m = 	nr
, the SFO complexity is O((n + κ1κ2((n/

√
b) +

nr
√
b)) log(1/ε)), and CPO complexity is O((κ1κ2nr/

√
b) log(1/ε)) where κ1 = λ/λ, κ2 =

L/μ. �

Appendix 3. Proofs of theorems in Section 4

Proof of Theorem 4.1.: Let p = proxHh (x), whereH = D + σuuT (σ is +1 or −1 ). Then we obtain

argmin
y

1
2
‖y − x‖2H + h(y)

⇐⇒ argmin
y

1
2
‖y − x‖2D + σ

2
〈u, y − x〉2 + h(y)

ŷ=D1/2y⇐===⇒ argmin
ŷ

1
2
‖ŷ − D1/2x‖2 + σ

2
〈D−1/2u, ŷ − D1/2x〉2 + h(D−1/2ŷ).

(A20)
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Define ŷ∗ as the optimal point of the second equation of (A20), which means

p = D−1/2ŷ∗. (A21)

By the first-order optimality conditions for (A22), we obtain

0 ∈ ŷ∗ − D1/2x + σ 〈D−1/2u, ŷ∗ − D1/2x〉D−1/2u + D−1/2∂h(D−1/2ŷ∗). (A22)

By defining α = 〈D−1/2u, ŷ∗ − D1/2x〉, we can rewrite (A22) as

D1/2x − σαD−1/2u − ŷ∗ ∈ D−1/2∂h(D−1/2ŷ∗). (A23)

Here we use the following fact that

v − p ∈ ∂h(p) ⇔ p = proxh(v), for any v. (A24)

So (A23) is equivalent to
ŷ∗ = proxh◦D−1/2(D1/2x − σαD−1/2u).

Thus, it follows from (A21) that

p = D−1/2 ◦ proxh◦D−1/2(D1/2x − σαD−1/2u),

where α = 〈D−1/2u,D1/2p − D1/2x〉, or equivalently
〈u, x − D−1/2 ◦ proxh◦D−1/2(D1/2x − σαD−1/2u)〉 + α = 0.

�

In Algorithm 4.1, the self-scaling parameter τ plays an important role in preserving the positive
definiteness of quasi-Newton matrices. We now give a lemma showing the bound of τ .

Lemma A.3: Assume that τ is defined as in Algorithm 4.1 and vTj sj > 0, then we have

vTj sj
2vTj vj

< τ ≤
vTj sj
vTj vj

. (A25)

Proof: It is easy to obtain that vTj vjsTj sj ≥ (vTj sj)
2 by Cauchy–Schwarz inequality, so the definition of

τ is reasonable. For simplicity, let a = sTj sj, b = sTj vj, and c = vTj vj. Without causing any confusion,
we can omit the subscripts and rewrite τ as

τ = a
b

−
√(a

b

)2 − b
c
. (A26)

To prove that τ ≤ (vTj sj/v
T
j vj), it suffices to prove τ ≤ (b/c). Multiplying b/a on the both sides

of (A26), we have

τ
b
a

= 1 −
√
1 − b2

ac
≤ b2

ac
.

It is easy to obtain that τ ≤ (b/c) and the equality is achieved when b2 = ac. Consequently, we have

τ = a
b

−
√(a

b

)2 − b
c

=
b
c

a
b +

√( a
b
)2 − b

c

>

a
c
2 a
b

= b
2c
.

�
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Proof of Theorem 4.2.: From Lemma A.3, we have the results that τ ≤ (vTj sj/v
T
j vj) and τ >

(vTj sj/2v
T
j vj), so

ρ = vTj (sj − τvj) ≥ 0,

and ρ = 0 if and only if vTj vjsTj sj = (vTj sj)
2. Moreover, we have (1/2θ2) < τ ≤ (1/θ1).

If ρ ≤ ε‖sj − τvj‖‖vj‖, then we have Ht+1
j+1 = τId. In this case, we have λmin(Ht+1

j+1 ) =
λmax(Ht+1

j+1 ) = τ . Otherwise,

uTj uj = (sj − τvj)
T(sj − τvj)

(sj − τvj)Tvj

≤ (sj − τvj)
T(sj − τvj)

ε‖sj − τvj‖2‖vj‖2

≤ ‖sj − τvj‖2
ε‖vj‖2

≤ 1
ε

√√√√ sTj sj
vTj vj

−
2τvTj sj
vTj vj

+ τ 2

≤ 1
ε

√√√√ sTj sj
vTj vj

− 3
4

(
vTj sj
vTj vj

)2

≤ 1
ε

√√√√ sTj sj
vTj vj

≤ 1
ε

√√√√ sTj sj
vTj sj

vTj sj
vTj vj

≤ 1
ε

sTj sj
vTj sj

≤ 1
εθ1

, (A27)

where the third inequality follows from the bound of τ that (vTj sj/2v
T
j vj) < τ ≤ (vTj sj/v

T
j vj), and

the last inequality uses the truth that vTj vjsTj sj ≥ (vTj sj)
2.

We now estimate the bound of uTj uj. First, we have

λ = λmax(Ht+1
j+1 ) ≤ tr(Ht+1

j+1 ) ≤ tr(τId + ujuTj ) ≤ τd + tr(ujuTj ) ≤ τd + uTj uj ≤ τd + 1
εθ1

.

Let Bt+1
j+1 = (Ht+1

j+1 )−1. Then

Bt+1
j+1 = 1

τ
Id −

ujuTj
τ(τ + uTj uj)

,

which yields that

λmax(Bt+1
j+1) ≤ tr(Bt+1

j+1) = tr
(
1
τ

Id

)
− tr

(
ujuTj

τ(τ + uTj uj)

)
≤ d

τ
,

and

λ = λmin(Ht+1
j+1 ) = 1

λmax(Bt+1
j+1)

≥ τ

d
≥ 1

2dθ2
.

Therefore, the proof is complete. �
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