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PARALLELIZABLE ALGORITHMS FOR OPTIMIZATION
PROBLEMS WITH ORTHOGONALITY CONSTRAINTS\ast 

BIN GAO\dagger , XIN LIU\dagger , AND YA-XIANG YUAN\dagger 

\bfA \bfb \bfs \bft \bfr \bfa \bfc \bft . To construct a parallel approach for solving optimization problems with orthogo-
nality constraints is usually regarded as an extremely difficult mission, due to the low scalability of
the orthonormalization procedure. However, such a demand is particularly huge in some application
areas such as materials computation. In this paper, we propose a proximal linearized augmented
Lagrangian algorithm (PLAM) for solving optimization problems with orthogonality constraints.
Unlike the classical augmented Lagrangian methods, in our algorithm, the prime variables are up-
dated by minimizing a proximal linearized approximation of the augmented Lagrangian function;
meanwhile the dual variables are updated by a closed-form expression which holds at any first-order
stationary point. The orthonormalization procedure is only invoked once at the last step of the
above-mentioned algorithm if high-precision feasibility is needed. Consequently, the main parts of
the proposed algorithm can be parallelized naturally. We establish global subsequence convergence,
worst-case complexity, and local convergence rate for PLAM under some mild assumptions. To re-
duce the sensitivity of the penalty parameter, we put forward a modification of PLAM, which is
called parallelizable columnwise block minimization of PLAM (PCAL). Numerical experiments in
serial illustrate that the novel updating rule for the Lagrangian multipliers significantly accelerates
the convergence of PLAM and makes it comparable with the existent feasible solvers for optimization
problems with orthogonality constraints, and the performance of PCAL does not highly rely on the
choice of the penalty parameter. Numerical experiments under parallel environment demonstrate
that PCAL attains good performance and high scalability in solving discretized Kohn--Sham total
energy minimization problems.

\bfK \bfe \bfy \bfw \bfo \bfr \bfd \bfs . orthogonality constraint, Stiefel manifold, augmented Lagrangian method, parallel
computing

\bfA \bfM \bfS \bfs \bfu \bfb \bfj \bfe \bfc \bft \bfc \bfl \bfa \bfs \bfs \bfi fi\bfc \bfa \bft \bfi \bfo \bfn \bfs . 15A18, 65F15, 65K05, 90C06

\bfD \bfO \bfI . 10.1137/18M1221679

1. Introduction. In this paper, we consider the following matrix variable opti-
mization problem with orthogonality constraints.

min
X\in \BbbR n\times p

f(X)

s. t. X\top X = Ip,
(1.1)

where Ip is the p-by-p identity matrix with 2p \leq n, and f : \BbbR n\times p \mapsto  - \rightarrow \BbbR is a continu-
ously differentiable function. The feasible set of the orthogonality constraints is also
known as Stiefel manifold, \scrS n,p = \{ X \in \BbbR n\times p| X\top X = Ip\} .

Throughout this paper, we assume the following.

Assumption 1.1 (blanket assumption). f is continuously differentiable.

The twice differentiability of f will be particularly mentioned once it is required
in some theoretical analyses.
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A1950 BIN GAO, XIN LIU, AND YA-XIANG YUAN

1.1. Literature survey. Kohn--Sham density functional theory (KSDFT) is
known to be an important topic in materials science [12]. The last step of KSDFT is
to minimize a discretized Kohn--Sham total energy function,

E(X) :=
1

4
tr(X\top LX) +

1

2
tr(X\top VionX) +

1

4
\rho \top L\dagger \rho +

1

2
\rho \top \epsilon xc(\rho ),(1.2)

subject to orthogonality constraints. Here \rho (X) := diag(XX\top ) denotes the charge
density, and L \in \BbbR n\times n is a finite-dimensional representation of the Laplace operator
in the planewave basis. The discretized local ionic potential can be represented by a
diagonal matrix Vion. And the matrix L\dagger which is the discrete form of the Hartree
potential corresponds to the pseudoinverse of L. The exchange correlation function
\epsilon xc is used to model the nonclassical and quantum interaction between electrons. The
discretized energy minimization is exactly a special case of (1.1). The variable scale
of such problems is often very large, and hence the demand for efficient solvers for
optimization with orthogonality constraints is high.

In recent decades, researchers have proposed quite a few efficient optimization
approaches for discretized Kohn--Sham total energy minimization [33, 34, 32, 31, 28,
35, 27, 6, 14]. For the general purpose of solving optimization problems with or-
thogonality constrains, there are abundant algorithms: retraction based approaches
[9, 20, 1, 30, 11], splitting algorithm [13], multipliers correction framework [10], just
to mention a few. Interested readers are referred to the references in [10]. There
are a few successful solvers. The most famous one is the toolbox for optimization on
manifolds, which is called Manopt,1 in which lots of retraction based algorithms for
problem (1.1), such as MOptQR, a QR projection algorithm, are included. Another
quasi-geodesic based approach called OptM2 is widely used in the area of discretized
Kohn--Sham energy minimization.

However, the lack of concurrency becomes a major bottleneck of solving opti-
mization problems with orthogonality constraints, particularly when the number of
columns of the variable matrix is large. Unfortunately, parallel computation has not
attracted much attention from the optimization area until very recently. Refer to
[26, 5, 23, 15, 22]; there is an urgent demand for parallelization in the optimization
area. Although high scalability algorithms have been desired in the KSDFT area for
decades, there has been no successful attempt in this regard so far [6].

We find that parallelization is particularly difficult for optimization problems with
orthogonality constraints. The main reason is that the scalability of orthonormaliza-
tion calculations is low no matter which way you do it.

1.2. Contribution. In this paper, we propose an infeasible algorithm for op-
timization problems with orthogonality constraints. It is based on the augmented
Lagrangian method (ALM) but employs a totally different updating scheme for both
prime and dual variables. The main motivation of the so-called proximal linearized
ALM (PLAM) is an observation that the dual variables enjoy a closed-form formula
at each first-order stationary point. Therefore, we intend to use the symmetrization
of this formula as the updating rule for the dual variables, to replace the dual as-
cent (DA) step in the classical ALM. For the prime variables, instead of solving the
augmented Lagrangian subproblem to some preset precision, we minimize a proximal
linearized approximation of the augmented Lagrangian function, which is equivalent
to taking one gradient descent step.

1Available from http://www.manopt.org.
2Available from http://optman.blogs.rice.edu.
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The orthonormalization procedures are waived in all iterations except the last one
to guarantee high-precision feasibility. The cost of waiving orthonormalization is to
do more BLAS3 calculations (matrix-matrix multiplication) which are known to have
high scalability.

We show the global convergence, worst-case complexity, and local Q-linear conver-
gence rate for PLAM under some mild assumptions. The global convergence of PLAM
requires a sufficiently large penalty parameter and correspondingly small stepsize. Nu-
merical tests also verify the sensitivity of the penalty parameter. Consequently, we
put forward a novel modification strategy, that is, to add redundant unit norm con-
straints to the proximal linearized augmented Lagrangian subproblem for updating
the prime variables. By using this strategy, we can restrict the iterates in a com-
pact set such that the penalty parameter is no longer required to be large. On the
other hand, such modification does not destroy the structure that the subproblem has
a closed-form solution which can be calculated in parallel. We call the consequent
algorithm PCAL, namely, parallelizable columnwise block minimization for PLAM.
The boundedness of PCAL iterates can be guaranteed automatically, and hence the
penalty parameter is no longer required to be sufficiently large.

The numerical experiments under serial computing demonstrate how to choose
default settings for our algorithms and show that the infeasible algorithms are at least
as efficient as the existent feasible algorithms in solving a bunch of test problems.
The numerical experiments under parallel computing illustrate the computational
complexity of PCAL and expose its high scalability.

1.3. Organization and notations. The motivation of new approaches will be
introduced in the next section. In section 3, we will present the algorithm frameworks.
We will investigate the theoretical behaviors of the new proposed algorithms in section
4. Numerical experiments will be demonstrated in section 5. In the last section, we
will draw a brief conclusion and discuss possible future works.

Notations. \BbbS p := \{ X \in \BbbR p\times p | X\top = X\} refers to the p-by-p real symmetric
matrices set. \lambda max(A) and \lambda min(A) stand for the largest and smallest eigenvalues of
given symmetric real matrix A, respectively. \sigma max(A) and \sigma min(A) denote the largest
and smallest singular values of given real matrix A, respectively. X\dagger := (X\top X) - 1X\top 

refers to the pseudoinverse of X. Diag(v) \in \BbbS n denotes a diagonal matrix with all
entries of v \in \BbbR n in its diagonal, and diag(A) \in \BbbR n extracts the diagonal entries of
matrix A \in \BbbR n\times n. For convenience, \Phi (M) := Diag(diag(M)) represents the diagonal
matrix with the diagonal entries of square matrix M in its diagonal. \BbbD p := \{ X \in 
\BbbR p\times p | \Phi (X) = X\} refers to the p-by-p real symmetric matrices set. \Psi (A) := 1

2 (A +
A\top ) stands for the average of a square matrix and its transpose.

2. Motivation. As mentioned in the previous section, almost all the existing
practically useful methods require feasible iterates all the time. To realize feasi-
bility, either explicit or implicit orthonormalization must be invoked. This kind of
calculation lacks scalability and hence becomes the bottleneck computation in the
corresponding algorithms. For example, we consider the discretized Kohn--Sham to-
tal energy minimization (1.2). In each iteration, the function value and first-order
derivative evaluation cost O(n log n + np) or O(np) flops per iteration, depending
on whether plane wave or finite difference, respectively, is used in the discretization
scheme. For the main iteration of any algorithm for solving (1.2) developed in the
recent decade, the computational cost per iteration is O(np2) for BLAS3 calculation,
plus O(p3) for orthonormalization which can hardly be parallelized.
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To break through this bottleneck, we suggest using infeasible methods to take the
place of feasible methods.

There is no existent infeasible approach for general purpose reported to be effi-
cient for optimization problems with orthogonality constraints. Previous infeasible
approaches designed for (1.1) either work specially for Rayleigh--Ritz trace minimiza-
tion [18, 29] or adopt an alternating direction method of multipliers (ADMM) frame-
work after introducing auxiliary variables to split the objective and orthogonality
constraints [13]. The previous ones can hardly be extended to general objective,
while the latter one does not always perform well for general purpose,3 although it is
practically useful in many applications.

In the following subsections, we introduce how we come up with a new idea on
constructing an efficient infeasible algorithm for problem (1.1).

2.1. The optimality condition. We start from the optimality condition of the
optimization problem with orthogonality constraints (1.1). The first-order optimality
condition of problem (1.1) can be written as the following.

Definition 2.1. Given a point X \in \BbbR n\times p, if the relationship\biggl\{ 
tr(Y \top \nabla f(X)) \geq 0;

X\top X = Ip

holds for any Y \in \scrT (X), we call X a first-order stationary point of (1.1). Here,
\scrT (X) := \{ Y | Y \top X +X\top Y = 0\} is the tangent space of the orthogonality constraints
at X.

According to Lemma 2.2 in [10], a point X is a first-order stationary point if and
only if \left\{   (In  - XX\top )\nabla f(X) = 0;

X\top \nabla f(X) = \nabla f(X)\top X;
X\top X = Ip.

(2.1)

Due to the fact that

| | \nabla f(X) - X\nabla f(X)\top X| | 2F= | | \nabla f(X) - XX\top \nabla f(X)| | 2F+| | X\top \nabla f(X) - \nabla f(X)\top X| | 2F,

we can obtain that condition (2.1) is equivalent to\biggl\{ 
\nabla f(X) = X\Lambda , with\Lambda = \nabla f(X)\top X;
X\top X = Ip.

(2.2)

Here, \Lambda \in \BbbS p can be viewed as the Lagrangian multipliers of the orthogonality con-
straints.

Definition 2.2. We call X a first-order stationary point if condition (2.2) holds.
We call X a second-order stationary point if it is a first-order stationary point and
satisfies

tr(Y \top \nabla 2f(X)[Y ] - \Lambda Y \top Y ) \geq 0 \forall Y \in \scrT (X).(2.3)

The following proposition can be easily verified, and hence its proof is omitted
here.

3Numerical evidence can be found in Appendix A.

D
ow

nl
oa

de
d 

04
/1

9/
20

 to
 1

24
.1

6.
14

8.
9.

 R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

PARALLELIZABLE ALGORITHM ORTHOGONALITY CONSTRAINTS A1953

Proposition 2.3. If X is a local minimizer of (1.1), it has to be a second-order
stationary point. X is a strict local minimizer4 if and only if X is a first-order
stationary point and satisfies

tr(Y \top \nabla 2f(X)[Y ] - \Lambda Y \top Y ) > 0 \forall 0 \not = Y \in \scrT (X).(2.4)

2.2. Augmented Lagrangian method. A straightforward idea to solve (1.1)
without requiring feasibility in each iteration is to employ the ALM [25, 21, 3], which
is described in Algorithm 1.

Algorithm 1. Augmented Lagrangian Method (ALM).

\bfone Input: choose initial guess \Lambda 0 for the dual variables, and set k := 0;
\bftwo while certain stopping criterion is not reached do
\bfthree Minimize the augmented Lagrangian function with respect to the prime

variables X:

Xk+1 := min
X\in \BbbR n\times p

\scrL \beta (X,\Lambda k),

where the augmented Lagrangian function of problem (1.1) is defined as

\scrL \beta (X,\Lambda ) = f(X) - 1

2
\langle \Lambda , X\top X  - Ip\rangle +

\beta 

4
| | X\top X  - Ip| | 2F

= f(X) +
\beta 

4

\bigm\| \bigm\| \bigm\| \bigm\| X\top X  - 
\biggl( 
Ip +

1

\beta 
\Lambda 

\biggr) \bigm\| \bigm\| \bigm\| \bigm\| 2
F

 - 1

4\beta 
| | \Lambda | | 2F.(2.5)

\bffour Update the Lagrangian multipliers

\Lambda k+1 := \Lambda k  - \beta (Xk+1\top Xk+1  - Ip).(2.6)

\bffive Update the penalty parameter \beta if necessary. Set k := k + 1.

\bfsix Output: Xk.

It is well-known that the augmented Lagrangian function is an exact penalty if the
Lagrangian multipliers are correct and the penalty parameter \beta is sufficiently large.
Algorithm 1 works very well for a problem with linear constraints. For optimization
problems with nonlinear constraints, it is not clear how to choose the parameter \beta in
practice, which is very sensitive to the numerical performance.

The purpose of this work is to find an infeasible algorithm for solving (1.1) at
similar cost of the existent feasible methods. Otherwise, we can hardly gain much from
the parallelization. To this end, we carefully test Algorithm 1 and try our best to tune
the parameter \beta . Unfortunately, for solving optimization problems with orthogonality
constraints (1.1), the efficiency of classical ALM is far from being satisfactory.

Therefore, we need to employ a new idea to remold the classical ALM. According
to the conditions (2.2), it is not difficult to verify that the Lagrangian multipliers \Lambda 
have the following closed-form expression at any first-order stationary point:

\Lambda = \nabla f(X)\top X.(2.7)

4X is called a strict local minimizer if X \in \scrS n,p and there exists \delta > 0 such that f(X) < f(Y )
holds for any Y \in U\delta (X) := \{ Y \in \scrS n,p | | | X  - Y | | \in (0, \delta )\} .
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A straightforward idea is to use the following symmetrized form of (2.7),

\Lambda = \Psi (\nabla f(X)\top X),(2.8)

as a new multipliers updating rule. The symmetrization is necessary because the
symmetry of the expression \nabla f(X)\top X cannot be guaranteed in each iteration.

As we will demonstrate in the following lemma and the theoretical analyses in
section 4, an explicit lower bound of the penalty parameter \beta can be estimated if
updating rule (2.8) is applied. Hence, the update of the penalty parameter \beta can
be waived. Moreover, the numerical experiments verify the validation of this new
updating rule.

Lemma 2.4. Let X\ast be a second-order stationary point of

min
X\in \BbbR n\times p

\scrL \beta (X,\Lambda \ast )(2.9)

with \Lambda \ast = \Psi (\nabla f(X\ast )\top X\ast ). Suppose \beta > \lambda max(\nabla 2f(X\ast )). Then X\ast is a second-
order stationary point of problem (1.1). Namely, optimality conditions (2.2) hold at
X\ast .

Proof. First, we have

(2.10) \nabla X\scrL \beta (X
\ast ,\Lambda \ast ) = \nabla f(X\ast ) + \beta X\ast 

\biggl( 
X\ast \top X\ast  - 

\biggl( 
Ip +

1

\beta 
\Lambda \ast 

\biggr) \biggr) 
;

\nabla 2
XX\scrL \beta (X

\ast ,\Lambda \ast )[S]

= \nabla 2f(X\ast )[S] + \beta S

\biggl( 
X\ast \top X\ast  - 

\biggl( 
Ip +

1

\beta 
\Lambda \ast 

\biggr) \biggr) 
+ \beta X\ast (S\top X\ast +X\ast \top S).(2.11)

Since X\ast is the second-order stationary point of (2.9) with \Lambda \ast = \Psi (\nabla f(X\ast )\top X\ast ),
we have

\nabla \scrL \beta (X
\ast ,\Lambda \ast ) = 0;(2.12)

\langle S,\nabla 2
XX\scrL \beta (X

\ast ,\Lambda \ast )[S]\rangle \geq 0 \forall S \not = 0.(2.13)

Substituting (2.10) into (2.12), we obtain

\nabla f(X\ast ) - X\ast \Lambda \ast  - \beta X\ast (Ip  - X\ast \top X\ast ) = 0.(2.14)

Left multiplying X\ast \top into both sides of (2.14), we have

X\ast \top \nabla f(X\ast ) = X\ast \top X\ast \Lambda \ast + \beta X\ast \top X\ast (Ip  - X\ast \top X\ast ).(2.15)

Suppose X\ast = U\Sigma V \top is the singular value decomposition of X\ast with U \in \scrS n,p,

\Sigma \in \BbbD p, and V \in \scrS p,p, which implies X\ast \top X\ast = V \Sigma 2V \top . Then, we further have

X\ast \top \nabla f(X\ast ) - \beta V \Sigma 2V \top = V \Sigma 2V \top \Lambda \ast  - \beta V \Sigma 4V \top .

Left multiplying V \top and right multiplying V to both sides of the above equality, we
arrive at

V \top X\ast \top \nabla f(X\ast )V  - \beta \Sigma 2 = \Sigma 2(V \top \Lambda \ast V  - \beta \Sigma 2).

Taking the \Phi operator and using the fact that

diag(V \top X\ast \top \nabla f(X\ast )V ) = diag(V \top \nabla f(X\ast )\top X\ast V ) = diag(V \top \Lambda \ast V ),(2.16)
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we have

(Ip  - \Sigma 2)(\Phi (V \top \Lambda \ast V ) - \beta \Sigma 2) = 0,(2.17)

which implies that

D(\Phi (V \top \Lambda \ast V ) - \beta \Sigma 2) = 0,(2.18)

where matrix D \in \BbbD p satisfies

Dii =

\biggl\{ 
0 if (Ip  - \Sigma 2)ii = 0;
1 otherwise

\forall i = 1, ..., p.

On the other hand, since n \geq 2p, there exists \~U \in \scrS n,p satisfying \~U\top U = 0. Let

S = \~UDV \top . If S \not = 0, we substitute S into (2.11) and obtain

\langle S,\nabla 2
XX\scrL \beta (X

\ast ,\Lambda \ast )[S]\rangle = tr(S\top \nabla 2f(X\ast )[S]) - \beta tr(S\top S) - tr(S\top S(\Lambda \ast  - \beta X\ast \top X\ast ))

= tr
\bigl( 
S\top (\nabla 2f(X\ast ) - \beta I)[S]

\bigr) 
 - tr(V \top S\top SV V \top (\Lambda \ast  - \beta V \Sigma 2V \top )V )

= tr
\bigl( 
S\top (\nabla 2f(X\ast ) - \beta I)[S]

\bigr) 
 - tr(D2(V \top \Lambda \ast V  - \beta \Sigma 2))

= tr
\bigl( 
S\top (\nabla 2f(X\ast ) - \beta I)[S]

\bigr) 
 - tr(D2(\Phi (V \top \Lambda \ast V ) - \beta \Sigma 2)).

Here I stands for the identity mapping from \BbbR n\times p to \BbbR n\times p. Combining with the
second-order optimality condition (2.13), relationship (2.18), and the assumption on
\beta , we have

0 \leq \langle S,\nabla 2
XX\scrL \beta (X

\ast ,\Lambda \ast )[S]\rangle = tr
\bigl( 
S\top (\nabla 2f(X\ast ) - \beta I)[S]

\bigr) 
< 0,(2.19)

which leads to contradiction. Hence, S = 0, which immediately implies that \Sigma = Ip.
Therefore, we have X\ast \in \scrS n,p. Together with (2.12) and (2.13), we can easily show
that the optimality condition (2.2) hold. This completes the proof.

Lemma 2.4 guarantees that the augmented Lagrangian function is still an exact
penalty function with the Lagrangian multipliers updated by explicit formula (2.8).
However, to achieve the convergence results for first-order methods, we need a first-
order version of Lemma 2.4. Moreover, to obtain the global convergence rate, the
feasibility should be controlled by the first-order optimality violation.

Lemma 2.5. For any X\ast satisfying \sigma min(X
\ast ) > 0, suppose

\beta > (| | \nabla f(X\ast )| | 2 \cdot | | X\ast | | 2 + \delta ) /\sigma 2
min(X

\ast )

with \delta > 0. Then it holds that

| | X\ast \top X\ast  - Ip| | F \leq | | X\ast | | 2
\delta 

\cdot | | \nabla X\scrL \beta (X
\ast ,\Lambda \ast )| | F(2.20)

with \Lambda \ast = \Psi (\nabla f(X\ast )\top X\ast ). In particular, if it happens that X\ast is a first-order
stationary point of

min
X\in \BbbR n\times p

\scrL \beta (X,\Lambda \ast )

with \Lambda \ast = \Psi (\nabla f(X\ast )\top X\ast ), then X\ast is also a first-order stationary point of problem
(1.1).
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Proof. For brevity, we denote G = \nabla X\scrL \beta (X
\ast ,\Lambda \ast ). Left multiplying X\ast \top into

both sides of (2.10) and using the singular value decomposition X\ast = U\Sigma V \top , we have

X\ast \top G = X\ast \top \nabla f(X\ast ) - \beta V \Sigma 2V \top  - V \Sigma 2V \top \Lambda \ast + \beta V \Sigma 4V \top .

Left multiplying V \top and right multiplying V to both sides of the above equality, we
obtain

V \top X\ast \top GV = V \top X\ast \top \nabla f(X\ast )V  - \beta \Sigma 2  - \Sigma 2
\bigl( 
V \top \Lambda \ast V  - \beta \Sigma 2

\bigr) 
.

Taking the \Phi operator and using the fact (2.16), we arrive at

\Phi (V \top X\ast \top GV ) = (Ip  - \Sigma 2)(\Phi (V \top \Lambda \ast V ) - \beta \Sigma 2).(2.21)

Since \beta > (| | \nabla f(X\ast )| | F \cdot | | X\ast | | 2 + \delta ) /\sigma 2
min(X

\ast ), we have

\beta \sigma 2
min(X

\ast ) \geq | | \nabla f(X\ast )| | 2 \cdot | | X\ast | | 2 + \delta ,

which implies

\sigma min(\beta \Sigma 
2) \geq | | V \top \Lambda \ast V | | 2 + \delta \geq | | \Phi (V \top \Lambda \ast V )| | 2 + \delta .

Hence, it holds that

\sigma min

\bigl( 
\beta \Sigma 2  - \Phi (V \top \Lambda \ast V )

\bigr) 
\geq \delta .(2.22)

Submitting (2.22) into (2.21), we arrive at

| | X\ast | | 2| | G| | F \geq | | \Phi (V \top X\ast \top GV )| | F = | | (Ip  - \Sigma 2)(\Phi (V \top \Lambda \ast V ) - \beta \Sigma 2)| | F
\geq | | Ip  - \Sigma 2| | F \cdot \sigma min

\bigl( 
\beta \Sigma 2  - \Phi (V \top \Lambda \ast V )

\bigr) 
\geq | | Ip  - X\ast \top X\ast | | F \cdot \delta 

and complete the proof.

3. Parallelizable algorithms. In this section, we introduce a parallelizable ap-
proach and one of its variants for optimization problems with orthogonality constraints
(1.1). Both of these two approaches are based on the augmented Lagrangian func-
tion (2.5) and employ the new idea of updating the multipliers by explicit expression
instead of DA step in Algorithm 1.

Another distinction between our algorithms and the classical ALM is that the
minimization subproblem for the prime variables is replaced by a proximal linearized
approximation [4].

3.1. The proximal linearized augmented Lagrangian algorithm. We de-
scribe our main algorithm framework in Algorithm 2.

The main calculation costs of Algorithm 2 concentrate at steps 3 and 4. Step
3 only involves BLAS3 calculation. The minimization subproblem (3.2) in step 4 is
nothing but a gradient step,

Xk+1 = Xk  - 1

\eta k
\nabla X\scrL \beta (X

k,\Lambda k)

= Xk  - 1

\eta k

\biggl( 
\nabla f(Xk) + \beta Xk

\biggl( 
Xk\top Xk  - Ip  - 

1

\beta 
\Lambda k

\biggr) \biggr) 
= Xk  - 1

\eta k

\Bigl( 
\nabla f(Xk) - Xk\Psi (\nabla f(Xk)\top Xk) + \beta Xk(Xk\top Xk  - Ip)

\Bigr) 
,(3.3)

where the last step is due to the updating formula (3.1). Apparently, the arithmetic
operations involved in (3.3) belong to BLAS3 as well.

We notice that 1/\eta k is nothing but the stepsize of the gradient step. Hence, the
proximal parameter \eta k can be chosen in the same manner as how we choose stepsize
for gradient methods. This issue will be described in detail in section 5.
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Algorithm 2. Proximal Linearized Augmented Lagrangian Algorithm (PLAM).

\bfone Input: choose initial guess X0, and set k := 0;
\bftwo while certain stopping criterion is not reached do
\bfthree Compute the Lagrangian multipliers

(3.1) \Lambda k := \Psi (\nabla f(Xk)\top Xk).

\bffour Minimize the following proximal linearized Lagrangian function
\bffive 

(3.2)

Xk+1 := argmin
X\in \BbbR n\times p

\~\scrL \beta (X) = tr(\nabla X\scrL \beta (X
k,\Lambda k)\top (X - Xk))+

\eta k

2
| | X - Xk| | 2F.

\bfsix Set k := k + 1.

\bfseven Output: Xk.

3.2. Parallelizable columnwise block minimization. An obvious demerit of
PLAM is the boundedness of the iterate sequence can hardly be expected without any
restriction on the penalty parameter \beta and the proximal parameter \eta k. Theoretically,
to guarantee the global convergence, \beta should be sufficiently large. Accordingly, \eta k

should be large as well which means sufficiently small stepsize is required and slow
convergence can be expected. In fact, according to the empirical observations, the
performance of PLAM is very sensitive to parameters \beta and \eta k. In other word, it is
not easy to tune these two parameters to guarantee good performance of Algorithm
2 in general.

Therefore, we put forward an upgraded version of PLAM. It is based on PLAM,
but redundant columnwise unit sphere constraints are imposed on step 4. Therefore,
the proximal gradient takes the place of the gradient step in step 4 of Algorithm 2.
With redundant constraints, the resulting iterate sequence will then be restricted to a
compact set and hence bounded. We describe the framework of this upgraded PLAM
in Algorithm 3.

Subproblem (3.5) in Algorithm 3 can be solved in a columnwise parallel fashion.
In fact, it is of closed-form solution

Xk+1
i =

Xk
i  - 1

\eta k\nabla Xi
\scrL \beta (X

k,\Lambda k)\bigm\| \bigm\| \bigm\| Xk
i  - 1

\eta k\nabla Xi
\scrL \beta (Xk,\Lambda k)

\bigm\| \bigm\| \bigm\| 
2

.

For PCAL, we can update the Lagrangian multipliers in the same manner as
PLAM, i.e., by formula (3.1). To obtain a better performance, we can also use the
heuristic formula (3.4). The motivation of updating formula (3.4) comes from the
following observation. In the KKT condition (2.2), we impose an additional term for
the redundant sphere constraints. Namely,\biggl\{ 

\nabla f(X) = X\Lambda +XD;
X\top X = Ip,

(3.6)

where D \in \BbbD p. Furthermore, D is determined by the Lagrangian multiplier of Xi in
the subproblem (3.5).
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Algorithm 3. Parallelizable Column-wise Block Minimization for PLAM
(PCAL).

\bfone Input: choose initial guess X0, and set k := 0;
\bftwo while certain stopping criterion is not reached do
\bfthree Compute the Lagrangian multipliers by (3.1) or

(3.4) \Lambda k := \Psi (\nabla f(Xk)\top Xk) + \Phi 
\Bigl( 
Xk\top \nabla XL\beta (X

k, \Psi (\nabla f(Xk)\top Xk))
\Bigr) 
.

\bffour for i = 1, ..., p do
\bffive Minimize the following proximal linearized Lagrangian function
\bfsix 

(3.5)

Xk+1
i := argmin

x\in \BbbR n

\~\scrL (i)
\beta (x) = \nabla X\scrL \beta (X

k,\Lambda k)\top i (x - Xk
i ) +

\eta k

2 | | x - Xk
i | | 22,

s. t. | | x| | 2 = 1.

\bfseven Update Xk+1 = [Xk+1
1 , . . . , Xk+1

p ], and set k := k + 1.

\bfeight Output: Xk.

3.3. Computational cost. In this subsection, we compare the computational
cost per iteration among MOptQR, PLAM, and PCAL. The computational cost of the
basic linear algebra operations and the overall costs of the aforementioned algorithms
are listed in Table 3.1.

Here, those terms in red represent the corresponding operations that cannot be
parallelized.

In practice, we calculate X\Psi (\nabla f(X)\top X) instead of X(\nabla f(X)
\top 
X) for KKT eval-

uation since they are very close to each other around any first-order stationary point.
Consequently, it saves 2np2 flops of computational cost.

4. Convergence of PLAM. In this section, we focus on the theoretical analyses
of our proposed PLAM. The global convergence, worst-case complexity, and Q-linear
local convergence rate will be established under different mild assumptions.

4.1. Global convergence of PLAM. Besides blanket Assumption 1.1, to
prove the convergence of Algorithm 2, we need to impose a mild condition on the
initial guess, and restrictive conditions on \beta and \eta k. To facilitate the narrative, we
first state all these conditions here.

Assumption 4.1. For a given X0, we say it is a qualified initial guess if there exists
\sigma \in (0, 1) so that

\sigma min(X
0) \geq \sigma , 0 < | | X0\top X0  - Ip| | F \leq 1 - \sigma 2.

Remark 4.2. Assumption 4.1 is not restrictive at all. There are two types of
points, which can be generated easily, satisfying this assumption:

Case 1: X0 = Q\Sigma , where

Q \in \scrS n,p,\Sigma = Diag(1, ..., 1\underbrace{}  \underbrace{}  
p - 1

, \sigma ),

for any given \sigma \in (0, 1).

D
ow

nl
oa

de
d 

04
/1

9/
20

 to
 1

24
.1

6.
14

8.
9.

 R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

PARALLELIZABLE ALGORITHM ORTHOGONALITY CONSTRAINTS A1959

Table 3.1
The comparison of computational cost.

\bfE \bfv \bfa \bfl \bfu \bfa \bft \bfe \bff \bfu \bfn \bfc \bft \bfi \bfo \bfn 

f(X) := 1
2
tr(X\top AX) + tr(G\top X)

AX
A: dense A: sparse A: sparse

2n2p O(np)
O(np)\nabla f(X) = AX + G np

1
2
tr(X\top AX) + tr(G\top X) 4np

\bfK \bfK \bfT : \nabla f(X)  - X\nabla f(X)\top X

\nabla f(X)\top X 2np2
4np2 + np

X(\nabla f(X)\top X) 2np2

\bfF \bfe \bfa \bfs \bfi \bfb \bfi \bfl \bfi \bft \bfy : X\top X  - I

X\top X np2 np2 + np
\bfS \bfo \bfl \bfv \bfe \bfr \bfs 

PLAM
X(X\top X  - I) 2np2

4np2 + O(np)

X\Psi (\nabla f(X)\top X) 2np2

PCAL

X(X\top X  - I) 2np2

4np2 + O(np)X\Psi (\nabla f(X)\top X) 2np2

\Phi 

\Bigl( 
Xk\top \nabla XL\beta (Xk, \Psi (\nabla f(Xk)\top Xk))

\Bigr) 
O(np)

X\Lambda = X\Psi (\cdot ) + X\Phi (\cdot ) O(np)

MOptQR (Cholesky LL\top )

V := X  - \tau (\nabla f(X)  - X\nabla f(X)\top X) 2np

3np2 + O(p3) + O(np)V \top V np2

chol(V \top V ) = LL\top p3/3

V L - \top 2np2 + O(p3)

MOptQR (Gram--Schmidt) 2np2 2np2 + O(np)
\bfI \bfn \bft \bfo \bft \bfa \bfl 

PLAM 7np2 + O(np)

PCAL 7np2 + O(np)

MOptQR 7np2 + O(p3) + O(np) for Cholesky, 4np2 + 2np2 + O(np) for Gram--Schmidt

It can be verified that \sigma min(X
0) = \sigma and | | X0\top X0  - Ip| | F = 1 - \sigma 2 > 0 in this case.

Case 2: X0 /\in \scrS n,p satisfying \sigma 2
min(X

0) > 1 - 1\surd 
p and \sigma 2

max(X
0) < 1 + 1\surd 

p .

In this case, 0 < | | X0\top X0  - Ip| | F holds immediately. Let

\sigma =

\sqrt{} 
min

\biggl\{ 
1 - 1

\surd 
p
,
\surd 
p

\biggl( 
1 +

1
\surd 
p
 - \sigma 2

max(X
0)

\biggr) 
,
\surd 
p

\biggl( 
\sigma 2
min(X

0) - 1 +
1
\surd 
p

\biggr) \biggr\} 
;

then it is not difficult to deduce that \sigma min(X
0) > \sigma > 0. Moreover, we have

| | X0\top X0  - Ip| | F

\leq \surd 
p \cdot | | X0\top X0  - Ip| | 2 \leq \surd 

p \cdot 
\sqrt{} 
max\{ \lambda 2

max(X
0\top X0  - Ip), \lambda 2

min(X
0\top X0  - Ip)\} .

Since

\lambda max(X
0\top X0  - I) = \lambda max(X

0\top X0) - 1 = \sigma 2
max(X

0) - 1 \leq 1
\surd 
p
 - \sigma 2

\surd 
p
,

\lambda min(X
0\top X0  - I) = \lambda min(X

0\top X0) - 1 = \sigma 2
min(X

0) - 1 \geq \sigma 2

\surd 
p
 - 1

\surd 
p
,

we obtain | | X0\top X0  - Ip| | F \leq \surd 
p \cdot 

\Bigl( 
1\surd 
p  - \sigma 2

\surd 
p

\Bigr) 
= 1 - \sigma 2.
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Now, we list all the special notations to be used in this section.

R = | | X0\top X0  - Ip| | F; \scrC = \{ X | | | X\top X  - Ip| | F \leq R\} ; f = min
X\in \scrC 

f(X);

M = max
X\in \scrC 

| | X| | 2; N = max
X\in \scrC 

| | \nabla f(X)| | F; L = max
X\in \scrC 

| | \nabla 2f(X)| | 2.
(4.1)

We introduce the following merit function:

h(X) = f(X) - 1

2

\bigl\langle 
\Psi (\nabla f(X)\top X), X\top X  - Ip

\bigr\rangle 
+

\beta 

4
| | X\top X  - Ip| | 2F.(4.2)

According to the twice continuous differentiability of f(X), \nabla f(X) is Lipschitz con-
tinuous on the compact set \scrC . Namely, there exists constant Lh > 0, related to \beta , so
that

| | \nabla h(X) - \nabla h(y)| | F \leq Lh| | X  - Y | | F \forall X,Y \in \scrC .(4.3)

The algorithm parameters \beta and \eta k and the constants used in the proof can be
selected by the following rules.

Assumption 4.3.

c1 \in 
\biggl( 
0,

1

2

\biggr) 
; \beta > max

\Biggl\{ 
MN

\sigma 2
+

\sqrt{} 
M2N2

\sigma 4
+

(N + LM)2

4\sigma 2(1 - 2c1)
,
MN

\sigma 
,
4MN

\sigma 2

\Biggr\} 
;(4.4)

c2 \in 
\biggl( 
0,

R2(\beta \sigma 2  - 4MN)

2N2
L

\biggr] 
; \eta k \in 

\bigl[ 
\eta , \=\eta 

\bigr] 
,(4.5)

where \eta = max

\Biggl\{ 
Lh

2c1
,
2NLM +NL

\surd 
4M2 + 2R

R
,
R+ 2M2

c2

\Biggr\} 
,

NL = (1 +M2)N + \beta RM, \=\eta \geq \eta .

Remark 4.4. The conditions in Assumption 4.3 are introduced for theoretical
analysis. Parameters \beta and \eta k satisfying these conditions are usually restrictive in
practical use.

Now we give a sketch of our proof. Suppose \{ Xk\} is the iterate sequence generated
by Algorithm 2. The main steps of the proof include the following.

(1) Any iterate Xk is in \scrC , and \sigma is a unified lower bound of the smallest singular
values of the iterates Xk;

(2) The merit function h(X) is bounded below;
(3) \{ h(Xk)\} monotonically decreases and hence is convergent;
(4) Any cluster point of \{ Xk\} , say, X\ast , is a first-order stationary point of the

augmented Lagrangian function (2.9) with \Lambda \ast = \Psi (\nabla f(X\ast )\top X\ast );
(5) Any cluster point of \{ Xk\} , say, X\ast , is a first-order stationary point of the

original optimization problem with orthogonality constraints (1.1).
Next we provide five concrete lemmas or corollaries following the above-mentioned

sketch.

Lemma 4.5. Suppose \{ Xk\} is the iterate sequence generated by Algorithm 2 initi-
ated from X0 satisfying Assumption 4.1, and the problem parameters satisfy Assump-
tion 4.3. Then it holds that

\sigma min(X
k) \geq \sigma , Xk \in \scrC .(4.6)
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Proof. We use mathematical induction. The argument (4.6) directly holds for
X0 resulting from Assumption 4.1. Next we investigate whether (4.6) holds at Xk+1

provided that it holds for Xk.

Case I, | | \bfitX \bfitk \top 
\bfitX \bfitk  - \bfitI \bfitp | | \bfF \leq \bfitR 

\bftwo 
. We have

| | Xk+1\top Xk+1  - Ip| | F

=

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
\biggl( 
Xk  - 1

\eta k
\nabla X\scrL \beta (X

k,\Lambda k)

\biggr) \top \biggl( 
Xk  - 1

\eta k
\nabla X\scrL \beta (X

k,\Lambda k)

\biggr) 
 - Ip

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
F

\leq | | Xk\top Xk  - Ip| | F +
2

\eta k
| | Xk| | 2| | \nabla X\scrL \beta (X

k,\Lambda k)| | F +
1

(\eta k)2
| | \nabla X\scrL \beta (X

k,\Lambda k)| | 2F.

It is not difficult to verify that

| | \nabla X\scrL \beta (X
k,\Lambda k)| | F =

\bigm\| \bigm\| \bigm\| \nabla f(Xk) - Xk\Psi (\nabla f(Xk)\top Xk) + \beta Xk(Xk\top Xk  - Ip)
\bigm\| \bigm\| \bigm\| 
F

\leq (1 +M2)N + \beta RM = NL

holds for any Xk \in \scrC . By using the facts Xk \in \scrC , (4.1), and (4.5), we have

2

\eta k
| | Xk| | 2| | \nabla X\scrL \beta (X

k,\Lambda k)| | F +
1

(\eta k)2
| | \nabla X\scrL \beta (X

k,\Lambda k)| | 2F \leq R

2
,

which implies | | Xk+1\top Xk+1  - Ip| | F \leq R. This shows (4.6) is true for k + 1.

Case II, | | \bfitX \bfitk \top 
\bfitX \bfitk  - \bfitI \bfitp | | \bfF > \bfitR 

\bftwo 
. For convenience, we denote c(X) = 1

2 | | X
\top X - 

Ip| | 2F,

d = \nabla f(Xk) - Xk\Lambda k, C = Xk\top Xk  - Ip, \delta = XkC.(4.7)

According to the facts \sigma min(X
k) \geq \sigma and Xk \in \scrC , we have

\| \delta \| F >
R\sigma 

2
.(4.8)

By using the fact that tr(AB) = tr(AB\top ) if A is symmetric, we have

tr(CXk\top \nabla f(Xk)) = tr(C\nabla f(Xk)\top Xk) = tr(C\Lambda k).

Hence, we have

\langle d, \delta \rangle = tr(CXk\top \nabla f(Xk) - CXk\top Xk\Lambda k)

= tr(CXk\top \nabla f(Xk) - C(C + Ip)\Lambda 
k) =  - tr(C2\Lambda k).(4.9)

Notice that Lc = 2R + 4M2 is the Lipschitz constant of \nabla c(X) over \scrC . Due to
the facts (4.5), (4.8), and (4.9), we have

tr
\bigl( 
\nabla X\scrL \beta (X

k,\Lambda k)\top \nabla c(Xk)
\bigr) 
 - c2| | \nabla X\scrL \beta (X

k,\Lambda k)| | 2F
\geq 2\langle d+ \beta \delta , \delta \rangle  - c2N

2
L = 2\beta \| \delta \| 2F + 2\langle d, \delta \rangle  - c2N

2
L

>
\beta R2\sigma 2

2
 - 2 \| C\| 2F \cdot tr(\Lambda k) - c2N

2
L
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\geq \beta R2\sigma 2

2
 - 2R2MN  - c2N

2
L \geq 0.

According to the Taylor expansion, we have

c(Xk+1) = c

\biggl( 
Xk  - 1

\eta k
\nabla X\scrL \beta (X

k,\Lambda k)

\biggr) 
\leq c(Xk) - 1

\eta k
\bigl\langle 
\nabla X\scrL \beta (X

k,\Lambda k),\nabla c(Xk)
\bigr\rangle 
+

Lc

2(\eta k)2
| | \nabla X\scrL \beta (X

k,\Lambda k)| | 2F

< c(Xk) - 
\biggl( 
c2
\=\eta 
 - Lc

2\=\eta 2

\biggr) 
\cdot | | \nabla X\scrL \beta (X

k,\Lambda k)| | 2F \leq c(Xk).

According to assumption, R \leq 1 - \sigma 2; we can easily obtain that \sigma min(X
k+1) \geq \sigma .

This completes the proof.

Lemma 4.6. h(X) defined by (4.2) is bounded below at \scrC .
This lemma immediately follows from the continuous differentiability of h(X) and

the compactness of \scrC , and hence, the proof is omitted.

Lemma 4.7. Suppose \{ Xk\} is the iterate sequence generated by Algorithm 2 ini-
tiated from X0 satisfying Assumption 4.1, the problem parameters satisfy Assumption
4.3, and h(X) is defined by (4.2). Then it holds that

h(Xk) - h(Xk+1) \geq c3| | \nabla X\scrL \beta (X
k,\Lambda k)| | 2F,(4.10)

where c3 = c1
\=\eta  - Lh

2\=\eta 2 > 0.

Proof. Firstly, we notice that

\nabla h(X) = \nabla X\scrL \beta (X,\Psi (\nabla f(X)\top X)) - 1

2
(\nabla 2f(X)[X] +\nabla f(X))(X\top X  - Ip).

We keep using the notations (4.7) and investigate

| | \nabla X\scrL \beta (X
k,\Lambda k)| | 2F  - 1

1 - 2c1
| | \nabla h(Xk) - \nabla X\scrL \beta (X

k,\Lambda k)| | 2F

\geq | | d+ \beta \delta | | 2F  - (N + LM)2

4(1 - 2c1)
| | C| | 2F \geq 2\beta \langle d, \delta \rangle + \beta 2| | \delta | | 2F  - (N + LM)2

4(1 - 2c1)
| | C| | 2F

\geq  - \beta \| C\| 2F \cdot tr(\Lambda k) +

\biggl( 
\beta 2\sigma 2  - (N + LM)2

4(1 - 2c1)

\biggr) 
\cdot | | C| | 2F

\geq  - 2\beta MN | | C| | 2F +

\biggl( 
\beta 2\sigma 2  - (N + LM)2

4(1 - 2c1)

\biggr) 
\cdot | | C| | 2F \geq 0,

where the second last inequality is implied by relation (4.9). Hence, we arrive at

\langle \nabla X\scrL \beta (X
k,\Lambda k),\nabla h(Xk)\rangle \geq c1| | \nabla X\scrL \beta (X

k,\Lambda k)| | 2F.(4.11)

Substituting (4.5) and (4.11) into the Taylor expansion, we have

h(Xk+1) = h

\biggl( 
Xk  - 1

\eta k
\nabla X\scrL \beta (X

k,\Lambda k)

\biggr) 
\leq h(Xk) - 1

\eta k
\bigl\langle 
\nabla X\nabla h(Xk),\scrL \beta (X

k,\Lambda k)
\bigr\rangle 
+

Lh

2(\eta k)2
| | \nabla X\scrL \beta (X

k,\Lambda k)| | 2F
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\leq h(Xk) - 
\biggl( 
c1
\=\eta 
 - Lh

2\=\eta 2

\biggr) 
\cdot | | \nabla X\scrL \beta (X

k,\Lambda k)| | 2F.

We complete the proof.

With the boundedness of h(X) at \scrC , Lemma 4.7 immediately implies the conver-
gence of \{ h(Xk)\} . More precisely, we have the following corollary.

Corollary 4.8. Suppose \{ Xk\} is the iterate sequence generated by Algorithm
2 initiated from X0 satisfying Assumption 4.1, and the problem parameters satisfy
Assumption 4.3. Then the algorithm is finitely terminated at kth iteration with
\nabla X\scrL \beta (X

k,\Lambda k) = 0, or

lim
k\rightarrow +\infty 

\nabla X\scrL \beta (X
k,\Lambda k) = 0.

Moreover, \{ Xk\} has at least one convergent subsequence. Any cluster point of \{ Xk\} ,
X\ast , is a first-order stationary point of the augmented Lagrangian function (2.9) with
\Lambda \ast = \Psi (\nabla f(X\ast )\top X\ast ).

Proof. This is a direct corollary of Lemmas 4.5 and 4.7.

Finally, we give the global convergence rate of PLAM, namely, the worst case
complexity.

Theorem 4.9. Suppose \{ Xk\} is the iterate sequence generated by Algorithm 2
initiated from X0 satisfying Assumption 4.1, and the problem parameters satisfy As-
sumption 4.3. Then the sequence \{ Xk\} has at least one cluster point, and any cluster
point is a first-order stationary point of problem (1.1). More precisely, for any K > 1,
it holds that

min
k=0,...,K - 1

| | \nabla X\scrL \beta (X
k,\Lambda k)| | F <

\sqrt{} 
f(X0) - f +MNR+ \beta R2/4

c3K
.(4.12)

Proof. The first part directly holds from Corollary 4.8 and Lemma 2.5. Recalling
Lemma 4.7, we have

h(X0) - min
X\in \scrC 

h(X) \geq h(X0) - h(XK) \geq 
K - 1\sum 
k=0

c3| | \nabla X\scrL \beta (X
k,\Lambda k)| | 2F(4.13)

\geq c3K \cdot min
k=0,...,K - 1

| | \nabla X\scrL \beta (X
k,\Lambda k)| | 2F.(4.14)

Moreover, we have

h(X0) \leq f(X0) +
1

2
MNR+

\beta 

4
R2, min

X\in \scrC 
h(X) \geq f  - 1

2
MNR.(4.15)

Combining (4.13)--(4.15), we arrive at the argument (4.12).

Corollary 4.10. Suppose all the assumptions of Theorem 4.9 hold. Besides, for
a given positive parameter \delta , it holds that \beta > (MN + \delta )/\sigma ; then it holds that

min
k=0,...,K - 1

max
\Bigl\{ 
| | Ip  - Xk\top Xk| | F, | | \nabla X\scrL \beta (X

k,\Lambda k)| | F
\Bigr\} 

< max

\biggl\{ 
M

\delta 
, 1

\biggr\} \sqrt{} 
f(X0) - f +MNR+ \beta R2/4

c3K
.
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Proof. This is a direct corollary of Lemma 2.5 and Theorem 4.9.

Remark 4.11. The sublinear convergence rate of Corollary 4.10 actually tells us
that Algorithm 2 terminates after O(1/\epsilon 2) iterations if the stopping criterion is set as

max\{ | | Ip  - Xk\top Xk| | F, | | \nabla X\scrL \beta (X
k,\Lambda k)| | F\} < \epsilon .

4.2. Local convergence rate of PLAM and PCAL. In this subsection, we
consider the local convergence of PLAM once the optimization problem with orthog-
onality constraints (1.1) has an isolated local minimizer.

Theorem 4.12. Suppose X\ast is an isolated minimizer of (1.1), and we denote

\tau := inf
0\not =Y \in \scrT (X)

tr(Y \top \nabla 2f(X)[Y ] - \Lambda Y \top Y )

| | Y | | 2F
.

The algorithm parameters satisfy \beta \geq L+MN+\tau 
2 and \eta k \in [\eta , \=\eta ], where \=\eta \geq \eta \geq 

L + MN + 2\beta . Then, there exists \varepsilon > 0 such that starting from any X0 satisfying
| | X0  - X\ast | | F < \varepsilon , the iterate sequence \{ Xk\} generated by Algorithm 2 converges to
X\ast Q-linearly.

Proof. We study the iterate formula (3.2).

Xk+1 = Xk  - 1

\eta k
\nabla X\scrL \beta (X

k, \Psi (\nabla f(Xk)\top Xk));

X\ast = X\ast  - 1

\eta k
\nabla X\scrL \beta (X

\ast , \Psi (\nabla f(X\ast )\top X\ast )).

Subtracting the second one from the first one and using the Taylor expansion, we
have

\delta k+1 = \delta k  - 1

\eta k
\nabla 2

XX\scrL \beta (X
\ast , \Psi (\nabla f(X\ast )\top X\ast ))[\delta k] + o(| | \delta k| | ),(4.16)

where \delta k = Xk  - X\ast . Recall the expression of Hessian (2.13), the fact that \nabla f(X\ast )\top 

X\ast = \Psi (\nabla f(X\ast )\top X\ast ), and the assumption on \eta ; we have\bigm\| \bigm\| \bigm\| \bigm\| 1

\eta k
\nabla 2

XX\scrL \beta (X
\ast ,\nabla f(X\ast )\top X\ast )[\delta k]

\bigm\| \bigm\| \bigm\| \bigm\| 
F

\leq | | \delta k| | F.(4.17)

On the other hand, \delta k can be decomposed as the summation of three terms:

\delta k = X\ast S +X\ast W +K,(4.18)

where S \in \BbbR p\times p is symmetric, W \in \BbbR p\times p is skew-symmetric, and K \in \BbbR n\times p is
perpendicular to X\ast . Since X\ast is a strict local minimizer and \scrT (X) is closed, we
have \tau > 0. Hence, it holds that

(4.19) tr
\bigl( 
(X\ast W +K)\top \nabla 2

XX\scrL \beta (X
\ast ,\nabla f(X\ast )\top X\ast )[X\ast W +K]

\bigr) 
\geq \tau | | X\ast W +K| | 2F

as X\ast W +K \in \scrT (X). Moreover, it follows from the assumption on \beta that

tr
\bigl( 
(X\ast S)\top \nabla 2

XX\scrL \beta (X
\ast ,\nabla f(X\ast )\top X\ast )[X\ast S]

\bigr) 
= tr(SX\ast \nabla 2f(X\ast )X\ast S  - S2\nabla f(X\ast )\top X\ast + 2\beta S2) \geq \tau | | X\ast S| | 2F.(4.20)
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Combining (4.19), (4.20), the symmetry of S, the skew symmetry of W , K\top X\ast = 0
together with the assumption on \eta , we arrive at

tr
\Bigl( 
\delta k

\top \nabla 2
XX\scrL \beta (X

\ast ,\nabla f(X\ast )\top X\ast )[\delta k]
\Bigr) 

= tr
\bigl( 
(X\ast W +K)\top \nabla 2

XX\scrL \beta (X
\ast ,\nabla f(X\ast )\top X\ast )[X\ast W +K]

\bigr) 
+tr

\bigl( 
(X\ast W +K)\top \nabla 2

XX\scrL \beta (X
\ast ,\nabla f(X\ast )\top X\ast )[X\ast S]

\bigr) 
+tr

\bigl( 
(X\ast S)\top \nabla 2

XX\scrL \beta (X
\ast ,\nabla f(X\ast )\top X\ast )[X\ast W +K]

\bigr) 
+tr

\bigl( 
(X\ast S)\top \nabla 2

XX\scrL \beta (X
\ast ,\nabla f(X\ast )\top X\ast )[X\ast S]

\bigr) 
\geq \tau | | X\ast W +K| | 2F + \tau | | X\ast S| | 2F = \tau | | \delta k| | 2F.(4.21)

Notice that (4.17) implies the positive semidefiniteness of the linear operator

I  - 1

\eta k
\nabla 2

XX\scrL \beta (X
\ast ,\nabla f(X\ast )\top X\ast ).

Together with (4.21), we can conclude that

| | \delta k+1| | F \leq (1 - \tau )| | \delta k| | F + o(| | \delta k| | ),

which completes the proof.

Remark 4.13. The global and local convergence of PCAL can be established in
the same manner as PLAM if the multipliers are updated by the same formula, (3.1),
as PLAM.

5. Numerical experiments. In this section, we evaluate the numerical perfor-
mance of our proposed algorithms PLAM and PCAL. We first introduce the imple-
mentation details and the testing problems in Subsection 5.1 and 5.2, respectively.
Then, we report the numerical experiments which are mainly of three folds.

In the first part, we mainly determine the default settings of our proposed algo-
rithms, which will be discussed in subsection 5.3. Then, in subsection 5.4, we compare
our PLAM and PCAL with a few existing solvers by testing a bunch of instances,
which are chosen from the MATLAB toolbox KSSOLV [32]. All the algorithms tested
in the first two parts are run in serial. The corresponding experiments are performed
on a workstation with one Intel Xeon Processor E5-2697 v2 (at 2.70GHz\times 12, 30M
Cache) and 128GB of RAM running in MATLAB R2016b under Ubuntu 12.04.

Finally, we investigate the parallel efficiency of PCAL by comparing with a par-
allelized version of MOptQR in subsection 5.5. All the experiments in this subsection
are performed on a single node of LSSC-IV,5 which is a high-performance computing
cluster maintained at the State Key Laboratory of Scientific and Engineering Com-
puting, Chinese Academy of Sciences. The operating system of LSSC-IV is Red Hat
Enterprise Linux Server 7.3. This node, called ``b01,"" consists of two Intel Xeon Pro-
cessor E7-8890 v4 (at 2.20GHz\times 24, 60M Cache) with 4TB shared memory. The total
number of processor cores in this node is 96.

5.1. Implementation details. There are two parameters in our algorithms
PLAM and PCAL. According to Theorem 4.9, the penalty parameter \beta for PLAM
should be sufficiently large. Although we can estimate a suitable \beta to satisfy the

5More information at http://lsec.cc.ac.cn/chinese/lsec/LSSC-IVintroduction.pdf.
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assumption of the theorem, it would be too large in practice. In the numerical ex-
periments, we set \beta as an upper bound of s := | | \nabla 2f(0)| | 2 for PLAM, and 1 for
PCAL.

Another one is the proximal parameter \eta , whose reciprocal is the stepsize of
the gradient step in Algorithms 2 and 3. Similar to \beta , we cannot use the rigorous
restriction in the theoretical analysis. In practice, we have the following strategies to
choose this parameter:

(i) \eta kC := \gamma , where \gamma > 0 is a sufficiently large constant.
(ii) Differential approximation:

\eta kD :=
| | \nabla X\scrL \beta (X

k,\Lambda k) - \nabla X\scrL \beta (X
k - 1,\Lambda k - 1)| | F

| | Xk  - Xk - 1| | F
.

(iii) Barzilai--Borwein (BB) strategy [2]:

\eta kBB1 :=

\bigm| \bigm| \bigl\langle Sk - 1, Y k - 1
\bigr\rangle \bigm| \bigm| 

\langle Sk - 1, Sk - 1\rangle 
or \eta kBB2 :=

\bigl\langle 
Y k - 1, Y k - 1

\bigr\rangle 
| \langle Sk - 1, Y k - 1\rangle | 

,

where

Sk = Xk  - Xk - 1, Y k = \nabla X\scrL \beta (X
k,\Lambda k) - \nabla X\scrL \beta (X

k - 1,\Lambda k - 1).

(iv) Alternating BB strategy [7]:

\eta kABB :=

\biggl\{ 
\eta kBB1 for odd k,
\eta kBB2 for even k.

Unless specifically mentioned, the stopping criterion used for both serial and
parallel experiments can be described as follows:\bigm\| \bigm\| \nabla f(X) - X\nabla f(X)\top X

\bigm\| \bigm\| 
F

\| \nabla f(X0) - X0\nabla f(X0)\top X0\| F
< 10 - 8.

The maximum number of iterations for all those solvers is set to 3000.

5.2. Testing problems. In this subsection, we introduce six types of problems
which will be used in the numerical experiments.

Problem 1. A simplification of discretized Kohn--Sham total energy minimiza-
tion.

min
X\in \BbbR n\times p

1
2 tr(X

\top LX) + \alpha 
4 \rho (X)\top L\dagger \rho (X)

s. t. X\top X = Ip,
(5.1)

where the matrix L \in \BbbS n and \rho (X) := diag(XX\top ). In the numerical experiments, we
set \alpha = 1, and L is randomly generated by Gauss distribution, i.e., L=randn(n) in
MATLAB language, and set L := 1

2 (L+ L\top ). In this instance, s = \| L\| 2.
Problem 2. A class of quadratic minimization with orthogonality constraints.

min
X\in \BbbR n\times p

1
2 tr(X

\top AX) + tr(G\top X)

s.t. X\top X = Ip,
(5.2)

where the matrices A \in \BbbS n and G \in \BbbR n\times p. This problem is adequately discussed in
[10]. In the numerical experiments, the matrices A and G are randomly generated in
the same manner as in [10]. Namely,

A := P\Lambda P\top ,(5.3)
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G := \kappa \cdot QD,(5.4)

where the matrices P=qr(rand(n,n))\in \BbbR n\times n, \~Q=rand(n,p)\in \BbbR n\times p, Q \in \BbbR n\times p and
Qi = \~Qi/| | \~Qi| | 2 (i = 1, 2, ..., p), and matrices \Lambda \in \BbbD p and D \in \BbbD p satisfy

\Lambda ii :=

\biggl\{ 
\theta 1 - i, rand(1, 1) < \xi 

 - \theta 1 - i, rand(1, 1) \geq \xi 
\forall i = 1, 2, . . . , n,(5.5)

Djj := \zeta j - 1 \forall j = 1, 2, . . . , p.(5.6)

Here, parameter \theta \geq 1 determines the decay of eigenvalues of A; parameter \zeta \geq 1
refers to the growth rate of column's norm of G. The parameter \kappa > 0 represents the
scale difference between the quadratic term and the linear term. The default settings
of these parameters are \kappa = 1, \theta = 1.01, \zeta = 1.01, \xi = 1. In this instance, s = \| A\| 2.

Problem 3. Rayleigh--Ritz trace minimization, which is a special case of
Problem 2.

min
X\in \BbbR n\times p

1
2 tr(X

\top AX)

s.t. X\top X = Ip,
(5.7)

where the matrix A \in \BbbS n. In our experiments, the matrix A is generated in the same
manner as in Problem 2. In this instance, s = \| A\| 2.

Problem 4. Another class of quadratic minimization with orthogonality con-
straints.

min
X\in \BbbR n\times p

1
2 tr(A

\top XBX\top )

s.t. X\top X = Ip,
(5.8)

where the matrices A \in \BbbS n and B \in \BbbS p. This problem is out of the scope of problems
discussed in [10] but can be solved by PLAM or PCAL. The matrices A and B
are randomly generated by A =randn(n), A := 1

2 (A + A\top ) and B =randn(p),
B := 1

2 (B +B\top ), respectively. In this instance, s = \| A\| 2 \cdot \| B\| 2
Problem 5. Discretized Kohn--Sham total energy minimization instances from

KSSOLV [32].

min
X\in \BbbR n\times p

E(X) s. t. X\top X = Ip,(5.9)

where the discretized Kohn--Sham total energy function E(X) is defined by (1.2) with
the exchange correlation function \epsilon xc taking the widely accepted formula developed
in [24]. All the data comes from MATLAB toolbox KSSLOV.

Problem 6. A synthetic instance of discretized Kohn--Sham total energy mini-
mization.

min
X\in \BbbR n\times p

1
2 tr(X

\top LX) + 1
2\rho (X)\top L\dagger \rho (X) - 3

4\gamma \rho (X)\top \rho (X)
1
3

s. t. X\top X = Ip,
(5.10)

where the matrix L \in \BbbR n\times n and \rho (X) := diag(XX\top ). The parameter \gamma = 2( 3\pi )
1/3

and \rho (X)
1
3 denotes the componentwise cubic root of the vector \rho (X). This problem

adopts a special exchange functional  - 3
4\gamma \rho (X)\top \rho (X)

1
3 (the correlation term is ig-

nored), which is introduced in [17]. The generation of L is in the same manner as in
Problem 1.
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Fig. 5.1. A comparison of KKT violation for PLAM (a)--(d) and PCAL (e)--(h) with different
\eta (\beta = s+ 0.1).

5.3. Default settings. In this subsection, we determine the default settings for
the proposed algorithms PLAM and PCAL.

In the first experiment, we test PLAM and PCAL with these four different choices
of \eta k on Problem 1--4. Here, we only illustrate the results of \eta BB1 for strategy (iii),
since its performances overwhelms those with \eta BB2. The penalty parameter is fixed as
\beta = s+0.1. Figure 5.1 shows the results of PLAM and PCAL with different \eta k. From
subfigures (a)--(d), we observe that PLAM with \eta ABB outperforms others. Under the
same setting, a comparison among PCAL with different \eta k is reported in subfigures
(e)--(h). We notice that PCAL with \eta ABB is superior to the other \eta k choices. Then
we set \eta ABB as the default setting for PLAM and PCAL.

We next compare the performance among PLAM and PCAL variations corre-
sponding to different \beta . In the comparison, we set \beta varying among 0, 0.01s, 0.1s, s+
0.1, 10s+ 1. The proximal parameter is fixed as its default \eta = \eta ABB. We present all
the numerical results in Figure 5.2. We notice from subfigures (a)--(d) that PLAM
with small \beta might be divergent in some cases, while large \beta causes slow convergence.
Therefore, a suitable chosen \beta , often unreachable in practice, is necessary for good
performance of PLAM. On the other hand, the dependence on \beta of PCAL can be
learned from subfigures (e)--(h). The smaller \beta for PCAL has the better performance
in some instances, and the behavior of PCAL is completely not sensitive to \beta in
other instances. To take a more distinctive look at the difference between PLAM and
PCAL, we present a comparison in Figure 5.3. Therefore, in practice, we suggest an
approximation of s to be the default \beta of PLAM and 1 for PCAL. Since it is easier to
tune \beta for PCAL than PLAM, we choose PCAL to be the default algorithm of ours
in subsection 5.5.

There are two distinctions between PLAM and ALM. Firstly, a gradient step
takes the place of solving the subproblem to some given precision in the update of the
prime variables. Secondly, a closed-form expression is used to update the Lagrangian
multipliers instead of dual ascend. In order to show that the new update formula
for multipliers is a crucial fact of the efficiency of PLAM and PCAL, we compare
PLAM and PCAL with PLAM-DA and PCAL-DA, respectively. Here PLAM-DA

D
ow

nl
oa

de
d 

04
/1

9/
20

 to
 1

24
.1

6.
14

8.
9.

 R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

PARALLELIZABLE ALGORITHM ORTHOGONALITY CONSTRAINTS A1969

0 200 400 600 800

iteration

10
0

10
20

10
40

K
K

T
 v

io
la

ti
o

n

n=1000, p=20

=0

=0.01s

=0.1s

=s+0.1

=10s+1

(a) Problem 1

0 20 40 60 80

iteration

10
-15

10
-10

10
-5

10
0

10
5

K
K

T
 v

io
la

ti
o

n

n=3000, p=60

=0

=0.01s

=0.1s

=s+0.1

=10s+1

(b) Problem 2

0 200 400 600 800 1000

iteration

10
-15

10
-10

10
-5

10
0

10
5

K
K

T
 v

io
la

ti
o

n

n=3000, p=60

=0

=0.01s

=0.1s

=s+0.1

=10s+1

(c) Problem 3

0 1000 2000 3000

iteration

10
-10

10
-5

10
0

10
5

K
K

T
 v

io
la

ti
o

n

n=1000, p=20

=0

=0.01s

=0.1s

=s+0.1

=10s+1

(d) Problem 4

0 200 400 600 800

iteration

10
-10

10
-5

10
0

10
5

K
K

T
 v

io
la

ti
o

n

n=1000, p=20

=0

=0.01s

=0.1s

=s+0.1

=10s+1

(e) Problem 1

0 20 40 60 80

iteration

10
-15

10
-10

10
-5

10
0

10
5

K
K

T
 v

io
la

ti
o

n

n=3000, p=60

=0

=0.01s

=0.1s

=s+0.1

=10s+1

(f) Problem 2

0 200 400 600 800 1000

iteration

10
-15

10
-10

10
-5

10
0

10
5

K
K

T
 v

io
la

ti
o

n

n=3000, p=60

=0

=0.01s

=0.1s

=s+0.1

=10s+1

(g) Problem 3

0 1000 2000 3000

iteration

10
-10

10
-5

10
0

10
5

K
K

T
 v

io
la

ti
o

n

n=1000, p=20

=0

=0.01s

=0.1s

=s+0.1

=10s+1

(h) Problem 4

Fig. 5.2. A comparison of KKT violation for PLAM (a)--(d) and PCAL (e)--(h) with different
\beta (\eta = \eta ABB).
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Fig. 5.3. A comparison between PLAM and PCAL with different \beta on Problem 1.

and PCAL-DA stand for Algorithms 2 and 3 with step 3 using dual ascend to update
the multipliers, respectively. We report the numerical results in Figure 5.4. It can be
observed that the closed-form expression for updating Lagrangian multipliers is supe-
rior to dual ascend in solving optimization problems with orthogonality constraints.

In the end of this subsection, we show how KKT and feasibility violations decay
in the iterations, when PLAM and PCAL are used to solve Problem 1. The numerical
results are presented in Figure 5.5. We notice that the decay of feasibility violations
is nonmonotone and has a similar variation tendency as KKT violations, which coin-
cides with our theoretical analysis of Lemma 2.5. If we want a high accuracy for the
feasibility but a mild one for KKT conditions, we can set a mild tolerance for KKT
violation and impose the orthonormalization step

orth(X\ast ) := UV \top ,(5.11)

where X\ast = U\Sigma V \top is the SVD of X\ast with U \in \scrS n,p, \Sigma \in \BbbD p, and V \in \scrS p,p, as a
postprocess when we obtain the last iterate X\ast by PLAM or PCAL. Proposition 6.1
in Appendix B guarantees that postprocess (5.11) does not affect the KKT violation
too much in theory, particularly when \delta is sufficiently large, which implies a large \beta .
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Fig. 5.4. A comparion bewteen PLAM and PCAL on multilplier.
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Fig. 5.5. The results of KKT and feasibility violation for PLAM and PCAL on Problem 1.

Numerically, Table 5.1 illustrates that such a postprocess does not affect the KKT
violation but does improve the feasibility. Here, ``X\ast "" and ``orth(X\ast )"" represent the
relative values at the last iterate and the one after postprocess, respectively. Here-
inafter, the orthonormalization postprocess, achieved by an internal function qr(\cdot )
assembled in MATLAB, is the default last step of PLAM and PCAL.

5.4. Kohn--Sham total energy minimization. In this subsection, we com-
pare PLAM and PCAL with the state-of-the-art solvers in solving Kohn--Sham total
energy minimization (5.9) in serial. In other words, we aim to investigate the numeri-
cal performance of two proposed infeasible algorithms as general solvers for optimiza-
tion problems with orthogonality constraints without consideration of parallelization.

Our test is based on KSSOLV6 [32], which is a MATLAB toolbox for electronic
structure calculation. It allows researchers to investigate their own algorithms in
an easy and friendly manner for different steps in electronic structure calculation.
We choose two integrated solvers in KSSOLV. One is the self-consistent field (SCF)
iteration, which minimizes a quadratic surrogate of the objective of (5.9) with or-
thogonality constraints in each iteration [16]. SCF and its variations are the most
widely used in real KSDFT calculation. The other one is called trust-region direct
constrained minimization (TRDCM) [34], which combines the trust-region framework

6Available from http://crd-legacy.lbl.gov/\sim chao/KSSOLV/.
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Table 5.1
The results of orthogonal step for PLAM and PCAL on Problem 1.

Solver Function value KKT violation Feasibility violation

n = 1000, p = 20, \alpha = 1

PLAM
X\ast -4.205530767124e+02 8.74e-06 2.56e-09

orth(X\ast ) -4.205530767662e+02 8.74e-06 5.61e-15

PCAL
X\ast -4.205530767773e+02 6.01e-06 1.13e-08

orth(X\ast ) -4.205530767665e+02 6.00e-06 2.00e-14

and SCF to solve the subproblem. Besides SCF and TRDCM, which are particularly
for KSDFT, we also pick up two state-of-the-art solvers in solving general optimiza-
tion problems with orthogonality constraints. One is OptM,7 which is based on the
algorithm proposed in [30]. OptM adopts Cayley transform to preserve the feasibility
on the Stiefel manifold in each iteration. Nonmonotone line search with BB stepsize is
the default setting in OptM. As another existing solver for comparison, we intend to
choose MOptQR, which is based on a projection-like retraction method introduced in
[1]. Its original version is MOptQR-LS (manifold QR method with line search8). For
fair comparison, we implement the same alternating BB stepsize strategy as PLAM
and PCAL to MOptQR-LS and form the MOptQR used in this section.

We select 18 testing problems with respect to different molecules, which are as-
sembled in KSSOLV. For all the methods, the stopping criterion is set as\bigm\| \bigm\| (In  - XX\top )\nabla f(X)

\bigm\| \bigm\| 
F
< 10 - 5.

And we set the max iteration number MaxIter = 200 for methods SCF and TRDCM,
while MOptQR, OptM, PLAM, and PCAL set their max iteration number with
MaxIter = 1000 to get a comparable solution with other methods. The penalty
parameter \beta PLAM for PLAM is tuned case by case to achieve a good performance.
Meanwhile, \beta PCAL for PCAL is always set as 1. Other parameters for all these meth-
ods take their default values. For all of the testing algorithms, we set the same initial
guess X0 by using the function ``getX0,"" which is provided by KSSOLV.

The detailed numerical results are illustrated in Appendix C. Since we have
different problems and different solvers, to make a more straightforward compari-
son, we use performance profiles [8] to visualize the expected performance difference
among those solvers. We describe such a test in the following. For problem m and
solver s, we denote tm,s to represent the CPU time. Performance ratio is defined as
rm,s := tm,s/mins\{ tm,s\} . If solver s fails to solve problem m, the ratio rm,s will be
set to infinity or some sufficiently large number. Finally, the overall performance of
solver s is defined by

\pi s(\omega ) :=
number of problems where rm,s \leq \omega 

total number of problems
.

It means the percentage of testing problems that can be solved in \omega mins tm,s seconds.
Of course, the closer \pi s is to 1, the better performance solver s has. The performance
profile results with respect to CPU time are given in Figure 5.6. We observe that
PCAL performs best among all six algorithms in solving Kohn--Sham total energy
minimization problems in CPU time.

7Available from http://optman.blogs.rice.edu.
8Available from http://www.manopt.org.
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Fig. 5.6. Performance profile in CPU time.

5.5. Parallel efficiency. In this subsection, we examine the parallel efficiency
of our algorithms PLAM and PCAL. To investigate the parallel scalability, we need
to test large scale problems in a single core, which consumes lots of CPU time. To
avoid meaningless tests, we only compare the parallel performances of PCAL with
MOptQR in this subsection.

Both algorithms are implemented in the C++ language and parallelized by
OpenMP. The linear algebra library we used in comparison is Eigen9 (version 3.3.4),
which is an open and popular C++ template library for matrix computation. We
define the speedup factor for running a code on m cores as

speedup factor(m) =
wall-clock time for a single core run

wall-clock time for a m-core run
.

BLAS3 type arithmetic operations contribute a high proportion in computational
cost in both PCAL and MOptQR. Therefore, a good parallel strategy for BLAS3
calculation is nonnegligible in saving CPU time. Given this, we first determine the
parallel strategy for matrix-matrix multiplication by a set of tests. We have two
choices. The library Eigen provides its own multithreading computing10 that is the de-
fault parallel strategy for dense matrix-matrix products and row-major-sparse\ast dense
vector/matrix products in OpenMP. Another strategy is to parallelize BLAS3 com-
putation in the manner of columnwise product. Namely, when we calculate AB,
we multiply matrix A by each column of B in parallel. To figure out which strat-
egy is better, we test the parallel scalability of BLAS3 computation under these two
schemes. We generate A=Random(1000,10000) and B=Random(10000,1000), where
``Random(\cdot ,\cdot )"" is an internal generation function provided by Eigen. We run the code
in parallel with 1, 2, 4, 8, 16, 32, 64, and 96 cores, respectively. The result of matrix-
matrix multiplication AB is illustrated in Figure 5.7. ``Eigen"" and ``Columnwise""
represent the default parallel strategy and columnwise product strategy, respectively.
We can observe that columnwise parallelization obviously outperforms the default set-
ting of Eigen in multithreading computing. Hence, in the following implementation,
we choose a columnwise parallelization strategy for BLAS3 in our experiments.

9Available from http://eigen.tuxfamily.org/index.php?title=Main Page.
10More information at http://eigen.tuxfamily.org/dox/TopicMultiThreading.html.
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Fig. 5.7. The results of dense-dense BLAS3: A1000\times 10000B10000\times 1000.

Next, we investigate the parallel scalability of the new proposed PCAL and MOp-
tQR. According to the existent numerical report of Eigen,11 we select the class ``LLT""
in Eigen to compute QR factorization. The calculation of orthonormalization consists
of a small size (p-by-p) Cholesky decomposition and solving a p-by-p linear system.
The maximum number of iterations for MOptQR and PCAL is set to 1000. All the
parameters for MOptQR and PCAL take their default values. The initial guess X0

is generated by X0 =random(n,p)"" and X0 =qr(X0).
We first focus on the test Problems 1 and 2. For Problem 1, we set L as a block

diagonal matrix, i.e., L = Diag(L1, . . . , Ls), where Li \in \BbbR 5\times 5 is a tridiagonal matrix
with 2 on its main diagonal and  - 1 on subdigonal, for i = 1, . . . , s. The coefficient \alpha 
is set to 1. For the generation of Problem 2, we set A as a tridiagonal matrix with 2
on its main diagonal and  - 1 on subdigonal and G=Random(n,p). The advantage of
such a generation is to make function value and gradient calculations parallelizable.
In the first group of tests, we aim to figure out how MOptQR and PCAL perform
with the increasing width of variables. We set n = 10000 and p varying from a set
of increasing values \{ 500, 1000, 1500, 2000, 2500\} . Both algorithms are run in parallel
with 96 cores. The wall-clock time results are shown in Figure 5.8. Here, ``\#cores""
stands for the number of cores. From Figure 5.8, we notice that PCAL always takes
less wall-clock time than MOptQR. As the width of the matrix variable increases, the
running time of MOptQR increases much more rapidly than that of PCAL.

In Figure 5.9, we show wall-clock time of three categories: ``BLAS3"" (dense-dense
matrix multiplication), ``Func"" (function value and gradient evaluation), and ``Orth""
(orthonormalization including QR factorization for MOptQR and the final correction
step in PCAL). These are the major computational components of both PCAL and
MOptQR, albeit in different proportions. We have to clarify two issues: firstly, we
categorize these categories of calculation only at the highest solver level. As such,
any matrix-matrix multiplication involved in function value and gradient evaluation
is not counted as in the ``BLAS3"" category. Secondly, although the ``correctness"" of
such a classification scheme may be debatable, it does not alter the overall fact, as
is clearly shown by our computational results, that the category ``BLAS3"" is much
more scalable than the category ``Orth"" on our test platform. The running time of
each category is measured in terms of the percentage of wall-clock time spent in that
category over the total wall-clock time. We can clearly see that for PCAL the run time

11More information at http://eigen.tuxfamily.org/dox/group TutorialLinearAlgebra.html.
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Fig. 5.8. The wall-clock time results on varying width of the matrix variable.
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Fig. 5.9. A comparison of timing profile on a single core for Problem 2.

of ``BLAS3"" dominates the entire computation in almost all cases. The ``BLAS3"" time
increases steadily as p increases from 500 to 2500, while the ``Func"" time decreases
steadily. The run time of ``Orth"" is negligible. However, for MOptQR, the ``BLAS3""
time takes around 60\% of total run time and decreases steadily with the increasing of
p. Meanwhile, the ``Orth"" time takes around ``40\%"" of total run time and increases
steadily.

Now, we set n = 10000 and p = 1000, 2000 and run PCAL and MOptQR in
parallel with 1, 2, 4, 8, 16, 32, 64, and 96 cores, respectively. Figures 5.10 and 5.11
illustrate the speedup factors associated with total running wall-clock time, ``BLAS3,""
``Func,"" and ``Orth,"" respectively. From these two figures, we can observe that BLAS3
operation has high parallel scalability, while the speedup factor of ``Orth"" increases
slowly as the number of cores increases, which directly leads to the higher overall
scalability of PCAL than MOptQR. Moreover, as the width of the matrix variable
increases, the advantage of PCAL in parallel scalability becomes more obvious.

In the end, we test Problem 6 under n = 10000, p = 1000. Figure 5.12 illustrates
the results of speedup factors associated with total running wall-clock time, ``BLAS3,""
``Func,"" and ``Orth"" of PCAL and MOptQR, respectively. We can learn from this
figure that the overall scalability of PCAL is again superior to that of MOptQR.
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Fig. 5.10. A comparison of speedup factor among MOptQR and PCAL (p = 1000).

6. Conclusion. Optimization problems with orthogonality constraints have wide
application in materials science, machine learning, image processing, and so on. Par-
ticularly, when we apply KSDFT to electronic structure calculation, the last step is to
solve a Kohn--Sham total energy minimization with orthogonality constraints. There
are plenty of existing algorithms based on manifold optimization, which work quite
well when the number of columns of the matrix variable p is relatively small. With
the increasing of p, a bottleneck of existent algorithms emerges, that is, lack of con-
currency. The main reason for this bottleneck is that the orthonormalization process
has low parallel scalability.

To solve this issue, we need to employ infeasible approaches. However, previ-
ous infeasible approaches, including, the ALM, far less efficient than retraction based
feasible methods. Even though the parallelization reduces the running time of ALM
more significantly than that of manifold methods, ALM is still less efficient than man-
ifold methods in parallel computing. The main purpose of this paper is to provide
practical efficient infeasible algorithms for optimization problems with orthogonality
constraints. Our main motivation is that the Lagrangian multipliers have closed-form
expression at any stationary points. Hence, we use such expression to update multi-
pliers instead of DA step; at the same time, the subproblem for the prime variables
only takes one gradient step instead of being solved to a given tolerance. The re-
sultant algorithm, called PLAM, does not involve any orthonormalization. PLAM is
comparable with the existent feasible algorithms under well chosen penalty parame-
ter \beta . To avoid such restriction, we propose a modified version, PCAL, of PLAM.
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Fig. 5.11. A comparison of speedup factor among MOptQR and PCAL (p = 2000).
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Fig. 5.12. A comparison of speedup factor among MOptQR and PCAL on the simplified Kohn-
Sham total energy minimization.

The motivation of PCAL is to use normalized gradient step instead of gradient step
in updating prime variables. The numerical experiments show that PCAL works in
an efficient, robust, and insensitive manner with penalty parameter \beta . Remarkably,
it outperforms the existent feasible algorithms in solving the KSDFT problems in
MATLAB platform KSSOLV. We also run PCAL and MOptQR, an excellent repre-
sentative of retraction based optimization approach, in parallel with up to 96 cores.
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Numerical experiments illustrate PCAL has higher scalability than MOptQR, and its
superiority becomes more and more noticeable with the increasing of p.

The potential of PCAL has already emerged. In future work, we will apply our
PCAL to real KSDFT calculation. Moreover, we have not mentioned the performances
of our algorithms in solving linear eigenvalue problems, compared with other solvers.
This is because some linear algebraic issues should be taken into account if we want
to tune our algorithms as linear eigenvalue solvers, which are beyond the scope of this
paper. But we are interested in investigating it in the future.

Appendix A. We implement the ADMM-based algorithm introduced in [13],
which is called splitting orthogonality constraints (SOC). The testing problems are
Problems 1--4 introduced in subsection 5.2 with the same settings as those in sub-
section 5.3. We compare SOC with our PCAL. The PCAL takes its default setting.
The penalty parameter r of SOC is sensitive to the performance; we tune their algo-
rithm many times and choose the parameter to be the one with the best performance,
namely, r = 90, 1, 5, 5 in Problems 1--4, respectively. The tolerance of the inner
iteration of SOC is set to 10 - 8.

Figures 6.1 and 6.2 illustrate the change of KKT and feasibility violation of
PCAL's and SOC's iterates as the iterations progress. Figure 6.3 mainly shows the
number of inner iterations of SOC. We can learn from these figures that

\bullet PCAL converges faster than SOC in these testing problems;
\bullet PCAL requires much less computation cost than SOC in each iteration, given
that the computational cost of one iteration in PCAL is in the same order of
its in an inner iteration of SOC without orthonormalization.

We have as a byproduct of this experiment that the decreases of the KKT violation
and feasibility violation of PCAL have similar trends.

Appendix B.

Proposition 6.1. Suppose the objective function f satisfies (4.1) and the as-
sumption in Lemma 2.5 holds. Let \~X = orth(X\ast ), where orth is defined by (5.11).
Then it holds that

| | \nabla X\scrL \beta ( \~X, \~\Lambda )| | F \leq 
\biggl( 
1 +

(2L+ (N + \beta )| | X\ast | | 2 +N) | | X\ast | | 2
\delta 

\biggr) 
\cdot | | \nabla X\scrL \beta (X

\ast ,\Lambda \ast )| | F,

(6.1)

where \Lambda \ast = \Psi (\nabla f(X\ast )\top X\ast ) and \~\Lambda = \Psi (\nabla f( \~X)\top \~X).

Proof. Due to the fact that | | \Sigma  - I| | F \leq | | (\Sigma  - I)(\Sigma + I)| | F = | | \Sigma 2  - I| | F, it holds
that

| | \nabla X\scrL \beta (X
\ast ,\Lambda \ast ) - \nabla X\scrL \beta ( \~X, \~\Lambda )| | F

\leq | | \nabla f(X) - \nabla f( \~X)| | F + | | X\ast \nabla f(X\ast )\top X\ast  - X\ast \nabla f(X\ast )\top \~X| | F
| | X\ast \nabla f(X\ast )\top \~X  - \~X\nabla f(X\ast )\top \~X| | F + | | \~X\nabla f(X\ast )\top \~X  - \~X\nabla f( \~X)\top \~X| | F

+ \beta | | X\ast (X\ast \top X\ast  - Ip)| | F
\leq L \cdot | | X\ast  - \~X| | F +N \cdot | | X\ast | | 2 \cdot | | X\ast  - \~X| | F +N \cdot | | X\ast  - \~X| | F + L \cdot | | X\ast  - \~X| | F

+ \beta | | X\ast | | 2 \cdot | | X\ast \top X\ast  - Ip| | F
= (2L+N | | X\ast | | 2 +N) \cdot | | U\Sigma V \top  - UV \top | | F + \beta | | X\ast | | 2 \cdot | | X\ast \top X\ast  - Ip| | F
\leq (2L+ (N + \beta )| | X\ast | | 2 +N) \cdot | | X\ast \top X\ast  - Ip| | F.
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Fig. 6.1. A comparison of KKT violation for PCAL and ADMM.
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Fig. 6.2. A comparison of feasibility violation for PCAL and ADMM.
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Fig. 6.3. A comparison of inner iteration for PCAL and ADMM.

From the above inequality and (2.20), we obtain

| | \nabla X\scrL \beta ( \~X, \~\Lambda )| | F  - | | \nabla X\scrL \beta (X
\ast ,\Lambda \ast )| | F \leq | | \nabla X\scrL \beta (X

\ast ,\Lambda \ast ) - \nabla X\scrL \beta ( \~X, \~\Lambda )| | F
\leq (2L+ (N + \beta )| | X\ast | | 2 +N) \cdot | | X\ast \top X\ast  - Ip| | F

\leq (2L+ (N + \beta )| | X\ast | | 2 +N) | | X\ast | | 2
\delta 

\cdot | | \nabla X\scrL \beta (X
\ast ,\Lambda \ast )| | F,

which implies the inequality (6.1).

Remark 6.2. Suppose \beta is close enough to (| | \nabla f(X\ast )| | 2 \cdot | | X\ast | | 2 + \delta ) /\sigma 2
min(X

\ast )

and \delta is sufficiently large; then the coefficient of (6.1) is close to (1+
| | X\ast | | 22

\sigma 2
min(X

\ast )
), which

is further close to 2 when X\ast is almost orthogonal.

Appendix C. In this section, we illustrate the detailed numerical results of sub-
section 5.4 in Tables 6.1, 6.2, and 6.3. Here, ``Etot"" represents the total energy func-
tion value, and ``KKT violation,"" ``Iteration,"" ``Feasibility violation,"" and ``Time(s)""
stand for

\bigm\| \bigm\| (In  - XX\top )\nabla f(X)
\bigm\| \bigm\| 
F
, the number of iteration,

\bigm\| \bigm\| X\top X  - Ip
\bigm\| \bigm\| 
F
, and the

total running wall-clock time in second, respectively. From the tables, we observe
that PCAL has a better performance than other algorithms, and in most cases, it
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Table 6.1
The results in Kohn--Sham total energy minimization.

Solver Etot KKT violation Iteration Feasibility violation Time(s)

al, n = 16879, p = 12 (\beta PLAM = 10, \beta PCAL = 1)

SCF -1.5789379003e+01 4.88e-03 200 6.53e-15 539.51
TRDCM -1.5803791151e+01 6.36e-06 154 4.94e-15 336.79
MOptQR -1.5803814080e+01 1.88e-04 1000 1.33e-14 393.54
OptM -1.5803791098e+01 2.38e-05 1000 3.19e-14 378.80
PLAM -1.5803790675e+01 1.29e-05 1000 3.34e-07 399.80
PCAL -1.5803791055e+01 8.96e-06 596 5.95e-15 228.06

alanine, n = 12671, p = 18 (\beta PLAM = 13, \beta PCAL = 1)

SCF -6.1161921212e+01 3.80e-07 13 7.20e-15 21.46
TRDCM -6.1161921213e+01 6.02e-06 15 5.20e-15 16.97
MOptQR -6.1161921213e+01 7.52e-06 64 6.77e-15 14.89
OptM -6.1161921213e+01 2.27e-06 69 4.03e-14 16.44
PLAM -6.1161921212e+01 9.50e-06 76 7.90e-15 17.14
PCAL -6.1161921213e+01 4.14e-06 61 7.19e-15 15.89

benzene, n = 8407, p = 15 (\beta PLAM = 10, \beta PCAL = 1)

SCF -3.7225751349e+01 2.10e-07 10 7.82e-15 10.07
TRDCM -3.7225751363e+01 9.23e-06 15 7.12e-15 9.83
MOptQR -3.7225751362e+01 8.12e-06 146 7.24e-15 19.91
OptM -3.7225751363e+01 2.50e-06 70 1.54e-14 9.61
PLAM -3.7225751362e+01 9.37e-06 71 4.62e-15 9.55
PCAL -3.7225751362e+01 9.22e-06 50 5.15e-15 7.74

c2h6, n = 2103, p = 7 (\beta PLAM = 10, \beta PCAL = 1)

SCF -1.4420491315e+01 3.70e-09 10 3.66e-15 3.40
TRDCM -1.4420491322e+01 8.75e-06 13 2.76e-15 4.01
MOptQR -1.4420491321e+01 8.59e-06 47 2.58e-15 2.57
OptM -1.4420491322e+01 2.62e-06 55 1.18e-14 2.87
PLAM -1.4420491322e+01 7.91e-06 69 2.92e-15 3.41
PCAL -1.4420491322e+01 4.91e-06 45 2.33e-15 2.58

c12h26, n = 5709, p = 37 (\beta PLAM = 10, \beta PCAL = 1)

SCF -8.1536091894e+01 4.95e-08 14 1.40e-14 30.08
TRDCM -8.1536091937e+01 4.84e-06 16 1.17e-14 21.77
MOptQR -8.1536091936e+01 6.68e-06 147 1.43e-14 39.57
OptM -8.1536091937e+01 1.07e-06 83 7.10e-14 22.65
PLAM -8.1536091936e+01 5.88e-06 96 1.55e-14 25.11
PCAL -8.1536091936e+01 8.75e-06 70 1.45e-14 22.88

co2, n = 2103, p = 8 (\beta PLAM = 10, \beta PCAL = 1)

SCF -3.5124395789e+01 6.17e-08 10 2.53e-15 2.61
TRDCM -3.5124395801e+01 4.14e-06 14 4.11e-15 2.09
MOptQR -3.5124395800e+01 9.30e-06 88 2.35e-15 2.90
OptM -3.5124395801e+01 1.70e-06 48 3.55e-14 1.68
PLAM -3.5124395801e+01 7.92e-06 57 2.30e-15 1.84
PCAL -3.5124395801e+01 9.15e-06 43 2.11e-15 1.74
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Table 6.2
The results in Kohn--Sham total energy minimization.

Solver Etot KKT violation Iteration Feasibility violation Time(s)

ctube661, n = 12599, p = 48 (\beta PLAM = 13, \beta PCAL = 1)

SCF -1.3463843175e+02 3.88e-07 11 1.43e-14 56.43
TRDCM -1.3463843176e+02 6.85e-06 23 1.09e-14 87.41
MOptQR -1.3463843176e+02 7.21e-06 152 1.78e-14 107.62
OptM -1.3463843176e+02 2.35e-06 82 2.15e-14 59.23
PLAM -1.3463843176e+02 4.34e-06 107 2.37e-14 72.18
PCAL -1.3463843176e+02 9.68e-06 65 1.95e-14 54.07

glutamine, n = 16517, p = 29 (\beta PLAM = 13, \beta PCAL = 1)

SCF -9.1839425202e+01 1.12e-07 15 1.07e-14 67.40
TRDCM -9.1839425244e+01 3.23e-06 16 7.00e-15 54.65
MOptQR -9.1839425243e+01 9.83e-06 78 9.07e-15 51.46
OptM -9.1839425244e+01 2.47e-06 87 9.73e-15 57.65
PLAM -9.1839425243e+01 8.72e-06 104 9.26e-15 66.31
PCAL -9.1839425243e+01 6.28e-06 74 9.33e-15 53.53

graphene16, n = 3071, p = 37 (\beta PLAM = 10, \beta PCAL = 1)

SCF -9.4023322108e+01 2.07e-03 200 1.32e-14 309.33
TRDCM -9.4046217545e+01 8.85e-06 45 1.08e-14 47.87
MOptQR -9.4046217225e+01 9.90e-06 422 1.15e-14 80.67
OptM -9.4046217545e+01 2.27e-06 245 1.03e-14 48.66
PLAM -9.4046217854e+01 9.52e-06 278 1.34e-14 51.57
PCAL -9.4046217542e+01 8.68e-06 176 1.17e-14 41.11

graphene30, n = 12279, p = 67 (\beta PLAM = 13, \beta PCAL = 1)

SCF -1.7358453985e+02 5.19e-03 200 1.93e-14 2815.79
TRDCM -1.7359510506e+02 4.80e-06 71 1.42e-14 765.92
MOptQR -1.7359510505e+02 9.92e-06 456 2.59e-14 800.08
OptM -1.7359510506e+02 2.47e-06 472 2.49e-14 904.44
PLAM -1.7359510505e+02 8.88e-06 330 2.75e-14 601.41
PCAL -1.7359510505e+02 8.52e-06 253 2.62e-14 548.70

h2o, n = 2103, p = 4 (\beta PLAM = 10, \beta PCAL = 1)

SCF -1.6440507245e+01 1.16e-08 8 1.15e-15 1.29
TRDCM -1.6440507246e+01 6.48e-06 11 1.11e-15 1.02
MOptQR -1.6440507246e+01 3.84e-06 49 9.30e-16 1.14
OptM -1.6440507246e+01 2.01e-06 61 6.40e-15 1.50
PLAM -1.6440507245e+01 6.43e-06 56 2.37e-15 1.29
PCAL -1.6440507246e+01 7.42e-06 42 1.86e-15 1.06

hnco, n = 2103, p = 8 (\beta PLAM = 10, \beta PCAL = 1)

SCF -2.8634664360e+01 9.44e-08 12 3.82e-15 4.32
TRDCM -2.8634664365e+01 9.54e-06 13 3.47e-15 4.47
MOptQR -2.8634664363e+01 9.74e-06 163 3.17e-15 12.26
OptM -2.8634664365e+01 5.30e-06 117 2.26e-15 8.30
PLAM -2.8634664364e+01 9.95e-06 105 3.18e-15 7.39
PCAL -2.8634664364e+01 9.03e-06 70 2.60e-15 5.36
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Table 6.3
The results in Kohn--Sham total energy minimization.

Solver Etot KKT violation Iteration Feasibility violation Time(s)

nic, n = 251, p = 7 (\beta PLAM = 10, \beta PCAL = 1)

SCF -2.3543529950e+01 2.13e-10 11 2.99e-15 1.47
TRDCM -2.3543529955e+01 7.94e-06 15 4.49e-15 0.99
MOptQR -2.3543529955e+01 3.04e-06 111 2.73e-15 1.53
OptM -2.3543529955e+01 3.86e-07 63 8.80e-15 0.90
PLAM -2.3543529955e+01 4.02e-06 67 1.39e-15 0.89
PCAL -2.3543529955e+01 8.42e-06 52 1.88e-15 0.99

pentacene, n = 44791, p = 51 (\beta PLAM = 13, \beta PCAL = 1)

SCF -1.3189029494e+02 5.76e-07 13 1.58e-14 293.68
TRDCM -1.3189029495e+02 7.60e-06 22 1.08e-14 276.25
MOptQR -1.3189029495e+02 7.78e-06 112 3.21e-14 306.97
OptM -1.3189029495e+02 1.39e-06 97 3.39e-14 283.02
PLAM -1.3189029495e+02 8.66e-06 123 3.52e-14 321.04
PCAL -1.3189029495e+02 7.67e-06 89 3.08e-14 271.32

ptnio, n = 4069, p = 43 (\beta PLAM = 13, \beta PCAL = 1)

SCF -2.2678884268e+02 1.09e-05 53 1.46e-14 168.25
TRDCM -2.2678882693e+02 2.81e-04 200 1.07e-14 471.34
MOptQR -2.2678884271e+02 9.57e-06 786 1.06e-14 347.38
OptM -2.2678884273e+02 9.52e-06 508 1.14e-14 203.63
PLAM -2.2678884271e+02 9.00e-06 579 1.01e-14 213.60
PCAL -2.2678884271e+02 8.55e-06 386 1.19e-14 189.70

qdot, n = 2103, p = 8 (\beta PLAM = 10, \beta PCAL = 1)

SCF 2.7700280133e+01 6.70e-03 5 2.92e-15 1.09
TRDCM 2.7699537080e+01 1.43e-02 200 2.73e-15 27.01
MOptQR 1.0483319768e+02 3.45e+01 1000 1.77e-15 28.72
OptM 2.7699807230e+01 1.45e-04 1000 2.39e-15 29.89
PLAM 2.7699800860e+01 9.68e-06 678 1.98e-15 19.30
PCAL 2.7699800851e+01 5.41e-06 962 2.88e-15 35.01

si2h4, n = 2103, p = 6 (\beta PLAM = 10, \beta PCAL = 1)

SCF -6.3009750375e+00 5.25e-07 11 3.62e-15 2.97
TRDCM -6.3009750459e+00 8.24e-06 16 3.12e-15 4.30
MOptQR -6.3009750460e+00 3.70e-06 116 2.00e-15 5.96
OptM -6.3009750459e+00 9.60e-06 68 1.41e-14 4.15
PLAM -6.3009750455e+00 7.27e-06 89 1.58e-15 5.33
PCAL -6.3009750459e+00 4.33e-06 62 2.42e-15 3.90

sih4, n = 2103, p = 4 (\beta PLAM = 10, \beta PCAL = 1)

SCF -6.1769279820e+00 2.07e-08 8 1.75e-15 1.91
TRDCM -6.1769279850e+00 9.53e-06 10 1.14e-15 1.60
MOptQR -6.1769279851e+00 4.32e-06 34 1.58e-15 1.07
OptM -6.1769279851e+00 8.18e-06 46 8.52e-16 1.62
PLAM -6.1769279849e+00 7.37e-06 56 1.99e-15 1.79
PCAL -6.1769279847e+00 9.16e-06 47 1.55e-15 1.69

obtains a comparable total energy function value and a lower KKT violation. In par-
ticular, in the large size problem ``graphene30,"" PCAL achieves the same total energy
function value and same magnitude KKT violation in much less CPU time than oth-
ers. In the problem ``qdot,"" we observe that only PLAM and PCAL can output a
point satisfying the KKT violation tolerance, while all the other algorithms terminate
abnormally. Therefore, we can conclude that PCAL and PLAM perform comparable
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with the existent feasible algorithms in solving discretized Kohn--Sham total energy
minimization.
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