1997 4E 12 A iz B ¥ ¥ M Fi1H H2H

Dec.,1997 OR TRANSACTIONS Vol.1 No.2

A Simple Multistart Algorithm for Global Optimization *

FRED J. HICKERNELL

(Department of Mathematics, Hong Kong Baptist University, Hong Kong)

YA-X1ANG Yuant

(State Key Laboratory of Scientific and Engineering Computing
Institute of Computational Mathematics and Scientific/Engineering Computing
Chinese Academy of Sciences, Beijing 10080, China)

Abtstract

A generalization of the multistart algorithm is proposed for finding the global
minimizer of a nonlinear function of n variables. Our method concentrates a quasirandom
sample by performing a few inexpensive local searches. The sample is then reduced by
replacing worse points by new quasirandom points. A complete local search is performed
only on those points with small function values. This method performs favorably in
comparison to other global optimization methods.

Key word: nonlinear optimization, global minimizer, random points, quasirandom
points.

1. Introduction

Consider the unconstrained optimization problem: find z* such that

f(z*) = min f(), (1)

z€X

where f(z) is a nonlinear function defined on "™ and X C R”. Our objective is to find
the global minimizer of f(z) in the feasible set. Without assuming any conditions on f(x)
global optimization problems are unsolvable in the following sense: no algorithm can be
guaranteed to find a global minimizer of a general nonlinear function within finitely many
iterations. Suppose that an algorithm applied to a nonlinear function f(z) produces iterates
z; and terminates after K iterations. Unless X ={z; | i=1,...,K}, one can construct
a new function f with the same function and gradient values as f at all the z; and with

f(#) < min f(z;) -1

1<i<K

Received: Feb. 18, 1997.
*This work was partially supported by Chinese NNSF and the project “large scale scientific computing”
of State Commission of Science and Technology, China
fResearch carried out while visiting Hong Kong Baptist University, supported by Croucher Foundation

for some Z € X. This implies that this algorithm cannot find the global minimizer of f(z).
Even assuming continuity one must evaluate a function on a dense subset of the feasible
set to be certain of finding the global minimizer. This unsolvability of global optimization
problems is well known, namely, unless special assumptions are made about the objective
function any method designed to solve the global optimization requires infinitely many
function evaluations (see Dixon [1], Rinnooy Kan and Timmer [9]).

There have been two approaches in the development of global optimization algorithms:
deterministic and stochastic (see Rinnooy Kan and Timmer [9], Dixon and Szego [2]). De-
terministic methods can guarantee absolute success, but only by making certain restrictive
assumptions on the objective function. Stochastic methods evaluate the objective function
at randomly generated points. The convergence results for these methods are not absolute.
However, the probability of success approaches one as the sample size tends to infinity under
very mild assumptions about the objective function. Reviews of various global optimization
approaches are given by Rinnooy Kan and Timmer [9] and Térn and Zilinskas [15].

The simplest stochastic method is the Monte Carlo method, which evaluates the objec-
tive function on a set of random points and takes the point with the least function value as
the approximate minimizer. The Monte Carlo method is straightforward and very easy to
implement. However, it has a serious disadvantage of requiring many function evaluations
to find an acceptable approximate solution.

Many algorithms have been proposed that combine the Monte Carlo method with an
efficient quasi-Newton local search procedure. For each local minimizer, z7, let X denote
its basin of attraction. By this we mean that if a local search starts from a point in X7, it
will converge to z}. The multistart method (see [2][9]) applies local searches to each point
in a random sample drawn from the feasible region. If one of these points happens to be in
X*, the basin of attraction of the global minimizer x*, then the multistart method succeeds.
However, the multistart method is inefficient in that it performs complete local searches
starting from all sample points, including those not in X™*.

Extensions of the multistart method have been proposed by Térn [14], Rinnooy Kan
and Timmer [7][8], Mayne and Meewella [10] and others. These extensions seek to reduce the
number of complete local searches that are performed and increase the probability that they
are started from points in X*. At each major iteration a sample is drawn from the feasible
region. This sample is then transformed by removing points with larger function values
and/or performing one or a few local search steps. A complete local search is performed only
on those points that are unlikely to belong to X for some known z}. Several algorithms
use a form of cluster analysis, in particular the single-linkage method, to identify points
belonging to X ;. Another approach proposed by [10] is to check whether the point satisfies
a quadratic approximation to the objective function centered at z;.

Several authors have proposed global optimization methods based on quasirandom, as
opposed to random, samples. Quasirandom samples are sets of deterministic points that
are evenly distributed over a set (see Hua and Wang [6] and Niederreiter [11]). Niederreiter

and Peart [12] and Wang and Fang [16] independently developed methods that perform a
sequence of quasirandom searches on domains of decreasing size. An algorithm for solving
nonlinear equations that combines quasirandom and quasi-Newton searches has recently
been proposed by Hickernell and Fang [5].

The advantage of quasirandom samples over random samples may be illustrated by
considering a particular case: the infinite sequences developed by Faure [3]. For every
prime number ¢ Faure constructed an infinite sequence {z;|i = 0,1, ...} on the ¢-dimensional
unit cube with the following property: any cube of the form [ilt_jl, (i1 + l)t_jl] X - X
[igt ¢, (iy 4+ 1)t~ I¢] with volume ¢ ™ contains exactly one of the t™ points zym 41, - - . , 24 1)em -
However, for a random sample of t™ points there is a probability of (1 —t ™)!" (x~ e ! for
large m) that this same cube contains no sample points. Thus, the Faure points are more
evenly distributed than random points.

The algorithm proposed in this article is an extension of the multistart method. Having
drawn a quasirandom sample of N points from the feasible set, p iterations of an inexpensive
local search are applied to concentrate the sample. The ¢ points with the smallest function
values are retained, while the other N — ¢ points are replaced by new quasirandom points.
Then the concentration step is repeated. Any point that is retained for s iterations is used
to start an efficient complete local search, provided that its function value is not significantly
larger than the smallest function value obtained so far. The algorithm terminates when no
new local minimum is found after several iterations.

The next section describes our algorithm in detail. It is also recast in a form suitable

for solving systems of nonlinear equations. Numerical results are reported in Section 3.

2. The Algorithm

Our algorithm consists of “major iterations”. At the beginning of the k* major itera-
tion, a set of N starting points {xgk) |i =1,...,N}is available. These points are concentrated

by applying p iterations (usually p = 1 or 2) of an inexpensive local search (such as steepest
(k)

descent) to each wgk) to obtain a new point y,’. To reduce the sample, the ¢ points with
smallest function values are identified. That is, the set I(k) = {i;| j = 1,...,¢} is chosen
such that

FO) < F) < < FWP) < FP) for all 1 ¢ I(k).

(k+1)

i1 9e -

(k)

1 .
iy 0 . mz(f"“) for the next major

(k1)

i

The points y yff) become the starting points x
iteration. N — ¢ new quasirandom points comprise the remainder of the z

At the end of a major iteration, we check whether any index has remained in the
set I(k) for s consecutive iterations. If so, an efficient local search algorithm (such as
BFGS) is applied to find a local minimizer, z. If f(z) is smaller than FBEST, the smallest
function value found so far, then NSP, the number of stationary points, is increased by one
and NWSP, the number of worse stationary points, is set to zero. Otherwise, NWSP is

increased by one.

Stopping conditions for global optimization are difficult to choose. If we know, f.in,
the global minimum value of f(z) in X, the algorithm can be terminated when a point
with a function value very close to f.in is found. However, in general f,;, is unknown.
When NW SP is large, it seems likely that the current best local minimizer is also a global
minimizer, since the previous NW SP local minimizers found have higher function values.
Therefore, we terminate the algorithm when NW SP is greater than or equal to r x NSP
for some integer r > 1.

The algorithm can be stated as follows:

Algorithm 2.1

Step 0 INITIALIZE. Given integers N > q>1,p > 1,r > 1, s > 1 and a positive number e,
Choose a quasirandom sample of N initial points 29 (i = 1,...,N).
Set k= NSP=NWSP =0 and NTIX(j) =0 (j = 1, ..., N).
Step I CONCENTRATE. Apply p iterations of an inexpensive local search algorithm (Al-
gorithm A) to each of the points wgk) (:=1,...,N), obtaining yzgk) (i=1,..,N).
Step 2 REDUCE. Find I(k) C {1,...,N} such that I(k) has q elements and that f(ygk)) <
F$®) holds for all i € I(k) and j ¢ I(k).
Set NTIX(j) = { 0 , ify ¢ Ik)
NTIX(j)+1 if j € I(k)
Step 8 FIND LOCAL MINIMUM. For j =1,..., N such that NTIX(j) > s:
Set NTIX(j) = 0.
IFNSP=0or f(yj(k)) < FBEST + € then
Apply an efficient local optimization algorithm (Algorithm B) starting from
yJ(-k) to obtain a local minimizer z,
If f(z) < FBEST then

Set NSP = NSP +1, NWSP =0, FBEST = f(2).

Else
Set NWSP =NWSP + 1.
End
Else
Set NWSP =NWSP + 1.
End

IfF NWSP >r x NSP then stop (success).
Step 4 SAMPLE ADDITIONAL POINTS. For j = 1,2,...N
If NTIX(j) =0 then
Generate wg-kﬂ) by quasi-random techniques.

Else
Set x§k+1) = y](.k).
End
Set k=Fk+1.
If the total number of function calls > M FCALL then stop (failure).
Go to Step 1.

The algorithm proposed here concentrates the sample (applies one or two local search
steps to every point) before reducing the sample (replacing points with high function values).
The reason is that while X* may contain many points with high function values, but applying
a few iterations of a local search procedure to these points should substantially decrease the
function values. Térn and Zilinskas [15] report that in Térn’s experiments with clustering
methods concentration was found to be more effective than simple reduction. Furthermore,
they remark that the reason several authors prefer reduction is because it allows a theoretical
basis for stopping conditions which concentration does not.

The extensions to the multistart algorithm reviewed in Section 1 record all local min-
imizers found and their approximate domains of attraction. Our algorithm does not take
this approach in order to avoid the inherent calculation involved. The overhead required to
perform clustering increases with the number of iterates. Even the approach of Mayne and
Meewella [10] may be computationally intensive if the number of local minimizers is large.

Our algorithm is a general one, allowing different choices of NV, p, ¢, r, s and €. Some of
the methods described in the Section 1 are special cases of the above algorithm. N = ¢ and
€ = 0o corresponds to the original multistart algorithm. N = ¢ = 1 and € = 0 is comparable
to the S2 algorithm of Hartman [4]. The quasirandom search methods of Niederreiter and
Peart [12] and Wang and Fang [16] are similar to Algorithm 2.1 when p = 0 and there is no
local search in Step 3.

However, our interest is not these special cases. The value of N may be moderate to
large depending on the assumed complexity of the function. The optimal values of p and ¢
depend on the shape of the objective function. If the function has small values on X*, the
basin of attraction of the global minimizer, then p and ¢ can be small, because the more
crucial requirement is generating enough sample points for one to lie in X*. If, on the other
hand, the objective function has large values on X* then concentration is important and
reduction should be done conservatively. This would suggest larger values for p and ¢q. In the
absence of any special considerations ¢ be should set small in relation to N (e.g. ¢ ~ VN).
In order to avoid the cost of excessive local searches the value for p is recommended to be 1
or 2. The value of s = 2,3 works well in practice. The value of € should be small enough to
prevent unnecessary local searches, but large enough to allow useful local searches. A value
of approximately 10~* times the typical function value is reasonable.

Algorithm A in Step 2 for computing yf can be chosen by the user. If the steepest

descent method is used, then

A = el

1 Y

2 =al) - al)ViEl) (=120, 4" =2,

for all i = 1,2,..., N, where ag”? > 0 are stepsizes. If D is a typical length scale of the

feasible region, X, then setting ag’kj) = D/(N'/||V f(xg,kj)_l)Hz) as a first approximation
attempts to obtain a significant decrease in the function value without taking too large a
step.

The new sample points in Steps 1 and 4 are generated by quasirandom methods rather

than random methods for the reasons given in the Introduction. In particular the Faure
points [3] are employed in the numerical experiments in the next section. The number used
to generate them is chosen to be the smallest prime number greater than or equal to n. Any
infinite sequence of quasirandom points could be used just as easily. See Niederreiter [11]
for a description of other sequences such as those of Halton and Hammersley.

Most quasirandom number generators give points on an n-dimensional unit cube. To
obtain a sample on the feasible set, a suitable transformation must be used. For example, if
the feasible set is a finite cube, the desired sample can be obtained by a linear transformation
in each coordinate direction. If X = ", then a transformation from [0, 1] to (—o0, 00) such
as the inverse Gaussian distribution function may be used for each coordinate.

Although our algorithm does not have a strong theoretical basis, it is possible to un-
derstand under what conditions it will not obtain the global minimum. Suppose that our
algorithm stops after K major iterations, with fstop = fmin + A as the approximation to the
global minimum, where fpnin is the true global minimum and A is some positive number.
Let X*(A,p) be the subset of X* with the following property: p iterations of a local search
starting from any point in X*(A, p) leads to a point y such that f(y) < fimin+A. Therefore,
in the course of K iterations, none of the M > N + K(N — ¢q) quasirandom sample points
were in X*(A, p). If the sample were random, the probability of this happening is would be
(1 — u(X*(A,p))M, where u(Y) denotes the probability of a single random point lying in
the set Y. Because quasirandom points are more evenly distributed the probability should
be even less. Therefore, or our algorithm to fail X*(A,p) must be very small, especially if
M is large.

The global optimization algorithm may be modified to solve nonlinear equations. Specif-
ically the problem is to find z* satisfying

F(z*) =0, (2)

where F' is a nonlinear function from " into ™. Solving (1) is equivalent to solving (2) if
f(z) is taken to be ||F(z)|| for some norm ||.|| Therefore we can apply Algorithm 2.1 to solve
(2). However, since the global minimum of the objective function is known the algorithm
should be modified. There is no need for the variables NSP and NW SP nor the parameter
r. The stopping criterion in Step 3. should be changed to the following: If FBEST < 4,
then stop (success).

If f(x) = ||F(z)||2, we suggest that the steepest steps, namely, Cauchy directions for
Algorithm A in Step 1 and the Gauss-Newton method or the Levenberg-Marquardt method
can be used for Algorithm B in Step 3.

Térn and Zilinskas [15], Smith, Eskow and Schnabel [13] and others have discussed
parallel implementations of global optimization. Although we have not had the opportunity
to perform numerical experiments on a parallel computer, we note that the bulk of our
algorithm, that is the concentration step, is inherently parallelizable.

3. Numerical Results

A double precision FORTRAN program has been written to test our algorithm. Steep-

est descent is used for Algorithm A and BFGS with inexact line searches is used for Algorithm

B. The termination criterion for Algorithm B is ||V f(x)|| < 1075. The quasirandom sample

points are generated by Faure’s algorithm.

The test problems for the numerical experiments come from Dixon and Szegd [2]. They

are as follows:

Example 3.1 Goldstein and Price:

f@)= [1+ (21422 +1)%(19 — 1421 + 327 — 1435 + 62179 + 373] ¥

[30 + (221 — 372)?(18 — 32z + 1227 + 48z, — 36122 + 2723)] (3)
X ={z | ||z]lo < 2,2 = (z1,22)T € R2}.
Example 3.2 Branin:
f(z1,22) = c1 (22 — coxy + 3wy — c4)® + ¢5(1 — cg) cos(z1) + ¢s, (4)
where ¢ = 1,¢2 = 5.1/(47?),¢c3 = 5/m,cq = 6,¢c5 = 10,c6 = 1/(87). X = {z —5<
1 S].O, 0 sz S 15}
Example 3.3 Hartman’s Family:
m n
fl@)=- Zci exp (- Zaz’j(mj _pij)Q) (5)
i=1 j=1
where p; = (pil,pig, R ,pm)T eR” a; = (aﬂ,aig, .. .,am)T eR™, ¢; >0 (l =1,2,..... .,m)

and z = (z1,22,...,2,)T €R". X ={z | 0< x; <1}. The data are as follows:

1) Hartman3: n =3, m =4,

i aij Ci Dij
1{30 10 30| 1.0} 03689 0.1170 0.2673
2101 10 35| 1.2 04699 0.4387 0.7470
3130 10 30| 3.0| 0.1091 0.8732 0.5547
4101 10 35| 3.2 0.03815 0.5743 0.8828
2) Hartman6: n =6, m =4,
i Qij Ci
11100 30 17 35 1.7 80| 1.0
21005 10. 17 0.1 80 14| 1.2
31300 35 17 10 17 8 | 3.0
41170 80 005 10 01 14| 32
i Pij
11 0.1312 0.1696 0.5569 0.0124 0.8283 0.5886
21 0.2329 0.4135 0.8307 0.3736 0.1004 0.9991
3| 0.2348 0.1451 0.3522 0.2883 0.3047 0.6650
4| 04047 0.8828 0.8732 0.5743 0.1091 0.0381

Example 3.4 Shekel’s family:

m 1
f(l"):_Z(x_ai)T(m—ai)+c,~ ©

i=1

where a; = (ai1,ai2,-..,ain)t €R", ¢; >0 (i=1,2,......,m) and = (z1,%a,...,2,)" €
. X={z | 0<z <10}.
Data:n=4,m=5,7,10

i 1 2 3 4 5 6 7 8 9 10
an | 4 1 8 6 3 2 5 8 6 7
ap | 4 1 8 6 7 9 5 1 2 3.6
aiz | 4 1 8 6 3 2 3 8 6 7
ais | 4 1 8 6 7 9 3 1 2 36
¢ |01 02 02 04 04|06 03|07 05 0.5

The parameter values used for the numerical experiments are N = 15, p =1, ¢ = 3,
r=3,5 =2and e = 107%. The numerical results are reported in Tables 3.1 and 3.2.
As suggested by Dixon and Szegd [2], we give the number of function evaluations and the
running time measured in units of standard time, where one unit corresponds to the time
required for 1000 evaluations of the S5 test function at the point (4,4,4,4)T. The global

minimum was found in every case.

Table 3.1 Results of the Algorithm (N =15,p=1,¢=3,r = 3,5 =2)

Problem | GP | BR | H3 H6 | S5 S7 | S10
NF 159 | 172 | 143 | 145 | 121 | 127 | 157
NG 69 | 79 66 71 60 62 77

T 05|05 (075|125] 05 |07 | 1.0

Table 3.2 Solutions found by the Algorithm

Problem Solution Found Function Value
GP -1.234733348E-10
-1.0000000036761 | 2.99999999999994
BR 3.14159265091356
2.27500000358534 | .3978873577411121
.1146143435546542
H3 .5556488500545595 | -3.86278214782076
.8525469541408391
.2016895034585899
.1500106658026912
..4768739746403644
H6 .2753324316807096 -3.3223680114155
.311651622367135
.6573005449766441

4.00003715289352
S5 | 4.00013327657369 | -10.1531996790582
4.00003715289352
4.00013327657369
4.00057291797521
S7 4.0006893683435 | -10.4029405668187
3.99948970726924
3.99960615763753
4.0007465348935
S10 | 4.00059293675117 | -10.536409816692
3.99966339657596
3.99950979843363

The numerical results for several global optimization algorithms are given by Rinnooy
Kan and Timmer [9] and Térn and Zilinskas [15]. Mayne and Meewella [10] give the numer-
ical results for their algorithm. Our algorithm requires fewer function evaluations than most
of the other methods. However, it is noted that our algorithm requires gradient calculations,
while most other methods do not compute any gradients. Our results also revealed that our
algorithm requires less running time than nearly all other methods. In comparison to the
the multi-level single linkage method running times for our algorithm were greater for GP,
BR and H3 but less for H6, S5, S7 and S10.

Since none of the above 7 test problems is highly oscillating, our algorithm succeeded
in finding a global minimizer for each problem with relatively small parameters N, p, ¢ and
r(N=15,p=1,¢g=3,r =3). When the objective function has many locate minima, it is
likely that our algorithm will fail to find a global minimum if small parameters N, p, ¢ and
r are used. To explore this, we constructed the following test function:

Example 3.5 (Guilin Hills)

n
z; +9 . T
=3 i , 7
1 @) +;C’xi+1osm(1—:c,~+1/(2ki)> @
where ¢; > 0(= 1,...,n) are parameters and k;(i = 1,...,n) are positive integers. X =
{z| 0<xz; <1}. We consider two cases:
1)7L=2,Cl=1,02=1.5,k1=5,k2:3
2)n=3,01=1,02=1.5,C3:2,k1=5,k2=3,k3:10.
n
The function (7) has [] k; local minima in the region X. We call this function by
i=1
Guilin Hills because of its similarity to the mountains in Guilin, China. Only one of the
local minima of (7) is the global minimum, which is very close to the point

1 LI ! 1 Ly (8)
S —ak) ®E—dky T8 4k,)

The global minimum value of (7) in X is 0.72750432 when n = 2, and —1.09065629 when
n =3.

For Example 3.5, we found that our algorithm with N =15, p=1,¢ =3, r = 3 and
s = 2 can not find the global minimum. We tested our algorithm for Example 3.5 with
s = 2 and different choices of parameters N, p, ¢ and r. The results are given in Tables 3.3
and 3.4. All the runs failed to find the global minimizer. We also tested our algorithm with
s = 3. Only one run with N =15, p = 5, ¢ = 3 and r = 6 located the global minimizer.
Results are reported in Tables 3.5 and 3.6.
Table 3.3 Results of Example 3.5(n = 2) by the Algorithm(s = 2)

Npqr | NF | NG | T | NSP| FBEST
15133 | 141 | 66 | 05 | 1 | .738701490
40-1-33 | 649 | 87 | 2.0 | 2 | .733701252
30-2-10-4 | 226 | 123 | 1.2 | 1 | .738701490
30-3-3-5 | 4004 | 2266 | 4.75 | 4 | .729021968
15139 | 1372 | 615 | 3.75 | 3 | .729021968
30326 | 3999 | 2115 | 4.5 | 4 | .729021968
60-3-35 | 4558 | 2539 | 5.1 | 2 | .729021968

Table 3.4 Results of Example 3.5(n = 3) by the Algorithm(s = 2)

Npqr | NF | NG | T |[NSP| FBEST

15-1-3-3 | 171 83 0.5 1 -1.06868404
40-1-3-3 | 487 | 208 | 1.6 1 -1.06868404
30-2-10-4 | 228 125 1.2 1 -1.06868404
30-3-3-5 | 961 | 555 | 2.0 1 -1.06868404
15-1-3-9 | 299 | 143 | 1.25 1 -1.06868404
30-3-2-6 | 1262 | 738 | 3.5 1 -1.06868404
60-3-3-5 | 1976 | 1102 | 5.5 1 -1.06868404
60-4-3-10 | 7556 | 4341 | 19.5 2 -1.08387466

Table 3.5 Results of Example 3.5(n = 2) by the Algorithm(s = 3)

Npqr | NF | NG | T | NSP| FBEST
15-1-3-3 | 185 | 109 | 0.5 | 1 | 0.73870149
40-1-3-3 | 425 | 243 | 10| 1 | 0.73870149
30-2-10-4 | 352 | 184 | 05| 1 | 0.73239742
30-3-3-5 | 6758 | 3701 | 8.0 | 5 | 0.72773712
15-1-3-20 | 3721 | 2317 | 83 | 4 | 0.72814205
15-4-3-6 | 5034 | 2586 | 5.5 | 4 | 0.72773712

6

by

15-5-3-6 | 7077 | 3609 | 8.0 0.72750432
Table 3.6 Results of Example 3.5(n = 3) by the Algorithm(s = 3)

N-p-g-r NF NG T | NSP FBEST
15-1-3-3 154 96 0.5 1 -1.06868404
40-1-3-3 862 572 2.5 2 -1.08436242
30-2-10-4 340 184 1.0 1 -1.06868404
30-3-3-5 1369 823 3.0 1 -1.06868404
15-1-3-20 1498 991 | 3.75 2 -1.08387466
15-4-3-6 4993 | 2838 | 11.0 4 -1.08475457
15-5-3-6 1084 600 2.0 1 -1.06868404
60-4-3-10 | 16848 | 10093 | 28.0 3 -1.08693563
100-3-10-10 | 8682 | 5434 | 17.0 3 -1.08952663

10

The above tables tell us that our algorithm is not efficient for the test function (7).

For this kind of highly oscillating functions, special techniques must be found to construct

faster algorithms.

4. Conclusion

The algorithm proposed is a simple extension of the original multistart algorithm. By

using quasirandom, rather than random, sample points better coverage of the feasible region

can be achieved. As found by previous authors concentration and reduction of the sample

eliminates unnecessary local searches. Although our algorithm is simpler in form than some

clustering algorithms it performs as well or better on several test functions.

References

[1]

[10]

[11]
[12]

[13]

[14]

L.C.W. Dixon. Global optima without convexity. Technical Report, Numerical Optimization
Centre, Hatfield Polytechnic, Hatfield, England, 1978.

L.C.W. Dixon and G.P. Szegd. The global optimization: An introduction, in: Dixon and
Szegd, eds., Towards Global Optimisation 2, North-Holland, Amsterdam, 1978, pp. 1-15.

H. Faure. Discrépance de suites associés é un syst/‘eme de num/’eration (en dimension s),
Acta Arithmetica, 61 (1982) 337-351.

J.K. Hartman. Some experiments in global optimization. Naval Research Logistics Quarterly
20(1973)569-576.

F. J. Hickernell and K. T. Fang. Combining quasi-random search and Newton-like methods
for nonlinear equations. Technical Report MATH-037, Hong Kong Baptist College, 1993.

L. K. Hua and Y. Wang. Application of Number Theory to Numerical Analysis. Springer-
Verlag and Science Press, Berlin and Beijing, 1981.

A H.G. Rinnooy Kan and G.T. Timmer. Stochastic global optimization methods: Part I:
Clustering methods. Mathematical Programming 39(1987) 27-56.

A H.G. Rinnooy Kan and G.T. Timmer. Stochastic global optimization methods: Part II:
Multi-level methods. Mathematical Programming 39(1987) 57-78.

A H.G. Rinnooy Kan and G.T. Timmer. Global Optimization. in: G.L. Nemhauser, A.H.G.
Rinnooy Kan and M.J. Todd, eds., Handbooks in Operations Research and Management Sci-
ence: Vol. I: Optimization, (North-Holland, Amsterdam, 1989) pp. 631-662.

D. Q. Mayne and C. C. Meewella. A non-clustering multistart algorithm for global optimiza-
tion. Analysis and Optimization of Systems, A. Bensoussan and J. L. Lions, ed. Lecture Notes
in Control and Information Sciences, Vol. 111, Springer-Verlag, Berlin, 1988.

H. Niederreiter. Random Number Generation and Quasi-Monte Carlo Methods. SIAM,
Philadelphia, 1992.

H. Niederreiter and P. Peart. Localization of search in quasi-Monte Carlo methods for global
optimization. SIAM J. Sci. Stat. Comput., 7 (1986) 660-664.

S. L. Smith, E. Eskow, and R.B. Schnabel. Large adaptive, asynchronous stochastic global
optimization algorithms for sequential and parallel computation. in: T. Coleman and Y. Li,
eds., Large-Scale Numerical Optimization (SIAM, Philadelphia, 1990) pp. 207-227.

A. Torn. A search-clustering approach to global optimization. in: Dixon and Szegd, eds.,
Towards Global Optimisation 2 (North-Holland, Amsterdam, 1978), pp. 49-62.

11

[15] A. Térn and A. Zilinskas. Global Optimization. Lecture Notes in Computer Science, Vol.
350, G. Goos and J. Hartmanis, eds., Springer-Verlag, Berlin, 1987.

[16] Y. Wang and K.T. Fang. A sequential numer-theoretic method for optimization and its
application in statistics. in: L. Wang and Y. Wang, eds., Lecture Notes in Contemporary
Mathematics (Science Press, Beijing, 1990).

12

