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Abstract We present a partial first-order affine-scaling method for solving smooth optimization with
linear inequality constraints. At each iteration, the algorithm considers a subset of the constraints to
reduce the complexity. We prove the global convergence of the algorithm for general smooth objective
functions, and show it converges at sublinear rate when the objective function is quadratic. Numerical
experiments indicate that our algorithm is efficient.
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1 Introduction

Affine scaling technique is widely used in interior point methods for solving linearly constrained
optimization problems with the following form:

min
θ∈Rn

f(θ),

s.t. Aθ = b, θ ≥ 0,

where A ∈ R
m×n, b ∈ R

m, and f : R
n → R is continuously differentiable. Without loss of

generality, we assume that A has rank m.
Dikin [9] first proposed a first-order affine-scaling (AS) method for quadratic programming.

Proofs of Dikin’s AS method was further developed by Adler et al. [1], Barnes [2], Monma
and Morton [14], and Vanderbei et al. [19]. Gonzaga and Carlos [10] extended AS method to
linearly constrained smooth convex minimization.

At the t-th iteration, given an interior point θt as the current iterate point, AS method
decides the search direction by solving the following problem

min
d∈Rn

∇f(θt)T d,

s.t. Ad = 0,

‖(Θt)−1d‖ ≤ μ,

where Θt = Diag(θt) and μ < 1 is a constant, and where ‖ · ‖ is the Euclidean norm ‖z‖2 =√
zT z. The objective function ∇f(θt)T d is a first-order approximation to f(θt + d) − f(θt).
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‖(Θt)−1d‖ ≤ μ is an ellipsoid inside θt +d ≥ 0. The optimal solution dt has the following closed
form solution

dt = μ
d̂t

‖d̂t‖
, (1.1)

where
d̂t = −(Θt)2[I − AT [A(Θt)2AT ]−1A(Θt)2]∇f(θt).

Then θt+1 = θt+αtdt, where αt is chosen by a limited maximization rule on (0,−1/(minj dt
j/θt

j))
to ensure that θt+1 is an interior point.

Bonnans and Pola [4] proposed a first-order AS trust region method, where stepsize αt is
chosen by an Armijo-type rule. They showed every cluster point of the generated iterates is a
stationary point. Monteriro and Wang [15] proposed a second-order AS trust-region method
based on a generalization of the search direction (1.1). More AS trust-region methods have
been proposed (see [3, 21]).

Tseng et al. [18] extended the first order AS method by adding a parameter γ > 0. Their
search direction is

dt = −(Θt)2γ [I − AT [A(Θt)2γAT ]−1A(Θt)2γ ]∇f(θt).

They showed that if αt is chosen by Armijo rule, then every cluster point of {θt} is a stationary
point under nondegeneracy assumption and additional assumptions such as f being convex or
concave. They discussed the value of γ and suggested γ < 1.

In this paper, we consider the following problem

min
x∈Rm

f(x),

s.t. AT x ≤ b, (1.2)

where A ∈ R
m×n, b ∈ R

n, n ≥ m, and f : R
n → R is continuously differentiable. Without loss

of generality, we assume A has rank m. Notice that the constraints are all linear inequalities.
Problem (1.2) has been studied extensively, for example, see [7, 16, 22].

To use first-order AS method, we add a slack variable s ≥ 0, such that AT x + s = b. Then
a subproblem for obtaining the search direction can be constructed as

min
d∈Rm,s∈Rn

∇f(xt)T d,

s.t. AT d + s − st = 0,

‖(St)−γ(s − st)‖ ≤ μ, (1.3)

where st = b − AT xt and St = Diag(st). Ignoring the length of the step-size, we see that the
solution of Problem (1.3) is

dt = −[A(St)−2γAT ]−1∇f(xt).

The complexity of computing A(St)−2γAT is O(m2n). When n is much larger than m, the
computation cost is very high. Notice that A(St)−2γAT =

∑n
j=1(s

t
j)

−2γAjA
T
j , where Aj is

the j-th column of A. Using the fact that smaller sj dominate the sum, we consider a partial
sum of (st

j)
−2γAjA

T
j , j ∈ I, where I is an index set. Intuitively, if st

j , j ∈ I are much smaller
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than the others, then the partial sum losses a little. With this, the complexity can be reduced
to O(m2|I|). We propose a partial first-order affine-scaling method, with the search direction
defined by

dt = −
[ ∑

j∈It

(st
j)

−2γAjA
T
j

]−1

∇f(xt),

where It is the index set corresponding to the M smallest st
j , and M is a constant such that

M ≥ m. Other ideas to reduce the calculation were provided by Dantzig and Ye [8] and
Tseng [17].

In the rest of this paper, we discuss the property of our partial first-order affine-scaling
method. We propose our algorithm in Section 2. Meanwhile we propose some assumptions to
make our search direction meanful and also provide the Armijo-type rule. We show that if αt

is chosen by Armijo-type rule, then every cluster point of xt is a stationary point under some
assumptions in Section 3. Then we show the sublinear convergence when f is quadratic in
Section 4. Numerical results are provided in Section 5. Final conclusion is given in Section 6.

Preliminaries x0 is an initial interior point. gt = ∇f(xt). Λ = {x ∈ R
m| AT x ≤ b}. Λ0 =

{x ∈ Λ|f(x) ≤ f(x0)}. sI = (si1 , . . . , si|I|)
T , AI = (Ai1 , . . . , Ai|I|), where I = {i1, . . . , i|I|}.

SI = Diag(sI). Thus the search direction can be rewritten as

dt = −[AIt(St
It)−2γAT

It ]−1gt. (1.4)

2 The Partial First-order Affine-scaling Method

Firstly, we provide the following nondegeneracy assumption.

Assumption 2.1 For any x ∈ Λ, J = {j|sj = bj − AT
j x = 0}, AJ has rank |J |.

This implies that |J | ≤ M .
To make dt well defined, we add the following assumption.

Assumption 2.2 AIt has rank m.

Under Assumption 2.2, AIt(St
It)−2γAT

It is invertible.
Therefore, our dt is well defined. Moreover, dt is a descent direction, due to the fact that

−(gt)T dt = (gt)T [AIt(St
It)−2γAT

It ]−1gt > 0.

For general f , stepsize αt is chosen by an Armijo-type rule: αt is the largest α ∈ {αt
0β

k}k=0,1,...

satisfying
f(xt + αdt) ≤ f(xt) + σ1α(gt)T dt, (2.1)

where
αt

0 = σ2 max{α|xt + αdt ∈ Λ}, (2.2)

0 < β, σ1, σ2 < 1 are constants.
Since dt is a feasible decent direction at xt, αt is well defined.
In the following, we present our partial first-order affine-scaling method.

Algorithm 2.3 Partial first-order affine-scaling method.

Step 0 Given x0, s0 = b − Ax0, M ≥ m, 0 < β, σ1, σ2 < 1, t = 0.

Step 1 Compute It = {i1, . . . , iM}, such that st
i1
≤ st

i2
≤ · · · ≤ st

iM
≤ st

iM+1
≤ · · · ≤ st

in
.
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Step 2 Compute dt by (1.4).

Step 3 Compute αt
0 by (2.2), set α = αt

0.

Step 4 Loop α := αβ until (2.1) is satisfied.

Step 5 αt = α, xt+1 = xt + αtdt, st+1 = b − Axt+1. t := t + 1, go to Step 1.

From the descriptions of our algorithm, it is easy to see that the following lemma is true.

Lemma 2.4 Let {xt} be generated by Algorithm 2.3. Then xt ∈ int(Λ) for all t. Moreover,
{f(xt)} is decreasing.

3 Global Convergence

In this section, we show the global convergence of Algorithm 2.3. Theorems 3.7 and 3.13 state
the global convergence of our algorithm in different cases.

To prove the convergence, we need the following assumptions.

Assumption 3.1 Λ0 is bounded.

Since {xt} ∈ Λ0 and Λ0 is bounded, {xt} has at least one cluster point. We define X ′ as
the set of all cluster points of {xt}.
Lemma 3.2 Under Assumptions 2.1, 2.2 and 3.1, all the sequences {xt}, {st}, {gt} and {dt}
are bounded.

Proof The boundedness of Λ0 implies that {xt} is bounded and {st = b − Axt} is bounded.
Since {xt} is bounded and ∇f is continuous on Λ0, it is obvious that {gt} is bounded.

We have dt = −[AIt(St
It)−2γAT

It ]−1gt,

‖dt‖2 ≤ λmax{[AIt(St
It)−2γAT

It ]−2}‖gt‖2

= {λmin[AIt(St
It)−2γAT

It ]}−2‖gt‖2

≤ {λmin[s−2γ
u AItAT

It ]}−2‖gt‖2

= s4γ
u {λmin[AItAT

It ]}−2‖gt‖2,

where su is the upper bound of {st}. Since the number of subsets It is finite and AIt has
rank m, λmin[AItAT

It ] have a uniform lower bound which is larger than 0. Therefore, {dt} is
bounded. �

In order to show the convergence, we introduce a new variable.
For any x ∈ int(Λ), we define y ∈ R

n by

yI = −(SI)−2γAT
I d = S−2γ

I AT
I (AIS

−2γ
I AT

I )−1g,

yIC = 0,

where s = b − AT x, I is the index subset we choose, g = ∇f(x) and d = (AIS
−2γ
I AT

I )−1g.

Lemma 3.3 Let x̄ be any point on Λ, J̄ = {j|s̄j = 0}. Under Assumptions 2.1, 2.2 and 3.1,
there exists δ̄, such that I(x) ⊇ J̄ for all x ∈ B(x̄, δ̄) ∩ Λ.

Proof Notice that s is continuous. Combining s̄j = 0 for j ∈ J̄ and s̄j �= 0 for j ∈ J̄C , there
exists a constant δ̄, such that max{sj |j ∈ J̄} < min{sj |j ∈ J̄C} for all x ∈ B(x̄, δ̄) ∩ Λ. Since
|J̄ | ≤ M ≤ |I(x)|, we have I(x) ⊇ J̄ . �
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Lemma 3.4 Let x̄ be any point on Λ, J = {j|s̄j = 0}, JC = {j|s̄j > 0}. Then under
Assumptions 2.1, 2.2 and 3.1, there exists a constant δ̄ such that when x ∈ B(x̄, δ̄) ∩ int(Λ), y

is bounded. Moreover, let T be any subsequence such that {xt}t∈T converge to x̄ and It = I for
all t ∈ T , then

{yt
J}t∈T → (AT

J D̄−1AJ)−1AT
J D̄−1ḡ,

{dt}t∈T → [D̄−1 − D̄−1AJ (AT
J D̄−1AJ)−1AT

J D̄−1]ḡ,

where D̄ = AI∩JC S̄−2γ
I∩JC AT

I∩JC + AJAT
J .

Proof According to Lemma 3.3, there exists a constant δ̄ such that when x ∈ B(x̄, δ̄)∩ int(Λ),
I ⊇ J . Let W = S−2γ

J − I and D = AI∩JC S−2γ
I∩JC AT

I∩JC + AJAT
J . D is bounded by

min{1, max{sI∩JC}−2γ}AIA
T
I � D � max{1, min{sI∩JC}−2γ}AIA

T
I .

Using Sherman–Morrison–Woodbury formula that

(AIS
−2γ
I AT

I )−1 = (D + AJWAT
J )−1

= D−1 − D−1AJW
1
2 [I + W

1
2 AT

J D−1AJW
1
2 ]−1W

1
2 AT

J D−1,

it follows that
AJ (AIS

−2γ
I AT

I )−1 = W−1(W−1 + AT
J D−1AJ)−1AT

J D−1.

Then
yJ = S−2γ

J AT
J (AIS

−2γ
I AT

I )−1g = S−2γ
J W (W−1 + AT

J D−1AJ )−1AT
J D−1g.

When sJ goes to zero, W−1 goes to zero and S−2γ
J W goes to identity. Therefore, yJ is bounded.

Moreover, when I is fixed, yJ goes to (AT
J D̄−1AJ)−1AT

J D̄−1ḡ, and

d = (AIS
−2γ
I AT

I )−1g → [D̄−1 − D̄−1AJ (AT
J D̄−1AJ)−1AT

J D̄−1]ḡ. �

Lemma 3.5 Under Assumptions 2.1, 2.2 and 3.1, when γ ≥ 1
2 , inf αt

0 > 0.

Proof Let x̄ be any cluster point of {xt}. J is defined by J = {j|s̄j = 0}. Considering
x ∈ B(x̄, δ̄), we have I(x) is fixed.

Since AT
J d = W−1(W−1 + AT

J D−1AJ)−1AT
J D−1g, then AT

j d = O(s2γ
j ) for j ∈ J . When x

is in a neighborhood of x̄, sj/|AT
j d| ≥ CJs1−2γ

j for j ∈ J , where CJ is a constant depending on
x̄ but not x. Because d is bounded, AT

JC d is bounded. It follows that sj/|AT
j d| ≥ CJC sj for

j ∈ JC . The initial stepsize can be calculated by

α0 = σ2 min
{j:AT

j d>0}
sj/|AT

j d|.

Overall, there exists an ε̄ such that α0 ≥ C̄0 for all x ∈ B(x̄, ε̄) ∩ Λ0, where C̄0 is a constant
depending on x̄ but not x.

For a proof by contradiction, we suppose that inf αt
0 = 0. It follows that there exists a

subsequence T such that αt
0 → 0 for t ∈ T . Since Λ0 is bounded, there exists a subsequence

T1 ⊆ T , {xt}t∈T1 → x̄ ∈ X ′. When t is large enough, xt is in B(x̄, ε̄) for t ∈ T1, then αt
0 ≥ C̄0.

This contradicts to αt
0 → 0 for t ∈ T1. �

Lemma 3.6 Under Assumptions 2.1, 2.2 and 3.1, when γ ≥ 1
2 , (gt)T dt → 0.
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Proof Let x̄ be a cluster point of {xt}. Then f(xt) → f(x̄), and f(xt) − f(xt+1) → 0.
According to the stepsize rule, we have

αt(gt)T dt → 0. (3.1)

For a proof by contradiction, we suppose that (gt)T dt
� 0. This means that there exists a

subsequence T and a constant a such that

|(gt)T dt| > a > 0 (3.2)

for t ∈ T . Due to the boundedness of {xt}t∈T and the finiteness of It, there exists a subsequence
T1 ∈ T such that {xt}t∈T1 converges to x̄ and It = I for all t ∈ T1. By (3.1) and (3.2), we
have {αt}t∈T1 → 0. According to Lemma 3.5, αt < αt

0 when t ∈ T is large enough. From the
stepsize rule, condition (2.1) is violated by α = αt/β. We have

f(xt + (αt/β)dt) − f(xt)
αt/β

> σ1(gt)T dt, ∀t ∈ T1. (3.3)

Since gt and dt have limits, we take the limit of the above inequality with {αt}t∈T1 , we obtain
ḡT d̄ ≥ σ1ḡ

T d̄. Due to 0 < σ1 < 1, it follows that ḡT d̄ ≥ 0. On the other hand, (gt)T dt < 0,
therefore ḡT d̄ = 0. This is a contrary to (3.2). �

Theorem 3.7 Let x̄ ∈ X ′. Under Assumptions 2.1, 2.2 and 3.1, and γ ≥ 1
2 is satisfied, then

there exists a unique ȳ such that

yt → ȳ,

S̄ȳ = 0,

ḡ = Aȳ.

Proof From the fact

(gt)T dt = (gt)T (AIt(St
It)−2γAT

It)−1gt = ‖(St
It)−γAT

It(AIt(St
It)−2γAT

It)−1gt‖2 = ‖(St)γyt‖2

and (gt)T dt → 0, it follows that
(St)γyt → 0.

For any subsequence T such that It is fixed for all t ∈ T , we have {yt} has limit. It yields
ȳJC = 0 from s̄JC �= 0. We take the limit t ∈ T → ∞ on gt = Ayt, then we have ḡ = Aȳ = AJ ȳJ .
Since AJ has full column rank, ȳ is unique. For different subsequences, we have ḡ and AJ are
fixed, which means ȳ are the same. �

Lemma 3.8 Under Assumptions 2.1, 2.2 and 3.1, if γ ≥ 1
2 , then {xt+1 − xt} → 0.

Proof Let x̄ ∈ X ′, T be any subsequence such that {xt}t∈T → x̄. We define H = {j|ȳj �= 0}.
So we have s̄H = 0, which implies H ⊆ J . Since αt(gt)T dt → 0 and (gt)T dt = ‖(St)γyt‖2, then
(αt)

1
2 (St)γyt → 0. Due to ȳj �= 0 for j ∈ H, we have {(αt)

1
2 (St

H)γ}t∈T → 0.
Notice that

lim
{t∈T }→∞

xt+1 − xt = lim
{t∈T }→∞

αtdt

= lim
{t∈T }→∞

αt(AIt(St
It)−2γAT

It)−1gt
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= lim
{t∈T }→∞

αt(AIt(St
It)−2γAT

It)−1AH ȳH .

Since
AT

H(AIt(St
It)−2γAT

It)−1 = W−1
H [D−1AJ(W−1 + AT

J D−1AJ)−1]TH ,

then we have, for t ∈ T ,

xt+1 − xt → αt[D−1AJ(W−1 + AT
J D−1AJ)−1]HW−1

H

→ αt[D̄−1AJ(AT
J D̄−1AJ)−1]H(St

H)2γ ȳH .

Notice that D has both upper and lower bound. Thus

{xt+1 − xt}t∈T → 0.

Due to the arbitrariness of T , it is easy to show that limt→∞ xt+1 − xt = 0. �
To prove the global convergence, we only need ȳ ≤ 0. In the rest of this section, we consider

two cases. One is strict complementarity, the other is that the objective function is convex or
concave. In either case, we show the global convergence.

Theorem 3.9 Under Assumptions 2.1, 2.2 and 3.1, if γ ≥ 1
2 and every x ∈ ΛCS satisfies

strict complementarity (i.e., sj − yj �= 0 for all j), where

ΛCS =
{

x ∈ Λ ∩ X ′|Sy = 0, f(x) = lim
t→∞

f(xt)
}
.

Then every cluster point of {xt} is a stationary point of (1.2).

Proof Let x̄ ∈ X ′ and

Λ̄CS = {x ∈ ΛCS |yJ̄0
= 0, yJ̄+

> 0, yJ̄− < 0},

where J̄0 = {j|ȳj = 0}, J̄+ = {j|ȳj > 0}, J̄− = {j|ȳj < 0}.
For each x ∈ ΛCS satisfies strict complementarity, then there exists a δ such that Λ̄CS +

B(0, δ) ∩ ΛCS = Λ̄CS . By Lemma 3.8, we have xt+1 − xt → 0, hence it implies that X ′ forms
a continuum. Therefore X ′ ⊆ ΛCS and X ′ ⊆ Λ̄CS .

For each j ∈ J̄+, we have yt
J̄+

> 0, when t is large enough. Since st+1
J+

−st
J+

= αt(St
J+

)2γyt
J+

> 0, when t is large enough. It follows that lim inft st
J+

> 0, which contradicts with s̄J+ = 0.
Therefore, J+ = ∅, i.e., ȳ ≤ 0. �

In the following of this section, we analyze the convergence when f is convex or concave.

Lemma 3.10 Let x̄ ∈ X ′, H = {j|ȳj �= 0}, Λ̄ = {x ∈ Λ|sH = 0, f(x) = f(x̄)}. If f is convex
or concave, then Λ̄ is convex and ∇f is constant on Λ̄.

Proof Since S̄ȳ = 0, then x̄ is the optimal solution of the following problem

optimize{f(x)|AT
Hx = bH , AT

HC x ≤ bHC}. (3.4)

When f is concave, “optimize” is “maximize”. When f is convex, “optimize” is “minimize”.
Therefore, Λ̄ is the optimal solution set. Due to (3.4) is equivalent to a convex minimization
problem, Λ̄ is convex. Then according to [13], it follows that ∇f is constant on Λ̄. �

Lemma 3.11 Under Assumptions 2.1, 2.2 and 3.1, if γ ≥ 1
2 and f is convex or concave, then

y(x) = ȳ for all x ∈ Λ̄ ∩ X ′.
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Proof For any x̂ ∈ Λ̄ ∩ X ′, since sĴ = 0 and H ⊆ Ĵ , we have g = AH ȳH = AĴ ȳĴ . It follows
that AĴ ŷĴ = g = AĴ ȳĴ . Since AĴ has full column rank, we have ŷĴ = ȳĴ . Furthermore,
ŷĴC = 0 = ȳĴC . Therefore, y(x) = ȳ for all x ∈ Λ̄ ∩ X ′. �

Lemma 3.12 Under Assumptions 2.1, 2.2 and 3.1, if γ ≥ 1
2 and f is convex or concave, then

X ′ = Λ̄ ∩ X ′.

Proof Firstly, we show that there exists a constant δ > 0 such that |yj | ≥ 1
2 |ȳj | for all

x ∈ [Λ̄ + δB(0, δ)] ∩ X ′ and all j ∈ H.
If not, then there exists a subsequence T and an index j, such that xt ∈ (Λ∩X ′)+B(0, δt),

δt → 0 and |yj | < 1
2 |ȳj |. Due to the boundness of {xt}, there exists a subsequence T1 of sequence

T , such that xt → x̂ ∈ Λ ∩X ′. Since y → ŷ = ȳ, it follows that |yj | ≥ 1
2 |ȳj | for all j ∈ H. This

is a contradiction.
For a proof by contradiction, we suppose that there exists x̂ ∈ X ′ but x̂ /∈ Λ̄. By {xt+1 −

xt} → 0, we have that X ′ forms a continuum. Then there exists x̃ ∈ X ′ such that x̃ ∈
[Λ̄ + δB(0, δ)] ∩ X ′ but x̃ /∈ Λ̄. It follows that there exists j ∈ H such that s̃j > 0. Therefore
s̃j ỹj �= 0 contradicts with x̃ ∈ X ′. �

Combining Lemmas 3.11 and 3.12, we claim yt → ȳ for all t.

Theorem 3.13 Under Assumptions 2.1, 2.2 and 3.1, if γ ≥ 1
2 , f is convex or concave, then

every cluster point of {xt} is a stationary point of (1.2).

Proof We only need to prove ȳ ≤ 0. Since yt → ȳ, we suppose ȳ � 0, then there exists j ∈ J

and T such that yt
j > 0 for all t > T . Since st+1

j − st
j = αt(St

j)
2γyt

j , we have st
j > sT

j for all
t > T . This contradicts with s̄j = 0. Therefore, ȳ ≤ 0. �

We extend the proof in [18] to prove the convergence of our algorithm. However in our
proof, we propose none assumptions on stepsize αt

0 and αt.

4 Sublinear Convergence When f is Quadratic

In this section, we show {f(xt)} converges sublinearly when f is quadratic. Moreover, we show
{xt} converges sublinearly for γ < 1. If γ = 1

2 and strict complementarity holds, then the
convergence is linear.

Let
f(x) =

1
2
xT Qx + cT x.

Theorem 4.1 Suppose Assumptions 2.1, 2.2 and 3.1 hold, and γ ≥ 1
2 . Then the following

results hold with ω = 1/(γ̄ − 1) and γ̄ = max{1 + γ, 2γ}.
(1) There exist v ∈ R and C > 0 (depending on x0) such that

0 ≤ f(xt) − v ≤ Ct−ω, ∀t ≥ 1. (4.1)

(2) Assume 1
2 ≤ γ < 1. Then there exist x̄ ∈ Λ0 and C ′ > 0 (depending on x0) such that

‖x̄ − xt‖ ≤ C ′t−
1−γ
2γ , ∀t ≥ 1.

x̄ is a stationary point.
Moreover, if γ = 1

2 and s̄ − ȳ > 0, then {f(xt)} converges Q-linearly and {‖x̄ − xt‖}
converges R-linearly.
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Proof Let ηt = (St)γyt and v = limt f(xt). We have

f(xt) − f(xt+1) ≥ σ1α
t‖ηt‖2 (4.2)

and {f(xt) − f(xt+1)} → 0. By Lemma 3.6, we obtain {ηt} → 0. For any index set J ⊆
{1, . . . , n}, we define

TJ = {t|sj ≤ |ηt
j |

1
1+γ ∀j ∈ J, |yj | < |ηt

j |
1

1+γ , ∀j ∈ JC}.

Since (st
j)

γ |yt
j | = |ηt

j |, we have only one of sj ≤ |ηt
j |

1
1+γ and |yj | < |ηt

j |
1

1+γ holds. The number
of different J is infinite, therefore there exists an index set J , such that TJ is infinite. Consider
any infinite set TJ , for each t ∈ TJ , the following linear system in (x, s, y)

SJ = St
J , Qx + c = Ay, yJC = yt

JC , s ≥ 0, AT x + s = b

has a solution (xt, st, yt). Let ‖ · ‖ν denote the ν-norm. Then we have

‖(st
J , yt

JC )‖1+γ
1+γ ≤ ‖ηt‖1, ∀t ∈ TJ .

Since {ηt} → 0, it follows that {(st
J , yt

JC )}t∈TJ
→ 0. Therefore, every cluster point of {xt, st, yt}

satisfies
sJ = 0, Qx + c = Ay, yJC = 0, s ≥ 0, AT x + s = b.

Denote the solution set of this linear system by ΣJ . Using an error bound of Hoffman [11],
there exists (x̄t, s̄t, ȳt) ∈ ΣJ such that

‖(x̄t, s̄t, ȳt) − (xt, st, yt)‖ ≤ C1‖(st
J , yt

JC )‖1+γ , ∀t ∈ TJ ,

where C1 is a constant depending on Q, A and J .
Firstly, we show f is constant on ΣJ . Suppose (x, s, y), (x′, s′, y′) ∈ ΣJ ,

f(x′) − f(x) =
1
2
(x′ − x)T Q(x′ − x) + (Qx + c)T (x′ − x)

=
1
2
(x′ − x)T Q(x′ − x) + yT AT (x′ − x)

=
1
2
(x′ − x)T Q(x′ − x) + yT (s − s′)

=
1
2
(x′ − x)T Q(x′ − x).

A symmetric argument yields f(x) − f(x′) = 1
2 (x′ − x)T Q(x′ − x). It implies f(x) = f(x′).

For any t ∈ TJ ,

(Qx̄t + c)T (xt − x̄t) = (Qx̄t + c − Aȳt)T (xt − x̄t) + (ȳt)T (s̄t − st) = (ȳt)T (s̄t − st).

If γ ≤ 1, then it follows that

|f(xt) − f(x̄t)| =
∣
∣
∣
∣
1
2
(xt − x̄t)T Q(xt − x̄t) + (Qx̄t + c)T (xt − x̄t)

∣
∣
∣
∣

=
∣
∣
∣
∣
1
2
(xt − x̄t)T Q(xt − x̄t) + (ȳt)T (s̄t − st)

∣
∣
∣
∣

≤ 1
2
|(xt − x̄t)T Q(xt − x̄t)| +

∑

j∈J

|ȳt
j(s̄

t
j − st

j)|
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=
1
2
|(xt − x̄t)T Q(xt − x̄t)| +

∑

j∈J

|ȳt
js

t
j |

≤ C2‖xt − x̄t‖2 +
∑

j∈J

|(ȳt
j − yt

j)s
t
j | +

∑

j∈J

|yt
js

t
j |

≤ C2‖xt − x̄t‖2 +
∑

j∈J

|ȳt
j − yt

j |st
j +

∑

j∈J

|ηt
j |(st

j)
1−γ

≤ C2C
2
1‖ηt‖

2
1+γ

1 +
∑

j∈J

C1‖ηt‖
1

1+γ

1 |ηt
j |

1
1+γ +

∑

j∈J

|ηt
j |

2
1+γ ,

where C2 depends on Q. The last inequality in true due to γ ≤ 1. We have

|f(xt) − f(x̄t)| ≤ CJ‖ηt‖
2

1+γ

1 , ∀t ∈ TJ , (4.3)

where CJ is a constant depending on Q, A, J , x0. If γ > 1, then |yt
js

t
j | = |ηt

j |
1
γ |yt

j |1−
1
γ . Using

{yt} is bounded and 2
1+γ > 1

γ , we have

|f(xt) − f(x̄t)| ≤ CJ‖ηt‖
1
γ

1 , ∀t ∈ TJ . (4.4)

Let C3 = max{CJ | |TJ | = ∞}.
Since f(xt) → ν and {ηt} → 0, it follows from (4.3) and (4.4) that {f(x̄t)}t∈TJ

→ ν. Since
x̄t ∈ ΣJ and f is constant on ΣJ , we have f(x̄t) = ν. Therefore, for all t ∈ TJ ,

f(xt) − ν = f(xt) − f(x̄t) ≤ C3‖ηt‖min{ 2
1+γ , 1

γ }
1

= C3‖ηt‖
2
γ̄

1

≤ κ(f(xt) − f(xt+1))
1
γ̄ .

The last inequality is from (4.2) and inft αt > 0. Denote Δt = f(xt) − ν. Then

Δt+1 ≤ Δt −
(

Δt

κ

)γ̄

(4.5)

holds for all t ∈ TJ and all J such that TJ is infinite. It implies when t is larger than some
T , (4.5) holds.

(1) Take C ≥ max{κ
γ̄

γ̄−1 , ( κγ̄

γ̄−1 )
1

γ̄−1 }, sufficiently large so that f(xt) − ν ≤ Ct−ω holds for

t = 1, . . . , T . When ω ≤ 1, it follows from C ≥ κ
γ̄

γ̄−1 that (C
κ )γ̄ ≥ C. Then

Δt+1 ≤ Δt −
(

Δt

κ

)γ̄

≤ C

tω
−

(
C

κtω

)γ̄

≤ C

(
1
tω

− 1
tωγ̄

)

≤ C

(t + 1)ω
.

The last inequality is implied by ωγ̄ = 1 + ω and (1 − 1
t+1 )ω ≥ 1 − 1

t+1 . When ω > 1, since
C ≥ ( κγ̄

γ̄−1 )
1

γ̄−1 yields (C
κ )γ̄ ≥ C

γ̄−1 , we have

Δt+1 ≤ C

tω
−

(
C

κtω

)γ̄

≤ C

(
1
tω

− 1
(γ̄ − 1)tωγ̄

)

= C

(
1
tω

− ω

tω+1

)

≤ C

(t + 1)ω
,

because (1 − 1
t+1 )ω ≥ 1 − ω

t+1 .
(2) Assume γ < 1, then γ̄ = 1 + γ < 2. We have, for all t > T ,

‖st+1
It − st

It‖ = αt‖(St)γηt‖
≤ αt‖st‖γ

∞‖ηt‖
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= αt‖st‖γ
∞
‖ηt‖2

‖ηt‖

≤ ‖st‖γ
∞
√

n
αt‖ηt‖2

‖ηt‖1

≤ ‖st‖γ
∞
√

n
f(xt) − f(xt+1)

σ1‖ηt‖1

≤ ‖st‖γ
∞
√

n
Δt − Δt+1

σ1

(
C3

Δt

) γ̄
2

.

On the other hand, ‖st+1
It −st

It‖ = ‖AT
It(xt+1−xt)‖ ≥ CA‖xt+1−xt‖, where CA depends on A.

This is because the number of different I is finite, and for each I, AI has full row rank. Then

‖xt+1 − xt‖ ≤ C4(Δt − Δt+1)(Δt)−
γ̄
2

≤ C4

∫ Δt

Δt+1
t−

γ̄
2 dt

=
C4

1 − γ̄
2

[(Δt)1−
γ̄
2 − (Δt+1)

γ̄
2 ].

For any t2 ≥ t1 ≥ T , we have
t2∑

t=t1

‖xt+1 − xt‖ ≤ C4

1 − γ̄
2

[(Δt
1)

1− γ̄
2 − (Δt2+1)

γ̄
2 ]

≤ C4

1 − γ̄
2

(Δt
1)

1− γ̄
2 .

Since Δt1 → 0 as t1 → ∞, this shows that {xt} satisfies Cauchy’s criterion for convergence.
Thus {xt} has a unique cluster point x̄. Using triangle inequality, we have

‖xt2+1 − xt1‖ =
∥
∥
∥
∥

t2∑

t=t1

(xt+1 − xt)
∥
∥
∥
∥

≤
t2∑

t=t1

‖xt+1 − xt‖

≤ C4

1 − γ̄
2

(Δt
1)

1− γ̄
2 .

Let t2 → ∞, it follows from (4.1) that ‖x̄ − xt1‖ = O((t−ω
1 )1−

γ̄
2 ) = O(t

− 1−γ
2γ

1 ).
Moreover, suppose s̄ − ȳ > 0 and γ = 1

2 . We have {xt} → x̄ and ȳ ≤ 0. Then there exist
J̄ ⊆ {1, . . . , n} such that

ȳJ̄ < s̄J̄ = 0 and s̄J̄C > ȳJ̄C = 0.

Since ηt = (St)γyt and (st, yt) → (s̄, ȳ) yield

st
j = O(|ηt

j |
1
γ ), ∀j ∈ J̄ , and |yt

j | = O(|ηt
j |), ∀j ∈ J̄C ,

we have ‖(st
J̄
, yt

J̄C )‖1 ≤ ‖ηt‖1 and ‖(x̄t, s̄t, ȳt) − (xt, st, yt)‖ ≤ C ′
1‖(st

J̄
, yt

J̄C )‖1. Then it follows
that

|f(xt) − f(x̄t)| ≤ C2(C ′
1)

2‖ηt‖2
1 +

∑

j∈J̄

C ′
1‖ηt

j‖1|ηt
j |2 +

∑

j∈J̄

|ηt
j |2 ≤ C ′

3‖η‖2
1
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and
Δt ≤ C ′

3‖ηt‖2
1 ≤ κ′(f(xt) − f(xt+1)) = κ′(Δt − Δt+1).

Using this relationship, we have Δt+1 ≤ κ′−1
κ′ Δt. It implies that {Δt} → 0 Q-linearly. In

addition, ‖x̄− xt1‖ = O((Δt1)
1
4 ) = O((1− 1

κ′ )
1
4 t1). This means that {‖x̄− xt‖} converges to 0

R-linearly. �

5 Numerical Experiments

In this section, we test the practical behaviour of Algorithm 2.3. We test different problems
containing convex quadratic programming and nonconvex programming. Our code is written in
MATLAB R2012b, and all the experiments are performed on a Dell Optiplex 780 workstation
with Intel Core Quad 2.83GHz CPU and 4GB of RAM.

Firstly, we consider LASSO problem that

min
θ∈Rn

1
2
‖Ãθ − b̃‖2 + λ‖θ‖1,

where Ã ∈ R
m×n, b̃ ∈ R

m. The dual problem of LASSO is that

min
x∈Rm

1
2
xT x − b̃

λ

T

x,

s.t. ÃT x ≤ (1, . . . , 1)T ,

− ÃT x ≤ (1, . . . , 1)T ,

which has the same form of Problem (1.2). It has m variables and 2n constraints. Moreover, it
is a convex quadratic programming.

In our experiments, Ã and b̃ are generated by synthetic method. Firstly we generate a
sparse variable x and a random matrix Ã with gaussian distribution. Then we set b̃ to be Ãx

with a noise (1%). In our implementation, we use three different values of γ (γ = 0.6, 0.8, 1).
For each case we use five different M (M = 2n, n, 2m, 1.6m, 1.2m). When M = 2n, the method
is the classic Affine-Scaling Method. We use an exact-type rule

αt = min
(
−(gt)T dt

‖dt‖2
, αt

0

)

to exchange the Armijio-type rule. The new αt satisfies (2.1) with σ1 = 1
2 , and inft αt > 0.

Thus, the convergence can be guaranteed. In addition, we set σ2 = 0.9 and take 0 to be the
initial point. We terminate the method when both ‖yt

+‖ and ‖Styt‖ are less than a tolerance
tol = 10−2, where (yt

+)j = max{yt
j , 0}.

Table 1 reports the number of iterations (iter), cpu time (in seconds), final objective value,
final ‖yt

+‖, and ‖Styt‖ (complementary). We see from Table 1 that it has better performance
at γ = 0.6, 0.8 rather than γ = 1. When γ = 0.5, it leads to numerical error that the sequence
{xt} goes to boundary rapidly. For each case, it saves about half of the time, when M is down
from 2n to n. For the most cases, M = 2m yields less cpu time than M = n. But when M

reduces to a number close to m, the number of iterations grows rapidly. When M = m, the
algorithm is numerically unstable and does not converge in the most cases. This states that
the appropriate choice of M makes the algorithm efficient.
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Problem
γ M iter cpu obj ‖yt

+‖ com.
m n λ

500 2000 1e − 3 0.6 4000 61 8.162 −47186.2 9.53e − 4 9.60e − 3

2000 52 4.240 −47186.2 1.45e − 3 6.83e − 3

1000 47 2.775 −47186.2 2.12e − 3 9.00e − 3

800 57 3.259 −47186.2 1.52e − 3 9.19e − 3

600 66 3.499 −47186.2 9.73e − 4 8.91e − 3

0.8 4000 64 8.564 −47186.2 2.66e − 3 9.98e − 3

2000 43 3.360 −47186.2 2.09e − 3 8.53e − 3

1000 78 4.836 −47186.2 1.45e − 3 9.81e − 3

800 60 3.329 −47186.2 1.55e − 3 9.25e − 3

600 136 7.343 −47186.2 1.34e − 3 9.94e − 3

1 4000 86 10.766 −47186.1 5.11e − 3 9.35e − 3

2000 86 6.725 −47186.1 5.36e − 3 9.95e − 3

1000 130 7.904 −47186.1 3.88e − 3 9.74e − 3

800 132 7.037 −47186.1 4.16e − 3 9.89e − 3

600 411 21.102 −47186.2 2.49e − 3 9.95e − 3

500 4000 1e − 3 0.6 8000 107 26.928 −46993.9 1.10e − 4 3.23e − 3

4000 88 13.421 −46993.9 1.50e − 4 7.92e − 3

1000 53 4.208 −46993.9 1.40e − 4 3.95e − 3

800 47 3.503 −46993.9 1.55e − 4 4.66e − 3

600 45 2.913 −46993.9 0.99e − 4 4.88e − 3

0.8 8000 52 12.244 −46993.9 1.73e − 4 8.25e − 3

4000 45 6.284 −46993.9 1.79e − 4 9.99e − 3

1000 36 2.642 −46993.9 1.19e − 4 8.49e − 3

800 34 2.310 −46993.9 0.96e − 4 7.28e − 3

600 45 2.739 −46993.9 1.02e − 4 7.98e − 3

1 8000 98 24.196 −46993.9 2.23e − 4 9.70e − 3

4000 69 10.332 −46993.9 3.12e − 4 9.75e − 3

1000 95 8.026 −46993.9 2.18e − 4 9.92e − 3

800 116 9.514 −46993.9 2.20e − 4 9.78e − 3

600 127 9.518 −46993.9 2.08e − 4 9.07e − 3

250 1000 1e − 3 0.6 2000 53 1.628 −24884.8 1.74e − 3 6.70e − 3

1000 46 0.966 −24884.8 1.24e − 3 6.38e − 3

continued on next page
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continued from previous page

Problem
γ M iter cpu obj ‖yt

+‖ com.
m n λ

500 35 0.562 −24884.8 2.52e − 3 8.45e − 3

400 41 0.618 −24884.8 1.91e − 3 9.34e − 3

300 56 0.792 −24884.8 2.28e − 3 8.93e − 3

0.8 2000 38 1.086 −24884.8 2.42e − 3 9.29e − 3

1000 32 0.606 −24884.8 2.61e − 3 9.29e − 3

500 37 0.579 −24884.8 2.72e − 3 8.56e − 3

400 34 0.506 −24884.8 2.92e − 3 9.45e − 3

300 126 1.812 −24884.8 1.98e − 3 9.67e − 3

1 2000 61 1.811 −24884.7 6.97e − 3 9.93e − 3

1000 63 1.259 −24884.7 6.45e − 3 9.28e − 3

500 204 3.349 −24884.8 3.59e − 3 9.94e − 3

400 142 2.126 −24884.7 4.71e − 3 9.96e − 3

300 469 6.703 −24884.8 2.58e − 3 9.92e − 3

250 2000 1e − 3 0.6 4000 79 4.548 −24854.9 1.46e − 3 6.64e − 3

2000 67 2.433 −24854.9 9.77e − 4 5.06e − 3

500 43 0.902 −24854.9 6.54e − 4 4.81e − 3

400 38 0.754 −24854.9 7.14e − 4 5.72e − 3

300 42 0.778 −24854.9 5.90e − 4 9.31e − 3

0.8 4000 39 2.048 −24854.9 4.53e − 4 9.26e − 3

2000 35 1.160 −24854.9 5.21e − 4 6.01e − 3

500 29 0.564 −24854.9 7.28e − 4 9.61e − 3

400 39 0.762 −24854.9 6.48e − 4 9.57e − 3

300 47 0.824 −24854.9 4.82e − 4 9.17e − 3

1 4000 118 6.733 −24854.9 6.95e − 4 9.69e − 3

2000 115 4.173 −24854.9 7.32e − 4 9.91e − 3

500 64 1.323 −24854.9 1.00e − 3 8.59e − 3

400 52 1.030 −24854.9 1.41e − 3 8.55e − 3

300 79 1.447 −24854.9 1.13e − 3 7.29e − 3

Table 1 Behavior of partial first-order affine-scaling method to LASSO

We now compare the numerical results of our method with fmincon Interior Point Algorithm
on nonconvex problems. The Matlab function fmincon is to solve nonlinear programming. More
extensive description can be found in [5, 6, 20].

For f , we choose 5 test functions from the set of nonlinear least square functions used by
Moré et al. [12]. Among the 5 nonconvex functions, ER, DBV, BT are with sparse Hessian,
and TRIG, BAL are with dense Hassion. We use the default starting point x0 given in [12]. For



A Partial First-Order Affine-Scaling Method 15

constraints, we generate A with gaussian distribution, then the primary constraints are AT x ≤
μ(1, . . . , 1)T , where μ > 0 is given. After that, we translate the center of the feasible region
from the origin to x0, which means AT (x − x0) ≤ μ(1, . . . , 1)T . We terminate both methods
when the first order optimality measure is below a tolerance (tol > 0) times ‖∇f(x0)‖∞. We
set tol = 1e− 3 except BAL. For BAL, we set tol = 1e− 10. For Algorithm 2.3, we set γ = 0.8
and M = 2m, since such selections may bring good performance due to the experience from
Table 1.

The results are shown in Table 2. We see that Algorithm 2.3 costs less time than fmincon in
the most cases. Especially, for BT and BAL, Algorithm 2.3 performs much better. For DEV,
Algorithm 2.3 costs more time than fmincon, but with a better objective function value.

Problem m n μ
Algorithm 1 fmincon

obj iter cpu obj iter cpu

ER 250 2000 1 3.436e − 2 1457 14.96 3.601e − 2 81 66.89

DEV 250 2000 1e − 4 7.971e − 8 351 10.77 5.184e − 7 19 9.66

BT 250 2000 1 2.885e − 1 432 4.20 3.640e − 1 51 43.52

TRIG 250 2000 1e − 3 1.311e − 4 187 7.14 2.218e − 4 16 8.36

BAL 250 2000 1e − 1 2.947e + 6 30 0.74 2.947e + 6 27 21.21

Table 2 Comparing Algorithm 2.3 with fmincon to nonconvex problems

6 Conclusion

In this paper, we have proposed a partial first-order affine-scaling method for solving smooth-
ing programming with inequality constraints. The method chooses a subset of constraints in
consideration at each iteration. We have proved the global convergence and showed the local
convergence rate under some assumptions. Numerical experiments show that the method can
solve Problem (1.2) efficiently, and a appropriate M can improve the efficiency of affine-scaling
method.
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