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Abstract. In this paper, we study structured quasi-Newton methods for optimization problems

with orthogonality constraints. Note that the Riemannian Hessian of the objective function requires

both the Euclidean Hessian and the Euclidean gradient. In particular, we are interested in appli-

cations that the Euclidean Hessian itself consists of a computational cheap part and a significantly

expensive part. Our basic idea is to keep these parts of lower computational costs but substitute

those parts of higher computational costs by the limited-memory quasi-Newton update. More specif-

ically, the part related to the Euclidean gradient and the cheaper parts in the Euclidean Hessian are

preserved. The initial quasi-Newton matrix is further constructed from a limited-memory Nystrom

approximation to the expensive part. Consequently, our subproblems approximate the original objec-

tive function in the Euclidean space and preserve the orthogonality constraints without performing

the so-called vector transports. When the subproblems are solved to sufficient accuracy, both global

and local q-superlinear convergence can be established under mild conditions. Preliminary numeri-

cal experiments on the linear eigenvalue problem and the electronic structure calculation show the

effectiveness of our method compared with the state-of-art algorithms.
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1. Introduction. In this paper, we consider the optimization problem with or-

thogonality constraints:

(1.1) min
X\in \BbbC n\times p

f(X) s.t. X\ast X = Ip,

where f(X) : \BbbC n\times p \rightarrow \BbbR is a \BbbR -differentiable function [31]. Although our proposed

methods are applicable to a general function f(X), we are in particular interested in

\ast Submitted to the journal's Methods and Algorithms for Scientific Computing section September

4, 2018; accepted for publication (in revised form) April 16, 2019; published electronically July 23,

2019.

https://doi.org/10.1137/18M121112X

Funding: The work of the second author was supported by NSFC grants 11501298 and 11671036,

the Young Elite Scientists Sponsorship Program by CAST (2017QNRC001), and by the NSF of

Jiangsu Province (BK20150965). The work of the third author was supported by the National Science

Foundation under grant DMS-1652330, the Department of Energy under grants DE-SC0017867 and

DE-AC02-05CH11231, and the SciDAC project. The work of the fourth author was supported by

NSFC grants 11831002, 11421101, and 91730302, and by the National Basic Research Project under

grant 2015CB856002. The work of the fifth author was supported by NSFC grants 11331012 and

11461161005.
\dagger Beijing International Center for Mathematical Research, Peking University, Beijing, China

(jianghu@pku.edu.cn, wenzw@pku.edu.cn).
\ddagger School of Mathematical Sciences, Key Laboratory for NSLSCS of Jiangsu Province, Nanjing

Normal University, Nanjing 210023, China (jiangbo@njnu.edu.cn).
\S Department of Mathematics, University of California, Berkeley, Berkeley, CA, 94720-3840

(linlin@math.berkeley.edu).
\P Institute of Computational Math and Scientific/Engineering Computing, Chinese Academy of

Sciences, Beijing, China (yyx@lsec.cc.ac.cn).

A2239

D
ow

nl
oa

de
d 

04
/1

9/
20

 to
 1

24
.1

6.
14

8.
9.

 R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

https://doi.org/10.1137/18M121112X
mailto:jianghu@pku.edu.cn
mailto:wenzw@pku.edu.cn
mailto:jiangbo@njnu.edu.cn
mailto:linlin@math.berkeley.edu
mailto:yyx@lsec.cc.ac.cn


 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 
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the cases that the Euclidean Hessian \nabla 2f(X) takes a natural structure as

(1.2) \nabla 2f(X) = \scrH c(X) +\scrH e(X),

where the computational cost of \scrH e(X) is much more expensive than that of \scrH c(X).

This situation occurs when f is a summation of functions whose full Hessian are

expensive to be evaluated or even not accessible. A practical example is the Hartree--

Fock-like total energy minimization problem in the electronic structure theory [44, 36],

where the computation cost associated with the Fock exchange matrix is significantly

larger than the cost of the remaining components.

There are extensive methods for solving (1.1) in the literature. By exploring the

geometry of the manifold (i.e., orthogonality constraints), the Riemannian gradient

descent, conjugate gradient (CG), Newton, and trust-region methods are proposed in

[13, 12, 47, 42, 1, 2, 50]. Since the second-order information sometimes is not avail-

able, the quasi-Newton-type method serves as an alternative method to guarantee the

good convergence property. Different from the Euclidean quasi-Newton method, the

vector transport operation [2] is used to compare tangent vectors in different tangent

spaces. After obtaining a descent direction, the so-called retraction provides a curvi-

linear search along the manifold. By adding some restrictions between differentiable

retraction and vector transport, a Riemannian Broyden--Fletcher--Goldfarb--Shanno

(BFGS) method is presented in [39, 40, 41]. Due to the requirement of differentiable

retraction, the computational cost associated with the vector transport operation may

be costly. To avoid this disadvantage, authors in [22, 25, 27, 24] develop a new class

of Riemannian BFGS methods and symmetric rank-one and Broyden family methods.

Moreover, a selection of Riemannian quasi-Newton methods has been implemented in

the software package Manopt [6] and ROPTLIB [23].

1.1. Our contribution. Since the set of orthogonal matrices can be viewed as

the Stiefel manifold, the existing quasi-Newton methods focus on the construction

of an approximation to the Riemannian Hessian. When using the Euclidean metric

(it will be introduced in subsection 1.4) as the Riemannian metric, we can write the

Riemannian Hessian Hessf(X) as

(1.3) Hessf(X)[\xi ] = ProjX(\nabla 2f(X)[\xi ] - \xi sym(X\ast \nabla f(X))),

where \xi is any tangent vector in the tangent space TX := \{ \xi \in \BbbC n\times p : X\ast \xi +\xi \ast X = 0\} 
and ProjX(Z) := Z  - Xsym(X\ast Z) is the projection of Z onto the tangent space TX

and sym(A) := (A + A\ast )/2. See [12, 3] for details on the structure (1.3). We briefly

summarize our contributions as follows.

\bullet By taking advantage of this structure (1.3), we construct an approxima-

tion to the Euclidean Hessian \nabla 2f(X) instead of the full Riemannian Hes-

sian Hess f(X) directly, but keep the remaining parts \xi sym(X\ast \nabla f(X)) and

ProjX(\cdot ). Then, we solve a subproblem with orthogonality constraints, whose

objective function uses an approximate second-order Taylor expansion of f

with an extra regularization term. Similar to [20], the trust-region-like strat-

egy for the update of the regularization parameter and the modified CG

method for solving the subproblem are utilized. The vector transport is not

needed since we are working in the ambient Euclidean space.
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QUASI-NEWTON METHODS ON STIEFEL MANIFOLD A2241

\bullet By further taking advantage of the structure (1.2) of f , we develop a struc-

tured quasi-Newton approach to construct an approximation to the expen-

sive part \scrH e while preserving the cheap part \scrH c. This kind of structured

approximation usually yields a better property than the approximation con-

structed by the vanilla quasi-Newton method. For the construction of an

initial approximation of \scrH e, we also investigate a limited-memory Nystr\"om

approximation, which gives a subspace approximation of a known good but

still complicated approximation of \scrH e.

\bullet When the subproblems are solved to a certain accuracy, both global and local

q-superlinear convergence can be established under certain mild conditions.

\bullet Applications to the linear eigenvalue problem and the electronic structure

calculation are presented. The proposed algorithms perform comparably well

with state-of-art methods in these two applications.

1.2. Applications to electronic structure calculation. Electronic structure

theories, and particularly Kohn--Sham density functional theory (KSDFT) [19, 30],

play an important role in quantum physics, quantum chemistry, and materials science.

This problem can be interpreted as a minimization problem for the electronic total en-

ergy over an orthogonal set of electronic wave functions. The mathematical structure

of Kohn--Sham equations depends heavily on the choice of the exchange-correlation

functional. In particular, the Kohn--Sham Hamiltonian with a local or semilocal

exchange-correlation functional is a differential operator. On the other hand, hybrid

exchange-correlation functionals [4, 18] are known to provide a more accurate model

to electronic structure calculations. When hybrid exchange-correlation functionals

are used, the Kohn--Sham Hamiltonian becomes an integro-differential operator. The

Kohn--Sham equations become Hartree--Fock-like equations. The computational cost

of hybrid functional calculations is usually much more expensive than those using

local and semilocal functionals. Existing optimization based methods often do not

efficiently use the structure of the Hessian matrix in these calculations. In this paper,

by exploiting the structure of the Hessian, we apply our structured quasi-Newton

method to solve these problems. Numerical experiments show that our algorithm

performs at least comparably well with state-of-art methods in their convergent case.

In the case where state-of-art methods failed, our algorithm often returns high quality

solutions.

1.3. Organization. This paper is organized as follows. In section 2, we intro-

duce our structured quasi-Newton method and present our algorithm. In section 3,

the global and local convergence is analyzed under certain inexact conditions. In

sections 4 and 5, detailed applications to the linear eigenvalue problem and the elec-

tronic structure calculation are discussed. Finally, we demonstrate the efficiency of

our proposed algorithm in section 6.

1.4. Notation. For a matrix X \in \BbbC n\times p, we use \=X, X\ast , \Re X, and \Im X to denote

its complex conjugate, complex conjugate transpose, and real and imaginary parts,

respectively. Let span\{ X1, . . . , Xl\} be the space spanned by the matrices X1, . . . , Xl.

Let [X1, . . . , Xl] \in \BbbR n\times (lp) be a matrix with columns X1, . . . , Xl. The vector denoted

vec(X) in \BbbC np is formulated by stacking each column of X one by one, from the first
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to the last column; the operator mat(\cdot ) is the inverse of vec(\cdot ), i.e., mat(vec(X)) = X.

Given two matrices A,B \in \BbbC n\times p, the Frobenius inner product \langle \cdot , \cdot \rangle is defined as

\langle A,B\rangle = tr(A\ast B), and the corresponding Frobenius norm \| \cdot \| \sansF is defined as \| A\| \sansF =\sqrt{} 
tr(A\ast A). The Euclidean metric is defined as the real part of the Frobenius inner

product, i.e., \Re \langle A,B\rangle . For a matrix M \in \BbbC n\times n, the operator diag(M) is a vector in

\BbbC n formulated by the main diagonal of M ; and for c \in \BbbC n, the operator Diag(c) is an

n-by-n diagonal matrix with the elements of c on the main diagonal. The notation Ip
denotes the p-by-p identity matrix. Let St(n, p) := \{ X \in \BbbC n\times p : X\ast X = Ip\} be the

(complex) Stiefel manifold. With the Euclidean metric (i.e., the Riemannian metric

used on St(n, p)), \nabla f(X) (resp., \nabla 2f(X)) and grad f(X) (resp., Hess f(X)) denote

the Euclidean and Riemannian gradient (resp., Hessian) of f at X. The notation \BbbN 
refers to the set of all natural numbers.

2. A structured quasi-Newton approach.

2.1. Structured quasi-Newton subproblem. In this subsection, we develop

the structured quasi-Newton subproblem for solving (1.1). Based on the assumption

(1.2), methods using the exact Hessian \nabla 2f(X) may not be the best choices. When

the computational cost of the gradient \nabla f(X) is significantly cheaper than that of the

Hessian \nabla 2f(X), the quasi-Newton methods [38, Chapter 6] can be used to construct

an approximation to \nabla 2f(X) via the gradients \nabla f(X). Since the approximate Hes-

sian is of low computational cost, it is possible that they outperform other methods.

Considering the form (1.2), we can construct a structured quasi-Newton approxima-

tion \scrB k for \nabla 2f(Xk). The details will be presented in section 2.2. Note that a similar

idea has been presented in [53] for the unconstrained nonlinear least square problems

[28], [43, Chapter 7]. Then our subproblem at the kth iteration is constructed as

(2.1) min
X\in \BbbC n\times p

mk(X) s.t. X\ast X = I,

where

(2.2) mk(X) := \Re 
\bigl\langle 
\nabla f(Xk), X  - Xk

\bigr\rangle 
+

1

2
\Re 
\bigl\langle 
\scrB k[X  - Xk], X  - Xk

\bigr\rangle 
+

\tau k
2
d(X,Xk)

is an approximation to f(X) in the Euclidean space. For the second-order Taylor

expansion of f(X) at a point Xk, we refer to [49, section 1.1] for details. Here, \tau k
is a regularization parameter and d(X,Xk) is a proximal term. The choice of \tau k is

crucial to control the distance between X and Xk. Solving subproblem (2.1) with

a well chosen \tau k can lead to a sufficient decrease of the objective function of the

original problem (1.1). Therefore, by developing a proper rule of updating \tau k, we can

construct a class of algorithms with convergence guarantees.

The proximal term can be chosen as the quadratic regularization

(2.3) d(X,Xk) = \| X  - Xk\| 2\sansF 

or the cubic regularization [37, 10, 11]

(2.4) d(X,Xk) =
2

3
\| X  - Xk\| 3\sansF ,

D
ow

nl
oa

de
d 

04
/1

9/
20

 to
 1

24
.1

6.
14

8.
9.

 R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

QUASI-NEWTON METHODS ON STIEFEL MANIFOLD A2243

which is shown to be useful in the construction of subproblems. In the following,

we will mainly focus on the quadratic regularization (2.3). Due to the Stiefel mani-

fold constraint, the quadratic regularization (2.3) is actually equal to the linear term

 - 2\Re 
\bigl\langle 
X,Xk

\bigr\rangle 
. By using the Riemannian Hessian formulation (1.3) on the Stiefel

manifold, we have

(2.5) Hessmk(X
k)[\xi ] = ProjXk

\bigl( 
\scrB k[\xi ] - \xi sym((Xk)\ast \nabla f(Xk)

\bigr) 
+ \tau k\xi , \xi \in TXk .

Hence, the regularization term is to shift the spectrum of the corresponding Riemann-

ian Hessian of the approximation \scrB k with \tau k.

The Riemannian quasi-Newton methods for (1.1) in the literature [23, 25, 26, 27]

focus on constructing an approximation to the Riemannian Hessian Hess f(Xk) di-

rectly without using its special structure (1.3). Therefore, vector transport needs to

be utilized to transport the tangent vectors from different tangent spaces to one com-

mon tangent space. If p\ll n, the second term sym
\bigl( 
(Xk)\ast \nabla f(Xk)

\bigr) 
is a small-scaled

matrix and thus can be computed with low cost. In this case, after computing the

approximation \scrB k[\xi ] of \nabla 2f(X)[\xi ], we obtain a structured Riemannian quasi-Newton

approximation ProjXk

\bigl( 
\scrB k[\xi ] - \xi sym((Xk)\ast \nabla f(Xk)

\bigr) 
of Hessf(Xk)[\xi ] without using

any vector transport.

2.2. Construction of \bfscrB \bfitk . The classical quasi-Newton methods construct the

approximation \scrB k such that it satisfies the secant condition

(2.6) \scrB k[Sk] = \nabla f(Xk) - \nabla f(Xk - 1),

where Sk := Xk  - Xk - 1. Noticing that \nabla 2f(X) takes the natural structure (1.2),

it is reasonable to keep the cheaper part \scrH c(X) while only approximating \scrH e(X).

Specifically, we derive the approximation \scrB k to the Hessian \nabla 2f(Xk) as

(2.7) \scrB k = \scrH c(Xk) + \scrE k,

where \scrE k is an approximation to \scrH e(Xk). Substituting (2.7) into (2.6), we can see

that the approximation \scrE k should satisfy the following revised secant condition:

(2.8) \scrE k[Sk] = Y k,

where

(2.9) Y k := \nabla f(Xk) - \nabla f(Xk - 1) - \scrH c(Xk)[Sk].

For the large scale optimization problems, the limited-memory quasi-Newton

methods are preferred since they often make simple but good approximations of the

exact Hessian. Considering that the part \scrH e(Xk) itself may not be positive definite

even when Xk is optimal, we utilize the limited-memory symmetric rank-one (LSR1)

scheme to approximate \scrH e(Xk) such that it satisfies the secant equation (2.8).

Let l = min\{ k,m\} . We define the (np)\times l matrices Sk,m and Y k,m by

Sk,m =
\bigl[ 
vec(Sk - l), . . . , vec(Sk - 1)

\bigr] 
, Y k,m =

\bigl[ 
vec(Y k - l), . . . , vec(Y k - 1)

\bigr] 
.

Let \scrE k0 : \BbbC n\times p \rightarrow \BbbC n\times p be the initial approximation of \scrH e(Xk) and define the (np)\times l

matrix \Sigma k,m :=
\bigl[ 
vec

\bigl( 
\scrE k0 [Sk - l]

\bigr) 
, . . . , vec

\bigl( 
\scrE k0 [Sk - 1]

\bigr) \bigr] 
. Let F k,m be a matrix in \BbbC l\times l
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with (F k,m)i,j =
\bigl\langle 
Sk - l+i - 1, Y k - l+j - 1

\bigr\rangle 
for 1 \leq i, j \leq l. Under the assumption that\bigl\langle 

Sj , \scrE j [Sj ] - Y j
\bigr\rangle 
\not = 0, j = k  - l, . . . , k  - 1, it follows from [9, Theorem 5.1] that the

matrix F k,m  - (Sk,m)\ast \Sigma k,m is invertible and the LSR1 gives

(2.10) \scrE k[U ] = \scrE k0 [U ] + mat
\Bigl( 
Nk,m

\bigl( 
F k,m  - (Sk,m)\ast \Sigma k,m

\bigr)  - 1
(Nk,m)\ast vec(U)

\Bigr) 
,

where U \in \BbbC n\times p is any direction and Nk,m = Y k,m  - \Sigma k,m. In the practical imple-

mentation, we skip the update if\bigm| \bigm| \bigl\langle Sj , \scrE j [Sj ] - Y j
\bigr\rangle \bigm| \bigm| \leq r\| Sj\| \sansF \| \scrE j [Sj ] - Y j\| \sansF 

with small number r, say, r = 10 - 8. A similar idea can be found in [38, section 6.2].

2.3. Limited-memory Nystr\"om approximation of \bfscrE \bfitk 
\bfzero . A good initial guess

to the exact Hessian is also important to accelerate the convergence of the limited-

memory quasi-Newton method. Here, we assume that a good initial approximation \scrE k0
of the expensive part of the Hessian\scrH e(Xk) is known but its computational cost is still

very high. We next explain how to use the limited-memory Nystr\"om approximation

to construct another approximation with lower computational cost based on \scrE k0 .
Specially, let \Omega be a matrix whose columns form an orthogonal basis of a well-

chosen subspace S and denote W = \scrE k0 [\Omega ]. To reduce the computational cost and

keep the good property of \scrE k0 , we construct the following approximation:

(2.11) \^\scrE k0 [U ] := W (W \ast \Omega )\dagger W \ast U,

where U \in \BbbC n\times p is any direction. This is called the limited-memory Nystr\"om approx-

imation; see [46] and references therein for more details. By choosing the dimension

of the subspace S properly, the rank of W (W \ast \Omega )\dagger W \ast can be small enough such that

the computational cost of \^\scrE k0 [U ] is significantly reduced. Furthermore, we still want
\^\scrE k0 to satisfy the secant condition (2.8) as \scrE k0 does. More specifically, we need to seek

the subspace S such that the secant condition

\^\scrE k0 [Sk] = Y k

holds. To this aim, the subspace S can be chosen as

span\{ Xk - 1, Xk\} ,

which contains the element Sk. By assuming that \scrE k0 [UV ] = \scrE k0 [U ]V for any matrices

U, V with proper dimension (this condition is satisfied when \scrE k0 is a matrix), we have

that \^\scrE k0 will satisfy the secant condition whenever \scrE k0 does. From the methods for

linear eigenvalue computation in [29] and [35], the subspace S can also be determined

as

(2.12) span\{ Xk - 1, Xk, \scrE k0 [Xk]\} or span\{ Xk - h, . . . , Xk - 1, Xk\} 

with small memory length h. Once the subspace is defined, we can obtain the limited-

memory Nystr\"om approximation by computing the \scrE k0 [\Omega ] once and the pseudoinverse

of a small scale matrix.
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2.4. A structured quasi-Newton method with subspace refinement.

Based on the theory of quasi-Newton method for unconstrained optimization, we

know that algorithms which set the solution of (2.1) as the next iteration point may

not converge if there are no proper requirements on approximation \scrB k or the regu-

larization parameter \tau k. Hence, we update the regularization parameter here using a

trust-region-like strategy. Referring to [20], we can compute a trial point Zk by utiliz-

ing either the Riemannian gradient type method (see section 2.1 in [20]) or a modified

CG method (Algorithm 1 in [20]) to solve the subproblem inexactly. Specifically, the

Riemannian Newton equation of (2.1) at Xk is

(2.13) gradmk(X
k) + Hessmk(X

k)[\xi ] = 0, \xi \in TXk ,

where gradmk(X
k) = gradf(Xk) and Hessmk(X

k) is given in (2.5). Based on (2.13),

we compute a descent direction \xi k and do an Armijo search along a curve introduced

by \xi k on the manifold. Hence, the trial point Zk always stays on the manifold and

leads to a sufficient decrease on mk. After obtaining the trial point Zk of (2.1), we

calculate the ratio between the predicted reduction and the actual reduction

(2.14) rk =
f(Zk) - f(Xk)

mk(Zk)
.

If rk \geq \eta 1 > 0, then the iteration is successful and we set Xk+1 = Zk; otherwise, the

iteration is unsuccessful and we set Xk+1 = Xk, that is,

(2.15) Xk+1 =

\Biggl\{ 
Zk if rk \geq \eta 1,

Xk otherwise.

The regularization parameter \tau k+1 is updated as

(2.16) \tau k+1 \in 

\left\{       
(0, \gamma 0\tau k] if rk \geq \eta 2,

[\gamma 0\tau k, \gamma 1\tau k] if \eta 1 \leq rk < \eta 2,

[\gamma 1\tau k, \gamma 2\tau k] otherwise,

where 0 < \eta 1 \leq \eta 2 < 1 and 0 < \gamma 0 < 1 < \gamma 1 \leq \gamma 2. These parameters determine how

aggressively we adjust the regularization parameter when an iteration is successful or

unsuccessful. In practice, the performance of the regularized trust-region algorithm

is not very sensitive to the values of the parameters.

From [8], the Newton-type method may still be very slow when the Hessian is close

to being singular. Numerically, it may happen that the regularization parameter turns

out to be huge and the Riemannian Newton direction is nearly parallel to the negative

gradient direction. Hence, it leads to an update Xk+1 belonging to the subspace
\~Sk := span\{ Xk, gradf(Xk)\} , which is similar to the Riemannian gradient approach.

To overcome this issue, we propose an optional step of solving (1.1) restricted to a

subspace. Specifically, at Xk, we construct a subspace Sk with an orthogonal basis

Qk \in \BbbC n\times q(p \leq q \leq n), where q is the dimension of Sk. Then any point X in the

subspace Sk can be represented by

X = QkM
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for some M \in \BbbC q\times p. Similar to the constructions of linear eigenvalue problems

in [29] and [35], the subspace Sk can be decided by using the history informa-

tion \{ Xk, Xk - 1, . . . , \} \{ grad f(Xk), grad f(Xk - 1), . . .\} and other useful information.

Given the subspace Sk, the subspace method aims to find a solution of (1.1) with an

extra constraint X \in Sk, namely,

(2.17) min
M\in \BbbC q\times p

f(QkM) s.t. M\ast M = Ip.

The problem (2.17) can be solved inexactly by existing methods for optimization

with orthogonality constraints. Once a good approximate solution Mk of (2.17) is

obtained, then we update Xk+1 = QkMk which is an approximate minimizer in the

subspace Sk instead of \~Sk. This completes one step of the subspace iteration. In

fact, we compute the ratios between the norms of the Riemannian gradient of the last

few iterations. If all of these ratios are almost 1, we infer that the current iterate

stagnates and the subspace method is called. Consequently, our algorithm framework

is outlined in Algorithm 1.

Algorithm 1: A structured quasi-Newton method with subspace refine-

ment.

Input initial guess X0 \in \BbbC n\times p with (X0)\ast X0 = Ip and the memory length m.

Choose \tau 0 > 0, 0 < \eta 1 \leq \eta 2 < 1, 1 < \gamma 1 \leq \gamma 2. Set k = 0.

while stopping conditions not met do
Choose \scrE k0 (by the limited-memory Nystr\"om approximation if necessary).

Construct the approximation \scrB k via (2.7) and (2.10).

Construct and solve the subproblem (2.1) (by using the modified CG

method (Algorithm 1 in [20]) or the Riemannian gradient type method

(see section 2.1 in [20])) to obtain a new trial point Zk.

Compute the ratio rk via (2.14).

Update Xk+1 from the trial point Zk based on (2.15).

Update \tau k according to (2.16).

k \leftarrow k + 1.

if stagnate conditions met then
Solve the subspace problem (2.17) to update Xk+1.

3. Convergence analysis. In this section, we present the convergence property

of Algorithm 1. To guarantee the global convergence to a stationary point and fast

local convergence rate, the inexact conditions for the subproblem (2.1) with quadratic

regularization can be chosen as

mk(Z
k) \leq  - a

b+ \tau k
\| gradf(Xk)\| 2\sansF ,(3.1)

\| gradmk(Z
k)\| \sansF \leq \theta k\| gradf(Xk)\| \sansF ,(3.2)

where a, b are positive constants and \theta k := min\{ 1, \| gradf(Xk)\| c\sansF \} with c > 0. Here,

the inexact condition (3.1) is to guarantee the decrease for each iteration and hence
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the global convergence. The inequality (3.1) can be satisfied by one-step Riemann-

ian gradient descent, in which the coefficient a
b+\tau k

is from the bounds of the first-

and second-order derivatives of mk and the retraction operator [5, Lemma 2.10]. We

will present the specific choices of a and b for the modified CG method in Lemma 3.

The inequality (3.2) is to control how inexactly we solve the subproblem (2.1). With

this choice of \theta k, we can guarantee fast local convergence. When the stagnate condi-

tions in Algorithm 1 are met, we need to perform the subspace refinement procedure,

namely, to solve the extra problem (2.17). Note that Xk and gradf(Xk) are always

contained in the subspace used in (2.17), and a sufficient decrease for the original

problem (i.e., a descent step) can be guaranteed, which is enough to ensure the global

convergence to a stationary point. For the local convergence part, since we assume

that the Riemannian Hessian is positive definite, the stagnate conditions will not be

satisfied if the approximation \scrB k is properly constructed. Throughout the analysis of

convergence, we assume that the stagnate conditions are never met.

3.1. Global convergence to a stationary point. Since the regularization

term is used, the global convergence (i.e., convergence starting from any initial point)

to a stationary point of our method can be obtained by assuming the boundedness

on the constructed Hessian approximation. We first make the following assumptions.

Assumption 1. Let \{ Xk\} be generated by Algorithm 1 without subspace refine-

ment. We assume the following:

(A1) The gradient \nabla f is Lipschitz continuous on the convex hull of St(n, p) [14],

i.e., there exists Lf > 0 such that

\| \nabla f(X) - \nabla f(Y )\| \sansF \leq Lf\| X  - Y \| \sansF \forall X,Y \in conv(St(n, p)).

(A2) There exists \kappa H > 0 such that \| \scrB k\| \leq \kappa H for all k \in \BbbN , where \| \cdot \| is the

operator norm introduced by the Euclidean inner product.

Remark 2. By assumption (A1), \nabla f(X) is uniformly bounded by some constant

\kappa g \geq 1 on the compact set conv(St(n, p)), i.e.,

\| \nabla f(X)\| \sansF \leq \kappa g, X \in conv(St(n, p)).

Assumption (A2) is often used in the traditional symmetric rank-one method [7],

which appears to be reasonable in practice.

We first prove that the inexact condition (3.1) is satisfied by the modified CG

method.

Lemma 3. Suppose that assumptions (A1)--(A2) hold. The modified CG method,

always returns a trial point Zk satisfying the inexact condition (3.1).

Proof. From Assumption 1 and Remark 2, the Riemannian Hessian Hessm(Xk)

can be bounded by

(3.3) \| Hessmk(X
k)\| \leq \| \scrB k\| + \| Xk\| \| \nabla f(Xk)\| \sansF + \tau k \leq \kappa H + \kappa g + \tau k,

where \| Xk\| = 1 because of its unitary property. We note that the bound of the spec-

trum of Hessm(Xk) is obtained without requiring the boundedness of \| Hessf(Xk)\| \sansF 
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(assumed in [20]) since we are working on the compact Stiefel manifold. Similar to

[20, Lemma 5], a descent direction \xi k can be obtained via solving the Riemannian

Newton equation (2.13) from the modified CG method, i.e.,

(3.4)
\Re 
\bigl\langle 
gradf(Xk), \xi k

\bigr\rangle 
\| gradf(Xk)\| \sansF \| \xi k\| \sansF 

\leq  - min
\Bigl\{ \epsilon 

2
, 1
\Bigr\} 1

2np(\kappa H + \kappa g + 1)
=:  - \kappa 0,

where (3.3) is used, \epsilon > 0 is a constant used in the modified CG method, and 2np is

from the dimension of the complex Stiefel manifold St(n, p) (its dimension is 2np - p2).
Following [5, Lemma 2.7] and [20, Lemma 6], we shall show how the inexact condition

(3.1) is satisfied. Since St(n, p) is compact, there exist two positive constants \alpha 1, \alpha 2

such that (see [5, equations (B.3) and (B.4)]), for all X \in St(n, p) and for all \xi \in TX ,

(3.5)
\| RX(\xi ) - X\| \sansF \leq \alpha 1\| \xi \| \sansF ,

\| RX(\xi ) - X  - \xi \| \sansF \leq \alpha 2\| \xi \| 2\sansF ,

where R is a retraction [2, Definition 4.1.1]. Following the proofs in [5, Lemma 2.7],

we know that mk(RXk(t\xi k)) is upper bounded by a quadratic function

mk(RXk(t\xi k)) \leq t\Re 
\bigl\langle 
gradf(Xk), \xi k

\bigr\rangle 
+

\biggl( 
\kappa H + \tau k

2
\alpha 2
1 + \kappa g\alpha 2

\biggr) 
t2\| \xi k\| 2\sansF .

Then, for any constant \rho \in (0, 1),

mk(RXk(t\xi k)) - \rho t\Re 
\bigl\langle 
gradf(Xk), \xi k

\bigr\rangle 
\leq  - (1 - \rho )\kappa 0t\| gradf(Xk)\| \sansF \| \xi k\| \sansF +

\biggl( 
\kappa H + \tau k

2
\alpha 2
1 + \kappa g\alpha 2

\biggr) 
t2\| \xi k\| 2\sansF 

=

\biggl[ \biggl( 
\kappa H + \tau k

2
\alpha 2
1 + \kappa g\alpha 2

\biggr) 
t - (1 - \rho )\kappa 0

\| gradmk(X
k)\| \sansF 

\| \xi k\| \sansF 

\biggr] 
\cdot t\| \xi k\| 2\sansF ,

where (3.4) is used in the first inequality. We have

(3.6) mk(RXk(t\xi k)) \leq \rho t\Re 
\bigl\langle 
gradf(Xk), \xi k

\bigr\rangle 
\forall t \in [0, \chi k],

where

\chi k :=
2(1 - \rho )\kappa 0\| gradf(Xk)\| \sansF 

((\kappa H + \tau k)\alpha 2
1 + 2\kappa g\alpha 2) \| \xi k\| \sansF 

.

Define \alpha 0 := \| gradf(Xk)\| 2\sansF /
\bigl\langle 
Hessmk(X

k)[gradf(Xk)], gradf(Xk)
\bigr\rangle 
. From the con-

struction of the modified CG method [20, Algorithm 1], we have \xi k =  - gradf(Xk) if

1/\alpha 0 \leq \epsilon . When 1/\alpha 0 > \epsilon , it follows from (3.3) and the monotonicity in [20, Lemma

4(iii)] that

(3.7) \| \xi k\| \sansF \geq 
1

\kappa H + \kappa g + \tau k
\| gradf(Xk)\| \sansF .

Hence, the inequality (3.7) always holds whether 1/\alpha 0 \leq \epsilon or not. From the Armjio

curvilinear search [20, equation (3.9)] (we use 1 and constant \sigma \in (0, 1) as the initial

step size and the decreasing factor of the step size, respectively), when 1 \leq \chi k, the

decrease induced by the trial point Zk = RXk(\xi k) satisfying

mk(RXk(Zk)) \leq \rho \Re 
\bigl\langle 
gradf(Xk), \xi k

\bigr\rangle 
\leq  - \rho \kappa 0

\kappa H + \kappa g + \tau k
\| gradf(Xk)\| 2\sansF ,
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where (3.4) and (3.7) are used in the second inequality. Otherwise, the accepted step

tk must be larger than \sigma \chi k and the decrease on mk yields

mk(RXk(Zk)) \leq  - 2\sigma \rho (1 - \rho )\kappa 2
0

((\kappa H + \tau k)\alpha 2
1 + 2\kappa g\alpha 2)

\| gradf(Xk)\| 2\sansF ,

in which (3.4) and (3.6) are used. By setting

a = min

\biggl\{ 
\rho \kappa 0,

2\sigma \rho (1 - \rho )\kappa 2
0

\alpha 2
1

\biggr\} 
, b = max

\biggl\{ 
\kappa H + \kappa g, \kappa H +

2\kappa g\alpha 2

\alpha 2
1

\biggr\} 
,

we conclude that the inexact condition (3.1) always holds by the modified CG

method.

Based on the similar proof in [20, 49], we have the following theorem for global

convergence to a stationary point.

Theorem 4. Suppose that assumptions (A1)--(A2) and the inexact condition (3.1)

hold. Then, either

(3.8) gradf(Xt) = 0 for some t > 0 or lim
k\rightarrow \infty 

\| gradf(Xk)\| \sansF = 0.

Proof. We prove it by contradiction. Assume that \| gradf(Xk)\| \sansF \geq \varsigma > 0 for all

k. Following the proof in [20, Lemmas 7--9] the inexact condition (3.1) is sufficient

to guarantee the ratio rk \geq \eta 2 in (2.14) when \tau k is larger than a finite number

L\varsigma . Therefore, there are infinitely many iterations with rk \geq \eta 2 which leads to

limk\rightarrow \infty f(Xk) =  - \infty . This contradicts the lower boundedness of \{ f(Xk)\} . It follows
from [20, Theorem 11, Remark 12] that the convergence result (3.8) holds due to the

compactness of the Stiefel manifold.

3.2. Local convergence rate. We now focus on the local convergence rate with

the inexact conditions (3.1) and (3.2). We make some necessary assumptions below.

Assumption 5. Let \{ Xk\} be the sequence generated by Algorithm 1 without sub-

space refinement. We assume the following:

(B1) The sequence \{ Xk\} converges to X\ast with gradf(X\ast ) = 0.

(B2) The Euclidean Hessian \nabla 2f is continuous on conv(St(n, p)).

(B3) The Riemannian Hessian Hessf(X) is positive definite at X\ast .

(B4) The Hessian approximation \scrB k satisfies

(3.9)
\| (\scrB k  - \nabla 2f(Xk))[Zk  - Xk]\| \sansF 

\| Zk  - Xk\| \sansF 
\rightarrow 0, k \rightarrow \infty .

From [20], the trial point Zk obtained by the modified CG method will locally

satisfy the inexact condition (3.2) if \| \scrB k - \nabla 2f(Xk)\| \rightarrow 0, k \rightarrow \infty , as in the symmetric

rank-one method [7]. Under the assumption (B4), the inexact condition (3.2) may not

hold for a single Riemannian Newton step (2.13) solved by the modified CG method

when Hess mk(X
k) is not positive definite. One may solve the subproblem (2.1)

more accurately by applying multiple Riemannian Newton steps or the Riemannian

gradient type methods until (3.2) is satisfied. In our numerical experiments, we found

D
ow

nl
oa

de
d 

04
/1

9/
20

 to
 1

24
.1

6.
14

8.
9.

 R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

A2250 J. HU, B. JIANG, L. LIN, Z. WEN, AND Y.-X. YUAN

that the inexact condition (3.2) is often satisfied with a single Riemannian Newton

step and local linear convergence rate is observed for the LSR1 scheme.

Following the proof in [20, Lemma 17], we show that all iterations are eventually

very successful (i.e., rk \geq \eta 2, for all sufficiently large k) when assumptions (B1)--(B4)

and the inexact conditions (3.1) and (3.2) hold.

Lemma 6. Let assumptions (B1)--(B4) and the inexact condition (3.1) be satisfied.

Then, all iterations are eventually very successful (i.e., rk defined in (2.14) satisfying

rk \geq \eta 2).

Proof. From the second-order Taylor expansion, we have

f(Zk) - f(Xk) - mk(Z
k) \leq 1

2
\Re 
\bigl\langle 
(\nabla 2f(Xk

\delta ) - \scrB k)[Zk  - Xk]), Zk  - Xk
\bigr\rangle 

for some suitable \delta k \in [0, 1] and Xk
\delta := Xk + \delta k(Z

k  - Xk). Since the Stiefel manifold

is compact, there exist some \xi k such that Zk = ExpXk(\xi k), where ExpXk is the

exponential map from TXkSt(n, p) to St(n, p). Following the proof in [5, Appendix

B], we have

(3.10)
\| Zk  - Xk  - \xi k\| \sansF \leq \kappa 1\| \xi k\| 2\sansF ,

\| Zk  - Xk\| \sansF \leq \kappa 2\| \xi k\| \sansF 

with positive constants \kappa 1 and \kappa 2. It follows from (2.5) that

Hessmk(X
k)[\xi k] = Hessf(Xk)[\xi k] + \tau k\xi k + ProjXk

\bigl( 
\scrB k  - \nabla 2f(Xk)[\xi k]

\bigr) 
.

Moreover, since the Hessian Hess f(X\ast ) is positive definite and (B4) is satisfied, it

holds for sufficiently large k that

\| Hessmk(X
k)[\xi k]\| \sansF \geq 

\bigl( 
\lambda min(Hessf(Xk)) + \tau k

\bigr) 
\| \xi k\| \sansF + o(\| \xi k\| \sansF ),

where \lambda min(Hess f(Xk)) is the minimal spectrum of Hess f(Xk). From assumptions

(B2)--(B3), [2, Proposition 5.5.4], and the Taylor expansion of mk \circ ExpXk , we have

(3.11)
\| grad(mk \circ ExpXk)(\xi k) - gradf(Xk)\| \sansF 

= \| Hessm(Xk)[\xi k]\| \sansF + o(\| \xi k\| \sansF ) \geq 
\kappa 2 + \tau k

2
\| \xi k\| \sansF ,

where \kappa 2 := \lambda min(Hessf(X\ast )). By [2, Lemma 7.4.9], there exists a positive constant

\~c such that \| grad (mk \circ ExpXk)\| \sansF \leq \~c\| gradmk(Z
k)\| \sansF \leq \~c\| grad f(Xk)\| \sansF , where we

use the inexact condition (3.2). Consequently, we have from (3.11) that

(3.12) \| \xi k\| \sansF \leq 
2(1 + \~c)

\kappa 2 + \tau k
\| gradf(Xk)\| \sansF .

It follows from (3.10) and (3.12) that

(3.13)

\| Zk  - Xk\| 2\sansF 
a

\tau k+b\| gradf(Xk)\| 2\sansF 
\leq \kappa 2

2(\tau k + b)\| \xi k\| 2\sansF 
a\| gradf(Xk)\| 2\sansF 

\leq 4\kappa 2
2(1 + \~c)2(\tau k + b)

a(\kappa 2 + \tau k)2

\leq 4\kappa 2
2b(1 + \~c)2

a\kappa 2
2

+
\kappa 2
2(1 + \~c)2

a\kappa 2
.
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The continuity of \nabla 2f , (3.1), (3.9), (3.10), (3.12), and (3.13) imply that

1 - rk \leq 
\tau k + b

2a

\biggl( 
\| (\nabla 2f(Xk) - \scrB k)[Zk  - Xk]\| \sansF \| Zk  - Xk\| \sansF 

\| gradf(Xk)\| 2\sansF 

+
\| \nabla 2f(Xk

\delta ) - \nabla 2f(Xk)\| \| Zk  - Xk\| 2\sansF 
\| gradf(Xk)\| 2\sansF 

\biggr) 
\rightarrow 0.

Therefore the iterations are eventually very successful.

As a result, the q-superlinear convergence can also be guaranteed.

Theorem 7. Suppose that assumptions (B1)--(B4) and conditions (3.1) and (3.2)

hold. Then the sequence \{ Xk\} converges q-superlinearly to X\ast .

Proof. Since the iterations are eventually very successful, we have Xk+1 = Zk

and \tau k converges to zero. Let \Delta k = Zk - Xk. Recalling the definition mk in (2.2), we

have grad mk(X
k+1) = ProjXk+1

\bigl( 
\nabla f(Xk) + \scrB k[\Delta k] + \tau k\Delta 

k
\bigr) 
. Thus, we have from

(3.2) that

(3.14)
\bigm\| \bigm\| ProjXk+1

\bigl( 
\nabla f(Xk) + \scrB k[\Delta k] + \tau k\Delta 

k
\bigr) \bigm\| \bigm\| 

\sansF 
\leq \theta k\| gradf(Xk)\| \sansF .

Hence, we have

(3.15)

\| gradf(Xk+1)\| \sansF =
\bigm\| \bigm\| ProjXk+1

\bigl( 
\nabla f(Xk+1)

\bigr) \bigm\| \bigm\| 
\sansF 

=
\bigm\| \bigm\| ProjXk+1

\bigl( 
\nabla f(Xk) +\nabla 2f(Xk)[\Delta k] + o(\| \Delta k\| \sansF )

\bigr) \bigm\| \bigm\| 
\sansF 

=
\bigm\| \bigm\| ProjXk+1

\bigl( 
\nabla f(Xk) + \scrB k[\Delta k]+\tau k\Delta 

k + o(\| \Delta k\| \sansF )
+ (\nabla 2f(Xk) - \scrB k)[\Delta k] - \tau k\Delta k

\bigr) \bigm\| \bigm\| 
\sansF 

\leq \theta k\| gradf(Xk)\| \sansF + o(\| \Delta k\| \sansF ),

where the last inequality is due to (3.14) and the fact that \tau k converges to zero. It

follows from a similar argument to (3.12) that there exists some constant c1 such that

\| \Delta k\| \sansF \leq c1\| gradf(Xk)\| \sansF 

for sufficiently large k. Therefore, from (3.15) and the definition of \theta k, we have

(3.16)
\| gradf(Xk+1)\| \sansF 
\| gradf(Xk)\| \sansF 

\rightarrow 0.

Combining (3.16), assumption (B3), and [2, Lemma 7.4.8], it yields

dist(Xk+1, X\ast )

dist(Xk, X\ast )
\rightarrow 0,

where dist(X,Y ) is the geodesic distance between X and Y which belong to St(n, p).

This completes the proof.

4. Linear eigenvalue problem. In this section, we apply the aforementioned

strategy to the following linear eigenvalue problem:

(4.1) min
X\in \BbbR n\times p

f(X) :=
1

2
tr(X\top CX) s.t. X\top X = Ip,
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where C := A+B. Here, A,B \in \BbbR n\times n are symmetric matrices and we assume that the

multiplication ofBX is much more expensive than that ofAX. Since a usual quadratic

approximation to the purely quadratic function f(X) in (4.1) introduces a linear term,

the resulting subproblem is not a linear eigenvalue problem and has no closed-form

solution. We next investigate a specific construction of the subproblem. Motivated

by the quasi-Newton methods and eliminating the linear term in subproblem (2.1),

we investigate the multisecant conditions in [16]

(4.2) \^BkXk = BXk, \^BkSk = BSk

with Sk = Xk  - Xk - 1. By a brief induction, we have an equivalent form of (4.2)

(4.3) \^Bk[Xk - 1, Xk] = B[Xk - 1, Xk].

Then, using the limited-memory Nystr\"om approximation, we obtain the approximated

matrix \^Bk as

(4.4) \^Bk = W k((W k)\top Ok)\dagger W\top 
k ,

where

(4.5) Ok = orth([Xk - 1, Xk]), and W k = BOk.

Here, orth(Z) is to find the orthogonal basis of the space spanned by Z. Therefore,

an approximation Ck to C can be set as

(4.6) Ck = A+ \^Bk.

Since the objective function is invariant under rotation, i.e., f(XQ) = f(X) for or-

thogonal matrix Q \in \BbbR p\times p, it is desirable to construct a subproblem whose objective

function inherits the same property. Noticing that problem (4.1) is actually an op-

timization problem on the Grassmann manifold [2, Chapter 3], we use the distance

between the projectors associated with Xk and X,

dp(X,Xk) = \| XX\top  - Xk(Xk)\top \| 2\sansF ,

which has been considered in [12, 45, 52]. Since Xk and X are orthonormal matrices,

we have

(4.7)
dp(X,Xk) = tr((XX\top  - Xk(Xk)\top )(XX\top  - Xk(Xk)\top ))

= 2p - 2tr(X\top Xk(Xk)\top X),

which implies that dp(X,Xk) is a quadratic function on X. Consequently, the sub-

problem can be constructed as

(4.8) min
X\in \BbbR n\times p

mk(X) s.t. X\top X = Ip,

where

mk(X) :=
1

2
tr(X\top CkX) +

\tau k
4
dp(X,Xk).
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From the equivalent expression of dp(X,Xk) in (4.7), the problem (4.8) is a linear

eigenvalue problem
(A+ \^Bk  - \tau kX

k(Xk)\top )X = X\Lambda ,

X\top X = Ip,

where \Lambda is a diagonal matrix whose diagonal elements are the p smallest eigenvalues

of A + \^Bk  - \tau kX
k(Xk)\top . From the computation of the Riemannian Hessian on the

Grassmann manifold [2, Chapter 5], the term \tau k
4 dp(X,Xk) shifts the spectrum of

the Riemannian Hessian of 1
2 tr(X

\top CkX) by \tau k. Problem (4.8) with an approximate

Hessian still works on the Grassmann manifold. Due to the low computational cost

of A + \^Bk  - \tau kX
k(Xk)\top compared to A + B, the subproblem (4.8) can be solved

efficiently using existing eigensolvers. As in Algorithm 1, we first solve subproblem

(4.8) to obtain a trial point and compute the ratio (2.14) between the actual reduction

and predicted reduction based on this trial point. Then the iterate and regularization

parameter are updated according to (2.14) and (2.16). Note that it is not necessary

to solve the subproblems highly accurately in practice.

4.1. Convergence. Although the convergence analysis in section 3 is based on

the regularization terms (2.3) and (2.4), similar results can be established with the

specified regularization term \tau k
4 dp(X,Xk) using the sufficient descent condition (3.1).

It follows from the construction of Ck in (4.6) that

\| C\| 2 \leq \| A\| 2 + \| B\| 2, \| Ck\| 2 \leq \| A\| 2 + \| B\| 2

for any given matrices A and B. Hence, assumptions (A1) and (A2) hold with

Lf = \kappa H = \| A\| 2 + \| B\| 2. The Riemannian gradient of f in (4.1) is gradf(X) =\bigl( 
In  - XX\top \bigr) (CX). Similar to Theorem 4, we have the following theorem on the

global convergence.

Theorem 8. Suppose that the inexact condition (3.1) holds. Then, for the Rie-

mannian gradients of f in (4.1), either\bigl( 
In  - Xt(Xt)\top 

\bigr) 
(CXt) = 0 for some t > 0 or lim

k\rightarrow \infty 
\| 
\bigl( 
In  - Xk(Xk)\top 

\bigr) 
(CXk)\| \sansF = 0.

Proof. It can be guaranteed that the distance dp(X,Xk) is very small for a large

enough regularization parameter \tau k by a similar argument to [20, Lemma 9]. Specifi-

cally, the reduction of the subproblem requires that\bigl\langle 
Zk, CkZk

\bigr\rangle 
+

\tau k
4
\| Zk(Zk)\top  - Xk(Xk)\top \| 2\sansF  - 

\bigl\langle 
Xk, CkXk

\bigr\rangle 
\leq 0.

From the cyclic property of the trace operator, it holds that\bigl\langle 
Ck, Zk(Zk)\top  - Xk(Xk)\top 

\bigr\rangle 
+

\tau k
4
\| Zk(Zk)\top  - Xk(Xk)\top \| 2\sansF \leq 0.

Then

(4.9) \| Zk(Zk)\top  - Xk(Xk)\top \| \sansF \leq 
4\kappa H

\tau k
.

From the descent condition (3.1) for the subproblem, there exists some positive con-

stant \nu such that

(4.10) mk(Z
k) - mk(X

k) \geq  - \nu 

\tau k
\| gradf(Xk)\| 2\sansF .
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Based on the properties of Ck and C, we have

(4.11)

f(Zk) - f(Xk) - (mk(Z
k) - mk(X

k))

=
\bigl\langle 
Zk, CZk

\bigr\rangle 
 - 
\bigl\langle 
Zk, CkZk

\bigr\rangle 
 - \tau k

4
\| Zk(Zk)\top  - Xk(Xk)\top \| 2\sansF 

\leq 
\bigl\langle 
C  - Ck, Zk(Zk)\top 

\bigr\rangle 
=

\Bigl\langle 
C  - Ck,

\bigl( 
Zk(Zk)\top  - Xk(Xk)\top 

\bigr) 2\Bigr\rangle 
\leq (Lf + \kappa H)\| Zk(Zk)\top  - Xk(Xk)\top \| 2\sansF 

\leq 16\kappa 2
H(Lf + \kappa H)

\tau 2k
,

where the second equality is due to CXk = CkXk, the unitary Zk and Xk, as well as\bigl\langle 
C  - Ck, Zk(Zk)\top Xk(Xk)\top 

\bigr\rangle 
=

\bigl\langle 
C  - Ck, Xk(Xk)\top Zk(Zk)\top 

\bigr\rangle 
= 0.

Combining (4.10) and (4.11), we have that

1 - rk =
f(Zk) - f(Xk) - (mk(Z

k) - mk(X
k))

mk(Xk) - mk(Zk)
\leq 1 - \eta 2

for sufficiently large \tau k as in [20, Lemma 8]. Since the subproblem is solved with

some sufficient reduction, the reduction of the original objective f holds for large \tau k
(i.e., rk is close to 1). Then the convergence of the norm of the Riemannian gradient

grad f(Xk) =
\bigl( 
In  - Xk(Xk)\top 

\bigr) 
(CXk) follows in a similar fashion as [20, Theorem

11].

The ACE method in [34] needs an estimation \beta explicitly such that B  - \beta In is

negative definite. By considering an equivalent matrix (A + \beta In) + (B  - \beta In), the

convergence of ACE to a global minimizer is given. On the other hand, our algorithmic

framework uses an adaptive strategy to choose \tau k to guarantee the convergence to a

stationary point. By using similar proof techniques in [34], one may also establish the

convergence to a global minimizer.

5. Electronic structure calculation.

5.1. Formulation. Electronic structure calculations with hybrid functionals in-

volve the Fock exchange operator. With some abuse of terminology, we refer to Kohn--

Sham equations with local or semilocal exchange-correlation functionals as KSDFT,

and Kohn--Sham equations with hybrid functionals as Hartree--Fock (HF). We now

introduce the KSDFT and HF total minimization models and present their gradient

and Hessian of the objective functions in these two models.

After some proper discretization, the wave functions of p occupied states can

be approximated by a matrix X = [x1, . . . , xp] \in \BbbC n\times p with X\ast X = Ip, where n

corresponds to the spatial degrees of freedom. The charge density associated with the

occupied states is defined as

\rho (X) = diag(XX\ast ).

Unless otherwise specified, we use the abbreviation \rho for \rho (X) in the following. The

total energy functional is defined as

(5.1)

Eks(X) :=
1

4
tr(X\ast LX) +

1

2
tr(X\ast VionX) +

1

2

\sum 
l

\sum 
i

\zeta l| x\ast 
iwl| 2 +

1

4
\rho \top L\dagger \rho +

1

2
e\top \epsilon xc(\rho ),
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where L is a discretized Laplacian operator, Vion is the constant ionic pseudopoten-

tials, wl represents a discretized pseudopotential reference projection function, \zeta l is

a constant whose value is \pm 1, e is a vector of all ones in \BbbR n, and \epsilon xc is related to the

exchange correlation energy. Therefore, the KS total energy minimization problem

can be expressed as

(5.2) min
X\in \BbbC n\times p

Eks(X) s.t. X\ast X = Ip.

Let \mu xc(\rho ) =
\partial \epsilon xc(\rho )

\partial \rho and denote the Hamilton Hks(X) by

(5.3) Hks(X) :=
1

2
L+ Vion +

\sum 
l

\zeta lwlw
\ast 
l +Diag((\Re L\dagger )\rho ) + Diag(\mu xc(\rho )

\ast e).

Note that Hks(X) only depends on X through the charge density \rho , and hence can

also be written as Hks(\rho ).

Then the Euclidean gradient of Eks(X) is computed as

(5.4) \nabla Eks(X) = Hks(X)X.

Under the assumption that \epsilon xc(\rho (X)) is twice differentiable with respect to \rho (X),

Lemma 2.1 in [49] gives an explicit form of the Hessian of Eks(X) as

(5.5) \nabla 2Eks(X)[U ] = Hks(X)U +\scrR (X)[U ],

where U \in \BbbC n\times p and \scrR (X)[U ] := Diag
\Bigl( \bigl( 
\Re L\dagger + \partial 2\epsilon xc

\partial \rho 2 e
\bigr) 
( \=X \odot U +X \odot \=U)e

\Bigr) 
X with

``\odot "" meaning the Hadamard product operation.

After discretization, the Fock exchange operator \scrV (\cdot ) : \BbbC n\times n \rightarrow \BbbC n\times n is usually

a fourth-order tensor; see equations (3.3) and (3.4) in [32] for details. Furthermore,

it is easy to see from [32] that \scrV (\cdot ) satisfies the following properties: (i) For any

D1, D2 \in \BbbC n\times n, there holds \langle \scrV (D1), D2\rangle = \langle \scrV (D2), D1\rangle , which further implies that

(5.6) \langle \scrV (D1 +D2), D1 +D2\rangle = \langle \scrV (D1), D1\rangle + 2 \langle \scrV (D1), D2\rangle + \langle \scrV (D2), D2\rangle .

(ii) If D is Hermitian, \scrV (D) is also Hermitian. It should be emphasized that

computing \scrV (U) is always very expensive since it needs to perform the multiplication

between an n\times n\times n\times n fourth-order tensor and an n-by-n matrix. The corresponding

Fock exchange energy is defined as

(5.7) Ef(X) :=
1

4
\langle \scrV (XX\ast )X,X\rangle = 1

4
\langle \scrV (XX\ast ), XX\ast \rangle .

Then the HF total energy minimization problem can be formulated as

(5.8) min
X\in \BbbC n\times p

Ehf(X) := Eks(X) + Ef(X) s.t. X\ast X = Ip.

We now can explicitly compute the gradient and Hessian of Ef(X) by using the

properties of \scrV (\cdot ).

Lemma 9. Given U \in \BbbC n\times p, the gradient and the Hessian along U of Ef(X) are,

respectively,

\nabla Ef(X) = \scrV (XX\ast )X,(5.9)

\nabla 2Ef(X)[U ] = \scrV (XX\ast )U + \scrV (XU\ast + UX\ast )X.(5.10)
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Proof. We first compute the value Ef(X+U). For simplicity, denote D := XU\ast +

UX\ast . Using the property (5.6), by some easy calculations, we have

4Ef(X + U) = \langle \scrV ((X + U)(X + U)\ast ) , (X + U)(X + U)\ast \rangle 
= 4Ef(X) + 2 \langle \scrV (XX\ast ), D + UU\ast \rangle + \langle \scrV (D + UU\ast ), D + UU\ast \rangle 
= 4Ef(X) + 2 \langle \scrV (XX\ast ), D\rangle + 2 \langle \scrV (XX\ast ), UU\ast \rangle + \langle \scrV (D), D\rangle + \varrho (U),

where \varrho (U) denotes the third and fourth-order terms about U . Noting that \scrV (XX\ast )

and \scrV (D) are both Hermitian, we have from the above assertions that

(5.11) Ef(X+U) = Ef(X)+\Re \langle \scrV (XX\ast )X,U\rangle +1

2
\Re \langle \scrV (XX\ast )U + \scrV (D)X,U\rangle +\varrho (U).

Finally, it follows from expansion (1.2) in [49] that the second-order Taylor expression

in X can be expressed as

Ef(X + U) = Ef(X) + \Re \langle \nabla Ef(X), U\rangle + 1

2
\Re 
\bigl\langle 
\nabla 2Ef(X)[U ], U

\bigr\rangle 
+ \varrho (U),

which with (5.11) implies (5.9) and (5.10). The proof is completed.

Let Hhf(X) := Hks(X) + \scrV (XX\ast ) be the HF Hamilton. Recalling that Ehf(X) =

Eks(X) + Ef(X), we have from (5.4) and (5.9) that

(5.12) \nabla Ehf(X) = Hks(X)X + \scrV (XX\ast )X = Hhf(X)X

and have from (5.5) and (5.10) that

(5.13) \nabla 2Ehf(X)[U ] = Hhf(X)U +\scrR (X)[U ] + \scrV (XU\ast + UX\ast )X.

5.2. Self-consistent field iteration methods. We next briefly introduce the

widely used methods for solving the KSDFT and HF models. For the KSDFT model

(5.2), the most popular method is the self-consistent field iteration (SCF) method

[32]. At the kth iteration, we first fix Hks(X) to be Hks(X
k) and solve the following

linear eigenvalue problem:

(5.14) \widetilde X := argmin
X\in \BbbC n\times p

1

2
\langle X,Hks(X

k)X\rangle s.t. X\ast X = Ip.

Note that in KSDFT, Hks(X
k) \equiv Hks(\rho 

k) depends on the charge density \rho k. The

output eigenvectors \widetilde X lead to a new charge density \widetilde \rho , which is then mixed with

charge densities from previous steps to generate the new charge density \rho k+1 and

hence Hks(\rho 
k+1). Hence this type of SCF method is also called the charge mixing

method.

For the HF model, the Hamiltonian not only depends on \rho but also XX\ast . Hence

we cannot directly apply the charge mixing method. Computing \scrV 
\bigl( 
Xk(Xk)\ast 

\bigr) 
U

with some matrix U of proper dimension is still very expensive, and we investigate the

limited-memory Nystr\"om approximation \^\scrV 
\bigl( 
Xk(Xk)\ast 

\bigr) 
to approximate \scrV 

\bigl( 
Xk(Xk)\ast 

\bigr) 
to reduce the computational cost, i.e.,

(5.15) \^\scrV 
\bigl( 
Xk(Xk)\ast 

\bigr) 
:= Z(Z\ast \Omega )\dagger Z\ast ,
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where Z = \scrV 
\bigl( 
Xk(Xk)\ast 

\bigr) 
\Omega and \Omega is any orthogonal matrix whose columns form an

orthogonal basis of the subspace such as

span\{ Xk\} , span\{ Xk - 1, Xk\} or span\{ Xk - 1, Xk,\scrV 
\bigl( 
Xk(Xk)\ast 

\bigr) 
Xk\} .

We should note that a similar idea called the adaptive compression method was pro-

posed in [33], which compresses the operator \scrV (Xk(Xk)\ast ) on the subspace span\{ Xk\} .
Then a new subproblem is constructed as

(5.16) min
X\in \BbbC n\times p

Eks(X) +
1

4

\Bigl\langle 
\^\scrV 
\bigl( 
Xk(Xk)\ast 

\bigr) 
X,X

\Bigr\rangle 
s.t. X\ast X = Ip.

Here, the exact form of the easier parts Eks is preserved while its second-order ap-

proximation is used in the construction of subproblem (2.1). As in the subproblem

(2.1), we can utilize the Riemannian gradient method or the modified CG method

based on the linear equation

ProjXk

\biggl( 
\nabla 2Eks(X

k)[\xi ] +
1

2
\^\scrV (Xk(Xk)\ast )\xi  - \xi sym((Xk)\ast \nabla f(Xk))

\biggr) 
=  - gradEhf(X

k)

to solve (5.16) inexactly. Since (5.16) is a KS-like problem, we can also use the SCF

method. Here, we present the detailed algorithm in Algorithm 2.

Algorithm 2: Iterative method for (5.8) using Nystr\"om approximation.

Input initial guess X0 \in \BbbC n\times p with (X0)\ast X0 = Ip. Set k = 0.

while Stopping condtions not met do

Compute the limited-memory Nystr\"om approximation \^\scrV 
\bigl( 
Xk(Xk)\ast 

\bigr) 
.

Construct the subproblem (5.16) and solve it inexactly via the

Riemannian gradient method or the modified CG method or the SCF

method to obtain Xk+1.

Set k \leftarrow k + 1.

We note that Algorithm 2 is similar to the two-level nested SCF method [15] with

the ACE formulation [33] when the subspace in (5.15) and inner solver for (5.16) are

chosen as span\{ Xk\} and SCF, respectively.

Another method to solve the HF model (5.8) is the commutator direct inversion

of the iterative subspace (C-DIIS) method. By storing the density matrix explicitly,

it can often lead to an accelerated convergence rate. However, when the size of

the density matrix becomes large, the storage cost of the density matrix becomes

prohibitively expensive. Hu, Lin, and Yang [21] proposed the projected C-DIIS (PC-

DIIS) method, which only requires storage of wave function type objects instead of

the whole density matrix. The ACE technique [33] was also used in PC-DIIS. In this

paper, we focus on the comparisons of our Algorithms 1 and 2.

5.3. Construction of the structured approximation \bfscrB \bfitk . Note that the

Hessian of the KSDFT or HF total energy minimization takes the natural structure

(1.2), and we next give the specific choices of \scrH c(Xk) and \scrH e(Xk), which are key to

formulating the structured approximation \scrB k.
For the KS problem (5.2), we have its exact Hessian in (5.5). Since the computa-

tional cost of the parts 1
2L +

\sum 
l \zeta lwlw

\ast 
l are much cheaper than the remaining parts
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in \nabla 2Eks, we can choose

(5.17) \scrH c(Xk) =
1

2
L+

\sum 
l

\zeta lwlw
\ast 
l , \scrH e(Xk) = \nabla 2Eks(X

k) - \scrH c(Xk).

The exact Hessian of Ehf(X) in (5.8) can be separated naturally into two parts,

i.e., \nabla 2Eks(X) +\nabla 2Ef(X). Usually the hybrid exchange operator \scrV (XX\ast ) can take

more than 95\% of the overall time of the multiplication of Hhf(X)[U ] in many real

applications [34]. Recalling (5.5), (5.10), and (5.13), we know that the computa-

tional cost of \nabla 2Ef(X) is much higher than that of \nabla 2Eks(X). Hence, we obtain the

decomposition as

(5.18) \scrH c(Xk) = \nabla 2Eks(X
k), \scrH e(Xk) = \nabla 2Ef(X

k).

Moreover, we can split the Hessian of \nabla 2Eks(X
k) as done in (5.17) and obtain an

alternative decomposition as

(5.19) \scrH c(Xk) = Hks(X
k), \scrH e(Xk) = \nabla 2Ef(X

k) + (\nabla 2Eks(X
k) - \scrH c(Xk)).

Finally, we emphasize that the limited-memory Nystr\"om approximation (5.15)

can serve as a good initial approximation for the part \nabla 2Ef(X
k).

5.4. Subspace construction for the KSDFT model. As presented in Algo-

rithm 1, the subspace method plays an important role when the modified CG method

does not perform well. The first-order optimality conditions for (5.2) and (5.8) are

H(X)X = X\Lambda , X\ast X = Ip,

where X \in \BbbC n\times p, \Lambda is a diagonal matrix, and H represents Hks for (5.2) and Hhf

for (5.8). Then, problems (5.2) and (5.8) are actually a nonlinear eigenvalue problem

which aims to find the p smallest eigenvalues of H. We should point out that in

principle X consists of the eigenvectors of H(X) but not necessarily the eigenvectors

corresponding to the p smallest eigenvalues. Since the columns of an optimal solution

X are still the eigenvectors of H(X), we can construct some subspace which contains

these possible wanted eigenvectors. Specifically, at the current iterate, we first com-

pute the first \gamma p smallest eigenvalues and their corresponding eigenvectors of H(Xk),

denoted by \Gamma k, and then construct the subspace as

(5.20) span\{ Xk - 1, Xk, gradf(Xk),\Gamma k\} 

with some small integer \gamma . With this subspace construction, Algorithm 1 will more

likely escape a stagnated point.

6. Numerical experiments. In this section, we present some experiment re-

sults to illustrate the efficiency of the limited-memory Nystr\"om approximation and

our Algorithm 1. All codes were run on a workstation with Intel Xenon E5-2680 v4

processors at 2.40GHz and 256GB memory running CentOS 7.3.1611 and MATLAB

R2017b.
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6.1. Linear eigenvalue problem. We first construct A and B by using the

following MATLAB commands:

A = randn(n, n); A = (A+A\top )/2;

B = 0.01rand(n, n); B = (B +B\top )/2; B = B  - T ; B =  - B,

where randn and rand are the built-in functions in MATLAB, T = \lambda min(B)In, and

\lambda min(B) is the smallest eigenvalue of B. Then B is negative definite and A is symmet-

ric. In our implementation, we compute the multiplication BX using 1
19

\sum 19
i=1 BX

such that BX consumes about 95\% of the whole computational time. In the second

example, we set A to be a sparse matrix as

A = gallery(`wathen', 5s, 5s)

with parameter s and B is the same as the first example except that BX is computed

directly. Since A is sufficiently sparse, its computational cost AX is much smaller

than that of BX. We use the following stopping criterion:

(6.1) err := max
i=1,...,p

\biggl\{ 
\| (A+B)xi  - \mu ixi\| 2

max(1, | \mu i| )

\biggr\} 
\leq 10 - 10,

where xi is the ith column of the current iterate Xk and \mu i is the corresponding

approximated eigenvalue.

The numerical results of the first and second examples are summarized in Tables 1

and 2, respectively. In these tables, EIGS is the built-in function ``eigs"" in MATLAB.

LOBPCG is the locally optimal block preconditioned conjugate gradient method [29].

ASQN is the algorithm described in section 4. The difference between ACE and

ASQN is that we take Ok as orth(span\{ Xk\} ) but not orth(span\{ Xk - 1, Xk\} ). Since
a good initial guess Xk is known at the (k + 1)th iteration, LOBPCG is utilized

to solve the corresponding linear eigenvalue subproblem (4.8). Noting that BXk - 1

and BXk are available from the computation of the residual, we then adopt the

orthogonalization technique in [35] to compute Ok and W k in (4.5) without extra

multiplicationBOk. The labels ``\#Av"" and ``\#Bv"" denote the total number of matrix-

vector multiplications (MV), counting each operation AV,BV \in \BbbR n\times p as p MVs. The

labels ``\#A"" and ``\#B"" are the total number of calls of A and B. The columns ``err,""

``time,"" and ``B-time"" are the maximal relative error of all p eigenvectors defined in

(6.1), the wall-clock time (in seconds) of each algorithm, and the wall-clock time of

BV (in seconds), respectively. The maximal number of iterations for ASQN and ACE

is set to 200.

As shown in Table 1, with fixed p = 10 and different n = 5000, 6000, 8000, and

10000, we can see that ASQN performs better than EIGS, LOBPCG, and ACE in

terms of both accuracy and time. ACE spends a relatively long time to reach a

solution with a similar accuracy. For the case with a fixed n = 5000 but different

values of p, ASQN can still provide an accurate solution using less time than the

three other methods. We note that the matrix B is always multiplied by an n-by-p

matrix in ASQN and ACE. However, the multiplication between the matrix B and

n-dimensional vector often occurs in EIGS. Therefore, under similar counts of \#Bv,

D
ow

nl
oa

de
d 

04
/1

9/
20

 to
 1

24
.1

6.
14

8.
9.

 R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

A2260 J. HU, B. JIANG, L. LIN, Z. WEN, AND Y.-X. YUAN

Table 1

Numerical results on random matrices.

\#Av/\#A/\#Bv/\#B err Time B-time \#Av/\#A/\#Bv/\#B err Time B-time

p = 10

n 5000 6000

EIGS 459/450/459/450 8.0e-11 19.9 18.1 730/721/730/721 6.9e-11 48.9 45.9

LOBPCG 1717/387/1717/387 9.9e-11 46.7 23.1 2105/382/2105/382 9.8e-11 97.3 42.6

ASQN 2323/530/150/15 9.2e-11 6.0 1.3 2798/610/160/16 9.5e-11 8.5 2.0

ACE 4056/1145/460/46 9.7e-11 13.0 3.8 4721/1103/460/46 9.4e-11 17.0 5.8

n 8000 10000

EIGS 538/529/538/529 8.7e-11 70.6 66.6 981/972/981/972 8.8e-11 153.8 144.8

LOBPCG 1996/314/1996/314 9.9e-11 134.0 57.2 2440/387/2440/387 9.7e-11 287.4 122.5

ASQN 2706/567/150/15 8.9e-11 11.2 2.8 2920/581/150/15 9.7e-11 17.8 5.4

ACE 4537/1162/450/45 9.8e-11 26.1 9.8 4554/951/400/40 9.6e-11 35.3 14.1

n = 5000

p 10 20

EIGS 459/450/459/450 8.0e-11 19.9 18.1 638/619/638/619 3.2e-11 44.4 42.5

LOBPCG 1717/387/1717/387 9.9e-11 46.7 23.1 2914/308/2914/308 9.8e-11 70.4 22.2

ASQN 2323/530/150/15 9.2e-11 6.0 1.3 3809/429/260/13 9.2e-11 5.9 1.2

ACE 4056/1145/460/46 9.7e-11 13.0 3.8 5902/775/680/34 9.5e-11 10.9 3.2

p 30 50

EIGS 660/631/660/631 3.0e-11 47.4 45.2 879/830/879/830 1.6e-12 47.7 44.6

LOBPCG 4412/707/4412/707 9.7e-11 111.2 56.1 5766/542/5766/542 9.5e-11 97.0 40.0

ASQN 5315/636/420/14 9.8e-11 7.9 1.3 7879/711/650/13 9.8e-11 12.6 1.8

ACE 9701/1173/1530/51 9.4e-11 15.8 4.6 21832/2270/4500/90 9.7e-11 41.4 13.2

EIGS usually takes more calls of B, i.e., more \#B. Similar conclusions can also be

seen from Table 2. From the numbers \#Av, \#Bv, \#A, and \#B, we can see that the

limited-memory Nystr\"om method reduces the computational cost on the expensive

part.

6.2. Kohn--Sham total energy minimization. We now test the electron

structure calculation models in subsections 6.2 and 6.3 using the new version of the

KSSOLV package [51]. One of the main differences is that the new version uses

the more recently developed optimized norm-conserving Vanderbilt pseudopotentials

[17], which are compatible to those used in other community software packages such

as Quantum ESPRESSO. The problem information is listed in Table 3. For fair com-

parisons, we stop all algorithms when the Frobenius norm of the Riemannian gradient

is less than 10 - 6 or the maximal number of iterations is reached. In the following ta-

bles, the column ``solver"" denotes which specified solver is used. The columns ``fval,""

``nrmG,"" and ``time"" are the final objective function value, the final Frobenius norm

of the Riemannian gradient, and the wall-clock time in seconds of each algorithm,

respectively.

In this test, we compare the structured quasi-Newton method with the SCF in

KSSOLV [51], the Riemannian L-BFGS method (RQN) in Manopt [6], the Riemannian

gradient method with BB step size (GBB) [20], and the adaptive regularized Newton

method (ARNT) [20]. The default parameters therein are used. Our Algorithm 1

with the approximation with (5.17) is denoted by ASQN. The parameters setting of

ASQN is the same as that of ARNT [20].

D
ow

nl
oa

de
d 

04
/1

9/
20

 to
 1

24
.1

6.
14

8.
9.

 R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

QUASI-NEWTON METHODS ON STIEFEL MANIFOLD A2261

Table 2

Numerical results on sparse matrices.

\#Av/\#A/\#Bv/\#B err Time B-time \#Av/\#A/\#Bv/\#B err Time B-time

s 9 10

EIGS 1752/1743/1752/1743 6.0e-08 13.2 11.1 1390/1381/1390/1381 9.1e-11 25.8 24.2

LOBPCG 4042/1003/4042/1003 3.5e-05 28.8 9.4 3304/689/3304/689 9.7e-11 40.5 10.0

ASQN 7865/3661/280/28 8.6e-11 14.9 0.4 5540/1424/210/21 8.5e-11 8.6 0.4

ACE 16459/6903/2010/201 8.5e-08 32.3 3.1 9657/2816/880/88 9.0e-11 18.5 1.9

s 11 12

EIGS 1779/1770/1779/1770 5.3e-08 37.8 35.3 1759/1750/1759/1750 8.4e-11 40.1 37.8

LOBPCG 5091/1003/5091/1003 1.8e-08 71.3 24.4 4493/1003/4493/1003 1.4e-09 80.2 30.8

ASQN 8619/2662/240/24 8.7e-11 15.7 0.7 7622/2772/260/26 9.9e-11 17.8 1.0

ACE 13223/4222/970/97 9.9e-11 26.4 2.8 17113/6217/2010/201 1.4e-08 42.2 8.7

s = 12

p 10 20

EIGS 1759/1750/1759/1750 8.4e-11 40.1 37.8 1730/1711/1730/1711 8.2e-11 54.8 52.2

LOBPCG 4493/1003/4493/1003 1.4e-09 80.2 30.8 7488/1003/7488/1003 3.4e-04 110.2 40.9

ASQN 7622/2772/260/26 9.9e-11 17.8 1.0 15337/5290/680/34 9.8e-11 40.2 1.5

ACE 17113/6217/2010/201 1.4e-08 42.2 8.7 26087/7149/4020/201 3.2e-05 56.1 8.4

p 30 40

EIGS 1561/1532/1561/1532 6.9e-11 50.9 48.5 1553/1514/1553/1514 4.4e-11 51.3 49.3

LOBPCG 8855/753/8855/753 9.7e-11 91.4 26.3 10522/616/10522/616 9.7e-11 89.7 22.2

ASQN 13646/1666/600/20 9.2e-11 24.3 1.1 15392/1032/680/17 9.6e-11 23.0 1.0

ACE 27099/3904/3780/126 9.7e-11 48.0 7.0 24310/2074/2640/66 9.6e-11 36.6 3.9

Table 3

Problem information.

Name (n1, n2, n3) n p

alanine (91,68,61) 35829 18

c12h26 (136,68,28) 16099 37

ctube661 (162,162,21) 35475 48

glutamine (64,55,74) 16517 29

graphene16 (91,91,23) 12015 37

graphene30 (181,181,23) 48019 67

pentacene (80,55,160) 44791 51

gaas (49,49,49) 7153 36

si40 (129,129,129) 140089 80

si64 (93,93,93) 51627 128

al (91,91,91) 47833 12

ptnio (89,48,42) 11471 43

c (46,46,46) 6031 2

For each algorithm, we first use GBB to generate a good starting point with

stopping criterion \| grad f(Xk)\| \sansF \leq 10 - 1 and a maximum of 2000 iterations. The

maximal numbers of iterations for SCF, GBB, ARNT, ASQN, and RQN are set as

1000, 10000, 500, 500, 500, and 1000, respectively. The numerical results are reported

in Tables 4 and 5. The column ``its"" represents the total number of iterations in SCF,

GBB, and RQN, while the two numbers in ARNT, ASQN are the total number of

outer iterations and the average numbers of inner iterations.

From Tables 4 and 5, we can see that SCF failed in ``graphene16,"" ``graphene30,""

``al,"" ``ptnio,"" and ``c."" We next explain why SCF fails by taking ``c"" and ``graphene16""
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Table 4

Numerical results on KS total energy minimization.

Solver fval nrmG its Time fval nrmG its Time

alanine c12h26

SCF -6.27084e+1 6.3e-7 11 64.0 -8.23006e+1 6.5e-7 10 61.1

GBB -6.27084e+1 8.2e-7 92 71.3 -8.23006e+1 9.5e-7 89 65.8

ARNT -6.27084e+1 3.8e-7 3(13.3) 63.0 -8.23006e+1 7.5e-7 3(15.3) 60.9

ASQN -6.27084e+1 9.3e-7 13(11.8) 81.9 -8.23006e+1 9.3e-7 10(13.3) 67.8

RQN -6.27084e+1 1.5e-6 34 114.9 -8.23006e+1 1.7e-6 45 120.0

ctube661 glutamine

SCF -1.35378e+2 5.7e-7 11 200.4 -9.90525e+1 4.9e-7 10 49.5

GBB -1.35378e+2 6.3e-7 102 199.7 -9.90525e+1 4.9e-7 63 44.0

ARNT -1.35378e+2 3.2e-7 3(18.3) 168.3 -9.90525e+1 3.6e-7 3(12.0) 42.6

ASQN -1.35378e+2 7.6e-7 11(12.8) 201.7 -9.90525e+1 5.3e-7 12(9.8) 50.7

RQN -1.35378e+2 3.4e-6 40 308.8 -9.90525e+1 1.8e-6 26 72.8

graphene16 graphene30

SCF -9.57196e+1 8.7e-4 1000 3438.4 -1.76663e+2 3.5e-4 1000 31897.6

GBB -9.57220e+1 9.4e-7 434 185.1 -1.76663e+2 9.0e-7 904 3383.9

ARNT -9.57220e+1 1.8e-7 4(37.2) 164.1 -1.76663e+2 4.2e-7 5(74.2) 2386.1

ASQN -9.57220e+1 8.8e-7 23(24.1) 221.2 -1.76663e+2 7.2e-7 74(31.1) 4388.1

RQN -9.57220e+1 1.6e-6 213 287.8 -1.76663e+2 3.3e-5 373 4296.7

pentacene gaas

SCF -1.30846e+2 8.5e-7 12 279.8 -2.86349e+2 5.8e-7 15 41.1

GBB -1.30846e+2 9.6e-7 101 236.1 -2.86349e+2 7.5e-7 296 77.7

ARNT -1.30846e+2 2.1e-7 3(14.0) 213.6 -2.86349e+2 7.4e-7 3(46.3) 59.9

ASQN -1.30846e+2 9.0e-7 23(14.5) 423.0 -2.86349e+2 6.0e-7 35(24.8) 127.2

RQN -1.30846e+2 2.1e-6 34 437.9 -2.86349e+2 1.5e-6 111 116.0

si40 si64

SCF -1.57698e+2 7.5e-7 19 3587.4 -2.53730e+2 3.4e-7 10 1100.0

GBB -1.57698e+2 8.7e-7 289 3657.2 -2.53730e+2 7.3e-7 249 1534.2

ARNT -1.57698e+2 3.7e-7 3(33.0) 3343.9 -2.53730e+2 7.9e-7 3(47.3) 1106.8

ASQN -1.57698e+2 9.8e-7 33(23.3) 4968.7 -2.53730e+2 9.4e-7 23(25.0) 1563.9

RQN -1.57698e+2 4.1e-6 62 4946.7 -2.53730e+2 9.7e-7 122 2789.4

al ptnio

SCF -3.52151e+2 7.4e+0 1000 4221.1 -9.25762e+2 1.9e-1 1000 4461.9

GBB -3.53707e+2 9.7e-7 1129 219.3 -9.26927e+2 2.4e-6 10000 5627.2

ARNT -3.53710e+2 5.9e-7 59(60.7) 947.7 -9.26927e+2 9.4e-7 104(129.6) 7558.3

ASQN -3.53710e+2 7.1e-7 94(47.3) 1395.4 -9.26927e+2 9.2e-7 153(69.6) 12728.1

RQN -3.53710e+2 1.8e-3 267 323.4 -9.26925e+2 2.3e-4 380 924.4

as examples. For the case ``c,"" we obtain the same solution by using GBB, ARNT,

and ASQN. The number of wanted wave functions are 2, i.e., p = 2. With some

abuse of notation, we denote the final solution by X = [x1, x2]. Since X satisfies the

first-order optimality condition, the columns of X are also eigenvectors of H(X), and

the corresponding eigenvalues of H(X) are  - 1.8790,  - 0.6058. On the other hand, the

smallest four eigenvalues of H(X) are  - 1.8790,  - 0.6577,  - 0.6058,  - 0.6058 and the

corresponding eigenvectors are denoted by Y = [y1, y2, y3, y4]. The energies and norms

of Riemannian gradients of the different eigenvector pairs [x1, x2], [y1, y2], [y1, y3], and

[y1, y4] are ( - 5.3127, 9.96\times 10 - 7), ( - 5.2903, 3.07\times 10 - 1), ( - 5.2937, 1.82\times 10 - 1), and

( - 4.6759, 1.82\times 10 - 1), respectively. Comparing the angles between X and Y shows

that x1 is nearly parallel to y1 but x2 lies in the subspace spanned by [y3, y4] other

D
ow

nl
oa

de
d 

04
/1

9/
20

 to
 1

24
.1

6.
14

8.
9.

 R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

QUASI-NEWTON METHODS ON STIEFEL MANIFOLD A2263

Table 5

Numerical results on KS total energy minimization.

Solver fval nrmG its Time

c

SCF -5.29296e+0 7.3e-3 1000 168.3

GBB -5.31268e+0 1.0e-6 3851 112.7

ARNT -5.31268e+0 5.7e-7 96(49.1) 211.3

ASQN -5.31268e+0 6.7e-7 104(38.5) 183.1

RQN -5.31244e+0 1.4e-3 73 10.8

than y2. Hence, when the SCF method is used around X, the next point will jump

to the subspace spanned by [y1, y2]. This indicates the failure of the aufbau principle,

and thus the failure of the SCF procedure. This is consistent with the observation

in the chemistry literature [48], where sometimes the converged solution may have a

``hole"" (i.e., unoccupied states) below the highest occupied energy level.

In the case ``graphene16,"" we still obtain the same solution from GBB, ARNT, and

ASQN. The number of wave functions p is 37. Let X be the computed solution and

the corresponding eigenvalues of H(X) be d. The smallest 37 eigenvalues and their

corresponding eigenvectors of H(X) are g and Y . We find that the first 36 elements of

d and g are almost the same up to a machine accuracy, but the 37th element of d and

g is 0.5821 and 0.5783, respectively. The energies and norms of Riemannian gradients

of X and Y are ( - 94.2613, 8.65 \times 10 - 7) and ( - 94.2030, 6.95 \times 10 - 1), respectively.

Hence, SCF does not converge around the point X.

In Tables 4 and 5, ARNT usually converges in a few iterations due to the usage

of the second-order information. It is often the fastest one in terms of time since the

computational cost of two parts of the Hessian \nabla 2Eks has no significant difference.

GBB also performs comparably well as ARNT. ASQN works reasonably well on most

problems. It takes more iterations than ARNT since the limit-memory approximation

often is not as good as the Hessian. Because the costs of solving the subproblems of

ASQN and ARNT are more or less the same, ASQN is not competitive to ARNT.

However, by taking advantage of the problem structures, ASQN is still better than

RQN in terms of computational time and accuracy. To compare the computational

cost of the cheap part \scrH c and the remaining parts \scrH e in \nabla 2Eks, we repeat the calcula-

tions of \scrH e(X)[U ] and \scrH c(X)[U ] with fixed X and U 50 times; the ratios between the

total time of \scrH e(X)[U ] and \scrH c(X)[U ] on ``alanine,"" ``c12h26,"" ``ctube661,"" and ``glu-

tamine"" are 22.2, 18.5, 10.6, and 22.0, respectively. Finally, we show the convergence

behaviors of these five methods on the system ``glutamine"" in Figure 1. Specifically,

the error of the objective function values is defined as

\Delta Eks(X
k) = Eks(X

k) - Emin,

where Emin is the minimum of the total energy attained by all methods.

6.3. Hartree--Fock total energy minimization. In this subsection, we com-

pare the performance of three variants of Algorithm 2 where the subproblem is solved

by SCF (ACE), the modified CG method (ARN), and GBB (GBBN), respectively,

the Riemannian L-BFGS (RQN) method in Manopt [6], and two variants of Algo-
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(d) \| gradEks(X
k)\| \sansF versus time

Fig. 1. Comparisons of different algorithms on ``glutamine"" of KS total energy minimization.

The first two points are the input and output of the initial solver GBB, respectively.

rithm 1 with approximation (5.18) (ASQN) and approximation (5.19) (AKQN). Since

the computation of the exact Hessian \nabla 2Ehf is time-consuming, we do not present the

results using the exact Hessian. The limited-memory Nystr\"om approximation (5.15)

serves as an initial Hessian approximation in both ASQN and AKQN. To compare the

effectiveness of quasi-Newton approximation, we set\scrH e(Xk) to be the limited-memory

Nystr\"om approximation (5.15) in (5.19) and use the same framework as in Algorithm

1. We should mention that the subspace refinement is not used in ASQN and AKQN.

Hence, only structured quasi-Newton iterations are performed in them. The default

parameters in RQN and GBB are used. For ACE, GBBN, ASQN, AKQN, and ARN,

the subproblem is solved until the Frobenius-norm of the Riemannian gradient is less

than 0.1min\{ \| grad f(Xk)\| \sansF , 1\} . We also use the adaptive strategy for choosing the

maximal number of inner iterations of ARNT in [20] for GBBN, ASQN, AKQN, and

ARN. The settings of other parameters of ASQN, AKQN, and ARN are the same to

those in ARNT [20]. For all algorithms, we generate a good initial guess by using

GBB to solve the corresponding KS total energy minimization problem (i.e., remove

Ef part from Ehf in the objective function) until a maximal number of iterations 2000

is reached or the Frobenius-norm of the Riemannian gradient is smaller than 10 - 3.

The maximal number of iterations for ACE, GBBN, ASQN, ARN, and AKQN is set

to 200 while that of RQN is set to 1000.
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Table 6

Numerical results on HF total energy minimization.

Solver fval nrmG its Time fval nrmG its Time

alanine c12h26

ACE -6.61821e+1 3.8e-7 11(3.0) 261.7 -8.83756e+1 3.9e-7 8(2.9) 259.7

GBBN -6.61821e+1 1.0e-6 11(17.4) 268.8 -8.83756e+1 4.9e-4 200(68.7) 11839.8

ARN -6.61821e+1 9.5e-7 10(13.7) 206.6 -8.83756e+1 4.9e-4 200(2.4) 4230.3

ASQN -6.61821e+1 9.1e-7 7(14.1) 169.6 -8.83756e+1 2.1e-7 7(12.6) 234.1

AKQN -6.61821e+1 4.8e-7 31(7.5) 530.2 -8.83756e+1 4.9e-7 29(7.6) 871.2

RQN -6.61821e+1 1.9e-6 76 1428.5 -8.83756e+1 1.3e-3 45 3446.3

ctube661 glutamine

ACE -1.43611e+2 9.2e-7 8(2.8) 795.0 -1.04525e+2 3.9e-7 10(3.0) 229.6

GBBN -1.43611e+2 6.5e-7 10(26.3) 1399.2 -1.04525e+2 8.4e-7 11(13.3) 256.9

ARN -1.43611e+2 6.0e-7 9(14.1) 832.7 -1.04525e+2 8.8e-7 10(9.5) 209.5

ASQN -1.43611e+2 2.0e-7 8(13.2) 777.1 -1.04525e+2 1.5e-7 8(10.1) 182.9

AKQN -1.43611e+2 6.1e-7 17(10.3) 1502.0 -1.04525e+2 9.1e-7 25(6.0) 515.7

RQN -1.43611e+2 7.2e-6 59 6509.0 -1.04525e+2 2.9e-6 57 1532.8

graphene16 graphene30

ACE -1.01716e+2 7.6e-7 13(3.4) 367.0 -1.87603e+2 8.6e-7 58(4.2) 14992.0

GBBN -1.01716e+2 4.2e-7 14(42.1) 659.0 -1.87603e+2 8.9e-7 29(72.2) 19701.8

ARN -1.01716e+2 4.5e-7 14(23.0) 403.6 -1.87603e+2 9.0e-7 45(35.6) 14860.6

ASQN -1.01716e+2 4.9e-7 11(20.2) 357.5 -1.87603e+2 7.6e-7 15(26.5) 6183.0

AKQN -1.01716e+2 7.9e-7 49(15.1) 1011.0 -1.87603e+2 8.0e-7 39(12.3) 9770.7

RQN -1.01716e+2 1.0e-3 74 2978.9 -1.87603e+2 1.5e-5 110 39091.0

pentacene gaas

ACE -1.39290e+2 6.2e-7 13(3.0) 1569.5 -2.93496e+2 8.8e-7 29(2.9) 343.8

GBBN -1.39290e+2 8.2e-7 16(23.0) 2620.2 -2.93496e+2 9.3e-7 34(35.3) 659.3

ARN -1.39290e+2 7.2e-7 15(12.2) 1708.1 -2.93496e+2 9.6e-7 31(20.4) 468.7

ASQN -1.39290e+2 1.9e-7 9(14.3) 1168.1 -2.93496e+2 3.3e-7 10(28.0) 199.5

AKQN -1.39290e+2 5.4e-7 29(8.5) 3458.4 -2.93496e+2 4.6e-7 22(18.4) 347.1

RQN -1.39290e+2 2.4e-6 73 11363.8 -2.93496e+2 1.0e-6 126 2154.1

si40 si64

ACE -1.65698e+2 9.2e-7 29(4.5) 30256.4 -2.67284e+2 9.8e-7 9(2.9) 6974.3

GBBN -1.65698e+2 8.6e-7 24(43.9) 34692.4 -2.67284e+2 5.3e-7 14(27.0) 11467.9

ARN -1.65698e+2 8.0e-7 22(22.1) 21181.3 -2.67284e+2 7.7e-7 12(18.6) 9180.7

ASQN -1.65698e+2 2.8e-7 12(37.8) 15369.5 -2.67284e+2 3.0e-7 8(21.9) 6764.7

AKQN -1.65698e+2 9.2e-7 87(7.9) 89358.8 -2.67284e+2 7.1e-7 24(18.8) 33379.0

RQN -1.65698e+2 6.1e-6 156 181976.8 -2.67284e+2 8.4e-7 112 115728.8

A detailed summary of computational results is reported in Table 6. We see

that ASQN performs best among all the algorithms in terms of both the number

of iterations and time, especially in the systems ``alanine,"" ``graphene30,"" ``gaas,""

and ``si40."" Usually, algorithms take fewer iterations if more parts in the Hessian

are preserved. Since the computational cost of the Fock exchange energy dominates

that of the KS part, algorithms using fewer outer iterations consume less time to

converge. Hence, ASQN is faster than AKQN. Comparing with ARN and RQN, we

see that ASQN benefits from our quasi-Newton technique. Using a scaled identity

matrix as the initial guess, RQN takes many more iterations than our algorithms

which use the adaptive compressed form of the hybrid exchange operator. ASQN is

two times faster than ACE in ``graphene30"" and ``si40."" In fact, for a fixed X and

U on ``alanine,"" ``c12h26,"" ``ctube661,"" and ``glutamine,"" the ratios between the total
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k)\| \sansF versus iteration
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(d) \| gradEhf(X
k)\| \sansF versus time

Fig. 2. Comparisons of different algorithms on ``glutamine"" of HF total energy minimization.

time of \scrH e(X)[U ] and \scrH c(X)[U ] are 32.2, 70.4, 86.4, and 53.8, respectively. Finally,

we show the convergence behaviors of these six methods on the system ``glutamine"" in

Figure 2, where \Delta Ehf(X
k) is defined similarly as the KS case. In summary, algorithms

utilizing the quasi-Newton technique combined with the Nystr\"om approximation are

often able to give better performance.

7. Conclusion. We present a structured quasi-Newton method for optimization

with orthogonality constraints. Instead of approximating the full Riemannian Hessian

directly, we construct an approximation to the Euclidean Hessian and a regularized

subproblem using this approximation while the orthogonality constraints are kept.

By solving the subproblem inexactly, the global and local q-superlinear convergence

can be guaranteed under certain assumptions. Our structured quasi-Newton method

also takes advantage of the structure of the objective function if some parts are much

more expensive to be evaluated than other parts. Our numerical experiments on the

linear eigenvalue problems, KSDFT and HF total energy minimization, demonstrate

that our structured quasi-Newton algorithm is very competitive with the state-of-art

algorithms.

The performance of the quasi-Newton methods can be further improved in several

respects, for example, finding a better initial quasi-Newton matrix than the Nystr\"om

approximation and developing a better quasi-Newton approximation than the LSR1

technique. Our technique can also be extended to the general Riemannian optimiza-

tion with similar structures.

D
ow

nl
oa

de
d 

04
/1

9/
20

 to
 1

24
.1

6.
14

8.
9.

 R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

QUASI-NEWTON METHODS ON STIEFEL MANIFOLD A2267

REFERENCES

[1] P.-A. Absil, C. G. Baker, and K. A. Gallivan, Trust-region methods on Riemannian man-

ifolds, Found. Comput. Math., 7 (2007), pp. 303--330.

[2] P.-A. Absil, R. Mahony, and R. Sepulchre, Optimization Algorithms on Matrix Manifolds,

Princeton University Press, Princeton, NJ, 2008.

[3] P.-A. Absil, R. Mahony, and J. Trumpf, An Extrinsic Look at the Riemannian Hessian, in

Geometric Science of Information, Springer, New York, 2013, pp. 361--368.

[4] A. D. Becke, Density-functional thermochemistry. III. The role of exact exchange, J. Chem.

Phys., 98 (1993), pp. 5648--5652.

[5] N. Boumal, P.-A. Absil, and C. Cartis, Global rates of convergence for nonconvex optimiza-

tion on manifolds, IMA J. Numer. Anal., 39 (2019), pp. 1--33.

[6] N. Boumal, B. Mishra, P.-A. Absil, and R. Sepulchre, Manopt, a MATLAB toolbox for

optimization on manifolds, J. Mach. Learn. Res., 15 (2014), pp. 1455--1459.

[7] R. H. Byrd, H. F. Khalfan, and R. B. Schnabel, Analysis of a symmetric rank-one trust

region method, SIAM J. Optim., 6 (1996), pp. 1025--1039.

[8] R. H. Byrd, M. Marazzi, and J. Nocedal, On the convergence of Newton iterations to

non-stationary points, Math. Program., 99 (2004), pp. 127--148.

[9] R. H. Byrd, J. Nocedal, and R. B. Schnabel, Representations of quasi-Newton matrices

and their use in limited memory methods, Math. Program., 63 (1994), pp. 129--156.

[10] C. Cartis, N. I. M. Gould, and P. L. Toint, Adaptive cubic regularisation methods for

unconstrained optimization. Part I: Motivation, convergence and numerical results, Math.

Program., 127 (2011), pp. 245--295.

[11] C. Cartis, N. I. M. Gould, and P. L. Toint, Adaptive cubic regularisation methods for

unconstrained optimization. Part II: Worst-case function- and derivative-evaluation com-

plexity, Math. Program., 130 (2011), pp. 295--319.

[12] A. Edelman, T. A. Arias, and S. T. Smith, The geometry of algorithms with orthogonality

constraints, SIAM J. Matrix Anal. Appl., 20 (1999), pp. 303--353.

[13] D. Gabay, Minimizing a differentiable function over a differential manifold, J. Optim. Theory

Appl., 37 (1982), pp. 177--219.

[14] K. A. Gallivan and P.-A. Absil, Note on the Convex Hull of the Stiefel Manifold, Florida

State University, 2010.

[15] P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli,

G. L. Chiarotti, M. Cococcioni, I. Dabo, et al., Quantum espresso: A modular and

open-source software project for quantum simulations of materials, J. Phys. Condensed

Matter, 21 (2009), 395502.

[16] S. Gratton and P. L. Toint, Multi-Secant Equations, Approximate Invariant Subspaces and

Multigrid Optimization, Technical report, Department of Mathematics, FUNDP, Namur

(B), 2007.

[17] D. Hamann, Optimized norm-conserving Vanderbilt pseudopotentials, Phys. Rev. B, 88 (2013),

085117.

[18] J. Heyd, G. E. Scuseria, and M. Ernzerhof, Hybrid functionals based on a screened Coulomb

potential, J. Chem. Phys., 118 (2003), pp. 8207--8215.

[19] P. Hohenberg and W. Kohn, Inhomogeneous electron gas, Phys. Rev., 136 (1964), pp. B864--

B871.

[20] J. Hu, A. Milzarek, Z. Wen, and Y. Yuan, Adaptive quadratically regularized Newton method

for Riemannian optimization, SIAM J. Matrix Anal. Appl., 39 (2018), pp. 1181--1207.

[21] W. Hu, L. Lin, and C. Yang, Projected commutator DIIS method for accelerating hybrid func-

tional electronic structure calculations, J. Chem. Theory Comput., 13 (2017), pp. 5458--

5467.

[22] W. Huang, Optimization Algorithms on Riemannian Manifolds with Applications, Ph.D. the-

sis, Florida State University, 2013.

[23] W. Huang, P. Absil, K. Gallivan, and P. Hand, ROPTLIB: An object-oriented C++ library

for optimization on Riemannian manifolds, ACM Trans. Math. Software, 44 (2018), pp. 1--

21.D
ow

nl
oa

de
d 

04
/1

9/
20

 to
 1

24
.1

6.
14

8.
9.

 R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

A2268 J. HU, B. JIANG, L. LIN, Z. WEN, AND Y.-X. YUAN

[24] W. Huang, P.-A. Absil, and K. Gallivan, A Riemannian BFGS method without differenti-

ated retraction for nonconvex optimization problems, SIAM J. Optim., 28 (2018), pp. 470--

495.

[25] W. Huang, P.-A. Absil, and K. A. Gallivan, A Riemannian symmetric rank-one trust-region

method, Math. Program., 150 (2015), pp. 179--216.

[26] W. Huang, P.-A. Absil, and K. A. Gallivan, A Riemannian BFGS method for nonconvex

optimization problems, in Numerical Mathematics and Advanced Applications ENUMATH

2015, Springer, New York, 2016, pp. 627--634.

[27] W. Huang, K. A. Gallivan, and P.-A. Absil, A Broyden class of quasi-Newton methods for

Riemannian optimization, SIAM J. Optim., 25 (2015), pp. 1660--1685.

[28] R. E. Kass, Nonlinear regression analysis and its applications, J. Amer. Statist. Assoc., 85

(1990), pp. 594--596.

[29] A. V. Knyazev, Toward the optimal preconditioned eigensolver: Locally optimal block precon-

ditioned conjugate gradient method, SIAM J. Sci. Comput., 23 (2001), pp. 517--541.

[30] W. Kohn and L. J. Sham, Self-consistent equations including exchange and correlation effects,

Phys. Rev., 140 (1965), pp. A1133--A1138.

[31] K. Kreutz-Delgado, The Complex Gradient Operator and the CR-Calculus, arXiv:0906.4835,

2009.

[32] C. Le Bris, Computational chemistry from the perspective of numerical analysis, Acta Numer.,

14 (2005), pp. 363--444.

[33] L. Lin, Adaptively compressed exchange operator, J. Chem. Theory Comput., 12 (2016),

pp. 2242--2249.

[34] L. Lin and M. Lindsey, Convergence of adaptive compression methods for Hartree-Fock-like

equations, Comm. Pure Appl. Math., 72 (2019), pp. 451--499.

[35] X. Liu, Z. Wen, and Y. Zhang, Limited memory block Krylov subspace optimization for

computing dominant singular value decompositions, SIAM J. Sci. Comput., 35 (2013),

pp. A1641--A1668.

[36] R. M. Martin, Electronic Structure: Basic Theory and Practical Methods, Cambridge Univer-

sity Press, Cambridge, 2004.

[37] Y. Nesterov and B. T. Polyak, Cubic regularization of Newton method and its global per-

formance, Math. Program., 108 (2006), pp. 177--205.

[38] J. Nocedal and S. J. Wright, Numerical Optimization, 2nd ed., Springer Ser. Oper. Res.

Financ. Eng., Springer, New York, 2006.

[39] C. Qi, Numerical Optimization Methods on Riemannian Manifolds, Ph.D. thesis, Florida State

University, 2011.

[40] W. Ring and B. Wirth, Optimization methods on Riemannian manifolds and their application

to shape space, SIAM J. Optim., 22 (2012), pp. 596--627.

[41] M. Seibert, M. Kleinsteuber, and K. H\"uper, Properties of the BFGS method on Riemann-

ian manifolds, in Mathematical System Theory, 2013, pp. 395--412.

[42] S. T. Smith, Optimization techniques on Riemannian manifolds, Fields Inst. Commun., 3

(1994).

[43] W. Sun and Y. Yuan, Optimization Theory and Methods: Nonlinear Programming, Vol. 1,

Springer, New York, 2006.

[44] A. Szabo and N. S. Ostlund, Modern Quantum Chemistry: Introduction to Advanced Elec-

tronic Structure Theory, Dover, New York, 2012.

[45] L. Thogersen, J. Olsen, A. Kohn, P. Jorgensen, P. Salek, and T. Helgaker, The trust-

region self-consistent field method in Kohn--Sham density functional theory, J. Chem.

Phys., 123 (2005), 074103.

[46] J. A. Tropp, A. Yurtsever, M. Udell, and V. Cevher, Fixed-rank approximation of a

positive-semidefinite matrix from streaming data, in Proceedings of Advances in Neural

Information Processing Systems, 2017, pp. 1225--1234.

[47] C. Udriste, Convex Functions and Optimization Methods on Riemannian manifolds, Math.

Appl. 297, Springer, New York, 1994.

[48] R. van Leeuwen, Density functional approach to the many-body problem: Key concepts and

exact functionals, Adv. Quantum Chem., 43 (2003), pp. 25--94.D
ow

nl
oa

de
d 

04
/1

9/
20

 to
 1

24
.1

6.
14

8.
9.

 R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

QUASI-NEWTON METHODS ON STIEFEL MANIFOLD A2269

[49] Z. Wen, A. Milzarek, M. Ulbrich, and H. Zhang, Adaptive regularized self-consistent field

iteration with exact Hessian for electronic structure calculation, SIAM J. Sci. Comput., 35

(2013), pp. A1299--A1324.

[50] Z. Wen and W. Yin, A feasible method for optimization with orthogonality constraints, Math.

Program., 142 (2013), pp. 397--434.

[51] C. Yang, J. C. Meza, B. Lee, and L.-W. Wang, KSSOLV---A MATLAB toolbox for solving

the Kohn-Sham equations, ACM Trans. Math. Software, 36 (2009), pp. 1--35.

[52] C. Yang, J. C. Meza, and L.-W. Wang, A trust region direct constrained minimization

algorithm for the Kohn-Sham equation, SIAM J. Sci. Comput., 29 (2007), pp. 1854--1875.

[53] W. Zhou and X. Chen, Global convergence of a new hybrid Gauss--Newton structured BFGS

method for nonlinear least squares problems, SIAM J. Optim., 20 (2010), pp. 2422--2441.

D
ow

nl
oa

de
d 

04
/1

9/
20

 to
 1

24
.1

6.
14

8.
9.

 R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p


	Introduction
	Our contribution
	Applications to electronic structure calculation
	Organization
	Notation

	A structured quasi-Newton approach
	Structured quasi-Newton subproblem
	Construction of Bk
	Limited-memory Nyström approximation of E0k
	A structured quasi-Newton method with subspace refinement

	Convergence analysis
	Global convergence to a stationary point
	Local convergence rate

	Linear eigenvalue problem
	Convergence

	Electronic structure calculation
	Formulation
	Self-consistent field iteration methods
	Construction of the structured approximation Bk
	Subspace construction for the KSDFT model

	Numerical experiments
	Linear eigenvalue problem
	Kohn–Sham total energy minimization
	Hartree–Fock total energy minimization

	Conclusion
	References

