
Mathematical Programming 31 (1985) 269-285
North-Holland

O N T H E S U P E R L I N E A R C O N V E R G E N C E O F A T R U S T

REGION ALGORITHM FOR N O N S M O O T H OPTIMIZATION

Y. Y U A N

Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Cambridge
CB3 9E~; England

Received 3 November 1983
Revised manuscript received 15 September 1984

It is proved that the second order correction trust region algorithm of Fletcher [5] ensures
superlinear convergence if some mild conditions are satisfied.

Key words: Trust Region Algorithms, Nonsmooth Optimization, Superlinear Convergence.

1. Introduction

Fletcher [5] presents a trust region algori thm with a second order correction to

solve the fol lowing composi te optimization problem:

rain 4,(x) == f (x) + h(c(x)), (1.1)
x

w h e r e f (x) f rom R" to N and c(x) from ~" to N'" are twice cont inuously differentiable

functions and h(c) from N'~ to N is a polyhedral convex function of the form

h(e) = max (hive+ b~), (1.2)

hi and b~ being given vectors and constants respectively. The algorithm is based on

a model algorithm of Fletcher [3] and it is iterative. At the begining of the k-th
iteration, x (k~, A ~k and pk are available, where x (k! is an estimate of the solution

o f (1.1), A ~k~ is an estimate of the Lagrangian multipliers at the solution and p~k~
is a trust region bound. The algorithm requires the solution of the following
subproblem:

min OIk)(d) ~-- q~k~(d) + h(c(x ~kl) + A(x(k ')d) (1.3)

subject to

ildl I < p(k,, (1.4)

where

q(k~(d) = f (x ~k)) + v r f(xtk~)d + �89 v W~k) d,

m

Wlk '= V2f(x~k') + 2 X',k'V2ci(x(k)),
i = 1

269

(1.5)

270 ~': Yuan / Trust region algorithms

]]' II is any given norm and A = VTCCI~ is the Jacob ian of c. Let d ~k~ be a solution
of (1.3) and (1.4)~ then

r ~k _ 6 (x ' k ~) - - & (x ~ k ' + d ~)
~//k j(0) _ ~, kl(d,k,) (1.6)

is calculated, which is the ratio between the actual reduction and the predicted
reduct ion of the objective function. On some iterations the algori thm also solves
the following ' second order correct ion ' subprob lem:

m i n l b ' k ' (d) = q ' k ' (d ' k ' + d) + h l c (x k ~ + d ' ~) + A (x ' k ~) d) (1.7)

subject to

II d 'k ' + dll <-- tr ~' (1 .s)

Let d,k, be a solution of (1.7) and (I.81 and define

g' 'ta
~' ~9ik,(O) +~'(d '~ ')"

<1.9)
~ l k l & (x l k ~) - o (x ' ~ ' + d ' k ' + ~ ' k ')

6~k~(O)--~?k'(d 'k~)

Following Fletcher 's notat ion, we let ~'~ = x ~ k ' + d , =

, / / k ' (0) - O 'k ' (d 'k ') and a ~ 'k ' = ~' k ' (0) - ,~, k,(d,k ,), and w;e let g denote Vf, ;ih denote
the subdifferential of h, a n d g ~ k ' d e n o t e g ~ x) etc.

Using the above notat ion, the details of an iteration of the a lgori thm are as follows,
where k is the iteration number .

Fletcher's Algori thm

Step 1. Evaluate J~k', c '~ , g~k~, A ~k' and W ~ "
Solve (11.3)--(1.4) giving d' ~''
Evaluate t-~' if r ~ ' > 0 . 7 5 go to Step 7.

Step 2. Solve (1.7)--(1.8) giving d'~'"
Evaluate rr ~" if r ' ~ ' < 0 . 2 5 go to Step 4.

S t ep3 . l f r~.~ 'e[0.9, I 1] , s e t p ~ ' ~ ' "~ '~' �9 = .~p and go to
Step 9, otherwise go to Step 8.

Step 4. I f / , ,~ '~[0 .75 , 1.25] go to Step 5:
Evaluate ~ '
In computa t ion assign d ~ : = d ~ + d ~ , r ~ : = ~ ;
If r ~ ' > 0 . 7 5 go to Step 7.
I f r ~ > 0 . 2 5 go to Step {S.

k + l l Step 5. Set t / = c~glld~']l, ~t~r [0.1, 0.5],
I f r ~ ' > 0 go to Step 9.

Step 6. x ~ + ~ : = x ~ , generate ~ ' ~ " end of k-th iteration.
Step 7. I f I Id~ ' [l<p 'k' go to Step 8"

If r l ~ > 0 . 9 then p ~ l * : = 4 p ~ e l s z - p ~ k ' ~ : = 2 p ~ "
go to Step 9.

Y. Yuan / Trust region algorithms 271

Step 8. p~k~l):=pr~
Step 9. Set x ~ k+,, := x' k ~ + d r k 7, generate A ~ k+ ~ ~. end of k-th iteration.

The value of o~x in Step 5 is an estimate of the number o~* which satisfies

r c~*d ~k~) = mino~ o.5 r 'k~+ ad ck') Fletcher [5] gives a specific choice of

c~k, which does not require any line searches but only depends on the value of r ~k~

Further, he lets JL ~k*'~ be X ~k~ in Step 6 and l~k.~:, be the multipliers from either

the subproblem (1.3)-(1.4) or the subproblem (1.7)-(1.8) in Step 9.

Fletcher [5] shows that if {x~} (k = 1,2) are all in a bounded set in ~" then

{xk} is not bounded away from the Stationary Points, where a stationary point x*

means a point at which

.f(x*) + h (c(x*)) ~. /(x*) + VT f (x*)d + h (c(x*) + VT c(x*)d)

holds for all d c [~". The condit ion that {xk } is bounded is usually satisfied, specifically

if x, is so chosen that

x: r < r

is a bounded set. Let x* be an accumulat ion point of fxk}. Since our interest is in

the rate o f convergence, we asume that strict complementar i ty and second order
sufficiency condit ions are satisfied at x*, and that Rank(A*) = m. Due to the second

order sufficiency condit ion it is easy to show that xk ~ x*, since x* is an accumulat ion

point of{xk}. We assume that the functions f (�9) and c(�9) are three times cont inuously

differentiable. Without loss of generality, we also assume that h(e*)= hyde*+ b; for
all i = 1 , 2 , . . . , I. Let A*e ~h* (;d(* is the convex hull of the vectors h;, i = 1 , 2 , . . , I)

be the Lagrangian multipliers at x* such that

g* + (A*)TA* = O. 1.10)

The full rank of A* ensures the uniqueness of A* and the second order sufficiency

condit ion states that

where

d T W*d > 0 for all d ~ G*

G * = { d : max dV(g*+(A*)VA)=O,d~O} AGDh*

w* = v:f Ix*)+ ~ A;*V%Ix*).
i=1

1.11)

1.12)

Under the above assumptions, Fletcher [5] proves that, if the trust region bound
is inactive for all large k, then the algorithm converges quadratically. Yuan [16],

however, gives examples o f trust region methods that converge only linearly, so it
is important to investigate the effect of the trust region bound when k is large.

Since our result is stongly dependent on the condit ion A~k)-~A *, and since we
are not able to prove that the original choice o f X ~k~ in Fletcher [5] ensures this

condit ion, th roughout this paper we assume that the generation o f A ~k+~ gives the

272 Y. Yuan / Trust region algorithms

limit:

A'k'->A *. (1.13)

Many suitable methods for estimating Lagrangian multipliers are known, for example
Murray and Overton [10, 11]. The condition (1.13) admits many estimation tech-
niques, such as

A ~k+~'= argmin I[g ' k ' - (A 'k')~A[I. (1.14)

Some lemmas are stated and the main theorem is proved in the following section.
The proofs of the lemmas are given in the Appendix.

2. The result

In this section, we demonstrate superlinear convergence of the algorithm by
showing that the trust region bound is eventually inactive. To make the proof of
the main theorem straightforward, we give some lemmas without proofs, and only
prove the main theorem. The proofs of the lemmas can be found in the Appendix.
The following Lemma 2.1 is due to Fletcher [5], Lemma 2.2 is a generalization of
Lemma 4.3 of Yuan [15], and kemma 2.3 is the main result which indicates that
the trust region bound is bounded away from zero.

Lemma 2.1 (Fletcher [5]). There exists a positive constant c, and a neighbourhood o f

x*, such that Jbr all x in the neighbourhood the inequali o,

,/~(x)- ~b(x*) >/c, I lx- x*l[-~ (2.1)

holds.

Lemma 2.2. For any given ao~ (0, I), there exists a neighbourhood qfx* such that,

Jot all x in the neighbourhood,

oh(x)- min [/ (x) + g (x) r d + h (r
Ilall--IIx-x~ll

(2.2)

holds.

Lemma 2.3. Let d ~k~ solve (1.3)-(1.4) and d ~k~ soh,e (l.7)-(1.8), then

(I) IId'~'ll=O(Hx'~}-x*]l):

(2) I[,/r = O(l [x 'k ' - x*ll):
(3) a ~ , ' k ' ~ > e=lld~'ll = Jar some positive constant c=;
(4) r~f ' ~ 1 as k~+oe:

Y. Yuan / Trust region algorithms 273

(5) For any subsequence {kJ}, (f r~k?<~ al < 1 for some constant eel, then

IIdik"ll = o(lldlk?[I), (2.4)

lim /:lk ~= 1. (2.5)

Corollary 2.4. For all sufficiently large k, ptJ,, t~ >~ p(k

Proof. Let o~ in Lemma 2.3 have the value 0.75. Hence for all sufficiently large k,
either rlk~>0.75, or r e E [0.9, 1.1] and ~ck~c[0.9, 1.1]. Therefore by the definition
of p~k~ ~, we have p(k+~>~pCk). []

Theorem 2.5. f f A~k)-+ A*, the algorithm converges superlinearly.

Proof. Corol lary 2.4 ensures that {p~k~} is bounded away from zero, therefore for
large k, the trust region bound is inactive. So from (2.8) and (2.9) of Fletcher [5]
we have that

IIx,~§ ll
llx~,_x, ii -O(maxEIIx'~'-x*ll, Ila '" '-a*ll]) (2.6)

Thus the superl inear convergence result follows.

Corollary 2.6. I r a lk' is chosen to be a value q f l that minimizes]lg ~k~- (Atk~)TA 112,
then the algorithm either terminates within a.finite number of iterations of converges
to x* quadratically.

Proof. Since A* has full rank, for large k, A 'k' also has full rank. Therefore
a~k'=((A~k')-r)*g 'kJ. Because a*=((A*)V)+ g * and Rank (A *) = m, we have that
]]A ik~_ A* n = o (]Ix ~k~- x* I[). Thus, the quadrat ic convergence follows from (2.6). []

3. Discussion

By modifying the proof , one can show that the superl inear convergence result
remains valid if W ~k~ is replaced by any matrix Bk that satisfies

Bk~ W*, k - + ~ . (.3.1)

Further, the same is true if W ~j'~ is replaced by any matrix Bj, that tends to W*
along directions d ~k~, a~ ~k~ and x~k~-x*, which means

II(Bk - W*)zlI/[IzII--" 0 (3.2)

for z = d ~k~, a~ ~k~ and xCk'--X *, since to ensure the proofs in the Appendix valid we
only need that

w ' ~ ' z - W * z +o(l l z l l) ,

2 7 4 Y. Yuan / Trust region algorithms

holds for z = d 'k' , [l ~k' and x ~ k ~ - x *. Therefore the sequence {Bk} can be generated
by updating using function values and first order derivatives, which is usually much
easier than calculating second order derivatives. The PSB formula (Powell [13]) is
recommended, which works well in trust region algorithms for smooth optimization
(Powell [14]). In order to satist~ (3.2) the PSB formula has the form

where

Bk,, :/~k+ ii~,k,ll_, i1~11~ , (3.3)

m

~r'~'= 2 ;t', ~' ,k --VC,(X)] + V f (x ' ~ + - - V f (x ~k') [Vc,(x ~+~'~'~ k~ 61kl)
i = 1

--Bkfi Ik! 6 'k l= d ~k~ (3.4)

and {A~, k'} (i = 1,2 , m) are estimates of the Lagrangian multipliers A*. It is
expected that { B,} updated by (3.3)-(3.4) ensures (3.2), but we are not able to prove

it.
If the norm II'll in (1.4) and (I.8) is the infinity norm or the 1-norm, the

subproblems (1.3)-(1.4) and (1.7)-(1.8) can be solved by using techniques such as
in Barrels, Conn and Sinclair [1], and they can also be rewritten as linearly con-
strained quadratic programming calculations. For the solving of Q P problems, see
Fletcher [2], Gill et al. [9], Gill and Murray [8] and Goldfarb and Idnani [6].

Instead of updating the full matrix Bk, as pointed out by a referee, we can update
just the projected matrix. For details of the projected update methods, see, for
example, Fletcher [4], Gill and Murray [7] and Nocedal and Overton [12].

Acknowledgements

The author is greatly indebted to Professor M.J.D. Powell for his constant guidance
and encouragement, and for his studying the early drafts of this paper. Without his

help, this paper never would have been possible. The author wishes to thank Dr.
R. Fletcher for some helpful discussions and corrections. I am also grateful to the
referees for their useful comments and suggestions which lead to improvements.

Appendix - Proofs of Lemma 2.2 and Lemma 2.3

Proof of Lemma 2.2. If the lemma is invalid, then there exist m,~(O, 1), and a
sequence {x ~k'} (k = 1 ,2 , . . .) such that

x ' k l ~ x * (A.I)

Y. Yuan ,/ Trust region algorithms 275

a n d

S ince

O(x /k ') - man [((x l k l) + g l k ' V d + h (c < k l + A ' k) d)]
Ilall~ II. ,~tk, x*ll

< +<+[+(x 'k ') - + (x *)] . (A.2)

and
I

u'; ~ = 1. (A.7)
i - I

F r o m (A . 5) - - (A . 7) , it f o l l ows tha t

g , T (x t k l __ X *) + m i n i ~ i < 1) h]r a * (x tk~ - x*
l i ra i n f - - / , - o c , (A.8)

k+~. L].r ~' - x* It'-

which gives

g*+(x'k'- x*)+ hTa*(.r x*)=o(llx<~- x*ll+-). (A.9)

for all i = I, 2 I.

C o n s i d e r

rain [f (x ' k ') + g ~ k ' + d + h (c ! k ~ + A l k ~ d)]
Ildll ~ I1,, .'~ x+it

= min I ~ m a x [f(~*) + h ~c(~*) + b, + ~g* ' (x'~' - x *)
IJall ~= IIx' ~' - x*ll

+ �89 _ x*) + g,k >T d + hT(~a*(x 'k' - x*)

x*) + A ' ~ ' a)] } + o(IIx '~' - x* I1-') Imtk~(x tk) + 2

~< rain ((~m a-xt [f (x *) + h V ' c * + b + + � 8 9
Ildll~ I!-r ' -x+t l "-- :~

k')rh,)+Vd]l +o(llx'"'-x*ll=), (A.IO) ++_(g~ '++':++(A':
J

& (x Ig~) - ~f (x tk~) + gtkrr(x* - x ik~) + h (clkl + A ~ k~(x* -x< kl)]

= &(x 'k>) - r + O(l[x* - x 'k '1[=), (A.3)

we have tha t , u s ing (A.2)

r tk') - &(x*) = O([Ix 'k~ - x* H-~). (A.4)

H e n c e

g * V (x ' ~ ' - x *) + m a x hv, a * (x ~ k ' - x *) =o(llx'~>-x*tl~-), (A.5)
I~i~-I

us ing the a s s u m p t i o n tha t h (c *) = h (c * + b+ for all i, 1<~ i<~ I. M o r e o v e r , the s t r ic t

c o m p l e m e n t a r i t y and the de f in i t i on o f h(�9) i m p l y tha t there exis t u* > 0 such tha t

I
g , - r + y u ~ ? h (A , = O , (A.6)

i - I

276 Y. Yuan / Trust region algorithms

where the last part is obtained by forcing d in the middle part to have the form
~(a~+x*-x 'k') for I1~11<~ t lx'~'-x*ll . Let B(x)be the I xn matrix

~gT(x)+hTA(x)q

BCx) =]gVCx)" _ (A.I1
+ h;rA(x)]

t~_gV(x) +'h~A(x)~

It follows from (A.9) that

13(x*)(x*k'-x *) = O (l l x '~' - x* I1-+>, (A . 1 2)

Hence the vector

d Iki= - (B(x*)) + B(x*)(x `k+- x*), (A.13)

satisfies

and

11 d'k'll = O (l l x '~' - x* l l ;) , (A.14)

B(x*)d Ikl= -B(x*) (x Ik' - x*). (A.I 5)

Therefore

•(x*)(x ' k ' - x*) + B(x'~ ')d ~ ' = o(ll x ~ ' - x* I1-~). (A. 16)

Because, for sufficiently large k, (A.14) implies I[d~k>ll <~ IIx~k~-x*ll, it follows from
(A. 10), (A.14) and (A.16) that

rain [f(x'k>+gik~Vd+h(ctk~+A~kld)]

(A.17)

(A . 1 8)

=.f(x*) + h(c*) + o([Ix ~ ' -x* l l z) .

(A.2) and (A.17) imply that

(l - ~ o) [6 (x ' k ' - 6 (x *)] ~ < o (l l x ' ~ ' - x*ll++),

which contradicts Lemma 2.1. Therefore Lemma 2.2 is true.

Proof of Lemma 2.3. If (1) is not true, then there exist kj (j = 1 ,2 , . . .) such that

IIx'k,'-x*lL = o(ILd'~,~ll) (A . 1 9)

and

tP~k)(d~k'!) = min tp~k,l(d). (A.20)
]ldlJ<,~'k, ~

Thus we have, for sufficiently large k,

~o~k,*(d <k,~) <~ ~ 'k ,* (x* - x *k,') = 6 (x *) + o (l l x ~k,' - x * ll2). (A.21)

Y, Yuan / Trust region algorithms

Choosing a subsequence if necessary, we assume

d 'k , ' / l l d ' " , ' l [~ d '.

which gives

(x '~'~ + d ~ ' ' - x*)/lld'"''ll-~ d'.

Since

277

(A.22)

(A.23)

~b(X~k" + d 'k?) = ~ k " (dik") + O(n d'k,)n2), (A.24)

it follows from (A.21), (A.24) and the fact that x* is a minimum of 4,(') that

&(x~kP+ d ~k~') = 4,(x*) + O(Ilx~k? + d 'k, ' - x*l]2). (A.25)

Therefore the definition (1.12) of G*, (A.19), (A.23), (A.25) and the inequality

O (x) - cb(x*)~> max (x - x *) r (g * + (A*)rA*)+O(nx-x*l l 2)
A e f l h *

imply that

d' c G*, (A.26)

so the second order sufficiency condition ensures

d 'TW*d'> O. (A.27)

Hence, using (A.23)

(x (k i , + d , k , _ x ,) T W , (x t k , , . F dt kj , _ X*) >! �89 'T W*d'll a' k~ ii 2 (A.28)

for sufficiently large j. Thus, remembering that h is convex and A*e0h*, and
remembering equation (1.10), we have, using (A.23)

�9 d (k)T,(72 ~C/ ~(k) \ .4(k) 4,~,~(d~k, ~) = f(x~k, ~) + gT(X(k.,))dIk,~ + ~.. -- .,k.~ ' , . ,

l
1 (k)w ~(ki)l'm2 I (k i) ~ (k i) - - +~d , ~ ,~ v cAx)a • tk,l)

>~ f(x~k"+_ d Ik'l) + h(c*)

I
+ • A * [c ? , ~ +V+c ' , k , ' d~k / - c* +kd~k,"rv%'ik')d'k,>]+o(lld'k'~ll 2)

i = l

= oh(x*) +f(x~k?+ dr - f (x *)

1
+ Z A * ~ E c , (x ' ~ " + d ~ ") - c , (x *)] + o (l l d ' ~ " l l ~)

i=1

= ~b(x*) +~(x'k,'+ d (k?- x*) w W*(x(k, '+ d ' kp - x*) + o(II d~k'~ll z)

~ (~) (X *) I , T * , +~d W d HdC",~ll~+o(lld~)ll -~) (A.29)

for all sufficiently large k. (A.29) contradicts (A.21) (using (A. 19)) since d 'TW*d'> O,
which proves that (l) is true.

278 }': Yuan / Trust region algorithms

The p roo f of (2) is similar to that of (1). Assuming that (2) is not true, there exist

kJ (J = 1 , 2 , . . .) such that

IIx'~,'- x*ll = o([b,i'~,'ll), (A.30)

and consequent ly , f rom (I) ,

ild,~.,ll = o(l ld, k,'ll). (1.31)

Recalling lid'S,'+ d~"l/<- O '~'', we have IIx'~, ' - x * H - - o (, ' ~ , ') , so it follows that

4;~",'< d '",') <~ ~'~,'(0> = J/~,'Cd'".'l + O(lld'~,'ll :')

<~ ,Z,'~,'(x*- x'~,')+Oiiid'~,'[l'-)~ ,~ lx*)+O(l lx '~ , ' - x*[l'-).

Choos ing a subsequence if necessary, we assume that

d,~,,/lld, k,,ll_, d' '

and consequent ly

(x;~,' + d'",' § d'~, ' -x*) /IId'~, ' l] - - , d'.

Since (A.30)-(A.32) imply

6(x'~ , ' + d'~,'+ d'~, ') = ,~' ~,'(d~, ') + o (II,i' ~,'11 -~) ~< <~,(x*) + o (II d~,'[l~),

(A.32)

(A.33)

(A.34)

(A.35)

it follows that

d I ~ G*. (A.36)

Therefore

(x'~,' + d'~,' + d'~, ' - x+,)Tw="(x'~, ' + d ~, '+ d'~, ' - x*) >1 'rid')T W * d ' II d'k,~llL

(A.37)

for all large j when (d ~) r W * d I > 0 . As in (A.29), we have

~' ~,'(,i'k, ') >i ~ (x *) + o(I1,?~,'11 "-)

+ ~lx,~,, + a,~:, + d,~,,_ x .) r W. (x,~,, + a,~,' + d ,k , ' - x*)

>i ~ (x *) + '4(d')' W * d I IId'",'l12+ o(ll,b~,'ll-~), (A.38)

for all large j, which contradicts (A.32) (using (A.30)). Therefore (2) is true.
We now prove (3). By (1), there exists Mt/> I such that

I[d'"'ll <~ Mt[Ix ' k ' - -x*I I (1.39)

for all k. Noticing that h(�9) is a polyhedral convex function, that { W ~k~} is uni formly

Y. Yuan / Trust region algorithms 279

bounded , and that O~k~(�9) is defined by (1.3), we have that

q / k ' (0) - min ~ (k) (d) ~ t ~ (k) (0) - min [~0~k'(d) -~drW'k'd+�89 2]

/> max [tAg-�89 2]
O~ t ~ 1

/> �89 min[A ~, (A ~)2/Moa2] (A.40)

for all cr > 0, where Mo is an upper bound on {[dTWtk~dl: I]dll = 1}, and where

,'l,k~ = t P ~ ' (0) - min [t 0 ' k ~ (d) - ' a ~ w ' ~ ' d]
I ld l l~-

= ~ k ' (0) - rain [f(x~k~)+g~k'Vd+ h(ctk~+A~k)d)]. (A.41)
I l d l l ~

Since for a general convex function F (-) ,

m a x [F (x) F(x+d)]>~min[l -~] - , x max [F(x)-F(x+d)]
Ildll~-- [lariat3

holds for any c~,/3/>0, the convexity of ~ptg~(d) -�89 gives

A ffa'"~ll ~ mini1, Ila'k'll/llx '~ ' - x*ll],~tL,,, ~*~j,

consequent ly Lemmas 2.1, Lemma 2.2 (using ao = ~), (A.39), and the fact that M o ~ I
give the fol lowing inequality, which holds for all large k,

k Cl A H~.~,, ~ - ~ IIx '" '-x*ll IId'k'll. (A.42)

It follows from (A.40) and (A.42) that there exists M 2 > 0 such that

4 ,~k ' (0) - tP~k ' (d '~ ')~ > min t, 11x' -x*lllla'~'ll aM, k 2M,,M, IId'k'IIJ
(A.43)

for all k >/M2. Thus (3) follows from (A.43) and (A.39).
We now prove (4). For all sufficiency large k, since

c(x'k'+ d 'k)) - c(x 'k ') - A' k 'd 'k ' = O(lid' ~'112), (A.44)

and since Rank(A ck~) = m for all large k, there exists d~kl such that

r - d 'k ~) - r tk)) - AIk)dCgl = Atk)~l ik) (A.45)

and

lld~k~ll = o(lld~k'll=). (A.46)

Define

/3k = maxEIla'k'll, IId'k'+ d'~ll], (A.47)

2 8 0 Y. Yuan / Trust region algorithms

then by the definition (1.9) of re,, k', it follows that

r(k~ 1 { e =~o~k> &(Xlk~)--&(xlkl+dlk')+qlk~(d~k~)+h(c(x(g~+d(k~))

- - min [q~k~(d~k~+d)+h(c(xCkl+d~k~)+A(k~d)]}
II d'~ '+ dill- ~

1 { q~kl(dtk,) ,+dlkl)
- ~ t ~ , k ~ ~, (x'k')+ -.l(x 'k

- min [q~kl(dlk'+d)+h(c'k~+Atkl(d+dlk~+~llkl))]}
![d ~ ~ ",- d l l~ ~z

1 [q~g~(d,k~) _t_d,k!)
--At0'k/ LqS(X'k')+ -f(x'kl

"-['- g (k 'Ta~ ' J" ' - - r a i n ~'"'(d)+o(lld'':~ll")]. (A . 4 8)
I l a - , i ' " 'I1~ 13,, J

By the definition (1.5) of q~k~(.) we have that

t l l

'd ' k ' ' r a' ," 'V"C'?'d'k'+O(lld'~'l l~), (A.49) qlkl(d~kl)-- f(x'k' + d'k~) = ~ =.
i - I

and from (1.10), (1.13), (A.45) and (A.46), it follows that

m

g ' k ' ~ ' ~ ' k ' = - E a ' , " ' v r c ' / "d ' k '+o (l l d ' " l l 2)
i--I

m

= - v A? ,Ec , (x ,~ ,+d ,k,) - c,(x ,~,) -VTc ' , ' , d ' " ,]+o t l ld ' " ' l l ~)
i--I

= - ~d 'k'~ E A ',k'V~-C',k'd'k' +O(l l d 'k ' l] =) " (A . 5 0)
i [

Hence from (A.47)-(A.50) and (3), noticing /3k <~ p~g~, we have that

, k , _ max,a_a.~,,_< e~ [0~ ~ '(0) - ~ ' ~ ' (d) + o([I d'~ ~ll~-)]

a0 , ~,

_ m a x l i d _ a , ~ , i i ~ t 3 , : [0 ' g ' (0) - &,~,(d)] +o(lld'"'ll)/lld'"'ll. (A.51)
maxlldll<.t~ ~ [q /~ ' (0) - g/~ '(d)]

For each k we define

A~ = max [O't '(O) - '~" 0 (d)], (A.52)
Ilarll~-/~

which is a monotonical ly increasing function of positive /3 and for any /30>/3 > 0
we let do satisfy

A~,, = ~"~'(0)- O'~"(do), Ild,,lI <~/3 ,. (A.53)

Y. Yuan / Trust region algorithms 28l

Thus, by the convexity of h and the definition of ~b(k)(-), we have that

[01k)(0) _ (0ik~(do) _~dol TW(k) do)lj _~' ~o d~W~kld~

t* 0 , �9 tit 0

, s4,

where the last line depends on (3). Using (1.54) and (A.51), we deduce that

r(k,< A~k + II't~' I1+
e ' O (1)

/3~+ I1'i~'11 ~ o (l) = l + o (1) , (A.55)

r e ~o(l)

and

~ -IId'~'ll fl + O(ll~T'~'ll /~k)]+ o(1) = I + o (l) . (A.56)

Therefore (4) follows.
Finally we prove (5). I f (2.4) is not true, there exist a~c (0 , 1), kj (j = 1 , 2 , . . .)

such that r(k'}~ C~ I and

II d(k~'ll = O(II a?k,'ll). (1.57)

To simplify notation, we denote k i by j . Since {kj} is a subsequence of {k}, without
loss of generality, we assume that

dlJ)/lld'J'II "-* d', d(')/lldU')) ~ d'. (A.58)

Since our continuity assumption shows that

~,(i,(0) _ a,.i,(d,_i,) = ~ (x , j ~) _ ~ (x ' " + d ' ") + O(II d~i'II~'),

the definition (1.6) of/ . i~ and the assumption r~J~ < c~j ensure that

e,u ' (0)- ~,'J'(d':') = O(11 d<'ll-~). (A.59)

Consequent ly the bounds (A.59) and (A.43) imply

Ilx'-"-x*ll = o(11 d'J'll). (A.60)

282 Y. Yuan / Trust region algorithms

It follows from Lemma 2.2, (A.41), (A.60), the fact that (A.40) gives the condition

A ffd'~'ll <~ max[2g6 'k', (2 Mog&' k3]] d,k! H 2)1/2], (A.61)

(A.59) and (1) that

�9 1 . [[, x " ~ - x * , ,]
6 (X 'ii) -- 6 (x *) ~< 1__ AIP~'"-x*', < ~ - - A~Ia~'II max 1,

- ,~ ~ , , L J IldU'll
= o(~!E~,,,~,~ = o (II d'"ll 2) = o (Ilx'"- x * I1=). (A .62)

Consequently

6(x'"' + d'-") = ~,'"(d'-") § O(II d'J' [l=)

<~ 6 (x ' , ') + Of ll a'~,ll 2) <~ 6 (x*) + O(ll a'-"ll ~-) (A.63)

Without loss of generality, we assume that

(.,~,J~ + d~, ,_ x .) / l l d , , l l _~ d.. (A.64)

From (A.63) and (A.64), if d ' ~ 0 , d 'c G*. Therefore for both zero and nonzero
values of d',

d' ~ G* (A.65)

since, due to (A.62), d ' - d ' ~ G*. Similarly, it can be shown that

d I ~ G*. (A.66)

From (1.7), (1.5), (A.45), and (A.46), we deduce that

~i l (d) = q l'J)(d~i' + d) + h(c<2~ + AOl(d + dr;)+ d~J)))

= ~ ' J ' (d + d ' J ' § IId'J~ll~). (A.67)

Consequently, it follows from (A.54) that

T h u s ,

= max [~ i ' (- d~J ' - d ' J ') -~U ' (d))]
i[.'~a"ll~tL

= max E,~"'(o)-~,"~(a+a'J'+~"')]+o(lla'"ll ~-)

>/ max [t k u ~ (0) - +"'(a)]+o~lla~"ll 2)
I l d l l ~ / 3 x IiJ*'~ll

>1 ~,';~(o) - ,P ' - " (d `j') + o(II d'J' II -')

/> ,~'-~'(-a'"' - ,~"') - ~(- ,?~ ')+ o(ll a*" I12). (A.68)

~u,(~(ii) <~ ~u)(_~i ,) + o(lld,.,,I]=). (A.69)

E Yuan / Trust region algorithms 283

Let qrv~ be defined by

q f ln (d+d~)) (jl I X 'ki = qt (d) + ~ d W d, (A.70)

and note that ~P~J)(.) is a polyhedral convex function. Since q, tJ)(d) attains its
minimum on {d: lid H ~<p(;)} at d ~j!,

tF(J~(d)/> q;~i)(0) (A.71)

for all d satisfying

l id+ d'U)ll <~ p(~'. (A.72)

In particular, if

/I a(;' + ~(J* + d 'j*ll <~ p'~', (A.73)

then

qtIJ~(t~(/) + ~(i)) 1> qt(j)(0) = ~(j)(d(;~). (A.74)

Consequently, it follows from (A.67), (A.70), (A.74) and (A.66) that

~;(-"(d(J!) - ~;(; '(- J ' ") = ~,'J'(d'J' + ~"' ' + J'J)) - ~;':;'(d (-,') + o(II a (;) II -~)

>~'~(d'YW*d' II d~ ' l l ;+ o(11 a(J)ll 2) (A.7S)

for all large j, which, due to (A.57), contradicts (A.69). Therefore we assume that

II d~"+ ,i~" + a"~ll > p'J) (A.76)

for all j. Remembering (A.57) and that {j} is a subsequence of {k}, we assume
without loss of generality that

(d'~;' + ~(J')/II d ' " II - ' d ' , (A.77)

a t ~ G*. (A.78)

Define

J ' J ' = (a(J' + d ' J '+ d(")(1-211~t(J ' l l /p '~). (A.79)

Then, it follows that for sufficiently large j

IId'J>ll < p'-;', (, i ' - " - d'- 'b/II,t~' l l--, a ', (A.80)

since IId'J'+ ~';'+,t~ll ~ p~J~+ I1,~'11. Similarly to (A.75), it can be shown that

~,(J>(d~.;, _ d , . ; , j (, ,) _ ~c; , (_,~% ~> ~(d,)-,-W* d ; II d (;' II 3 + o(II d 'J' II 2).

Now (A.79), (A.77), (A.46) and (A.57) imply that

d'-;)/II d'; ' l l-~ ,~'.

(A.81)

(A.82)

284 Y. Yuan / Trust region algorithms

Using (A.67), (A.46), and the continuity of O'J)(d)-~dxW~-i~d, we deduce that

47J'(-d '-~- ,i'J') - t~J'(a ~ - d ' j ' - ,~ ')

= +' ~'(0) - 4,'J~(,~ ~') + o(II d"'ll -~)

~> (1 - 21] 2rJ'l[/p'J')E,Z,'-i'(o) - ,/#'(d'J)+ 21w+ ,i~J')] + o(II d(J'll =)

= ~,'-~'l O) - ,~ /~ ' (d '"+ , i 'J '+ ,?~')+ o(II a"~ I1-'5

= , s a'J' - d '~') - q;'J'(ff'-") + o(II a'J'll 2) (A .83)

(A.81) and (A.83) show that (A.75) holds, which contradicts (A.69). The contradic-
tion shows that (2.4) is true.

Remembering our notation that ~k~=e(X~k'+d~k~), by the definition (1.73 of
t~kl(�9), we have

Ats = q ' k ' (d ' k ') + h (~ ' k ') - - [q ' k ' (d ~ k ~ + ~ k)) + h (~ ' k ' + A ~ k ~ l ~ k ~)]

A, V ci u [f (i (k ~) + h (c (i l k))) = f) ~
i - I

+~'(a '~ '+J '~) �9 ~ ~'? v -~c? , (a~ ,+ ~ ,)
i I

+o(lld'~'ll'-)+o(lld'~'+d'~'ll=)+o(lld,~'ll II,?~)l[) § O(ll d'~'ll-~).

= 6 (x (~ l + d l k l) _ 6(XI~I+ d . ~ , + ~,k~)

+ o ([I d ' t ' 113) + o(l l dig' II II d(k)ll) § 0 (l] li(k)II 2). (A.84)

Hence (2.5) follows from (1.9), (2.4), (3) and (4). This completes the proof of
Lemma 2.3. []

References

[I] R.H. Bartels, A.R. Conn and J.W. Sinclair, "Minimization techniques for piecewise differentiable
functions: the L~ solution to an overdetermined linear system", SIAM Journal of Numerical Analysis
15 (1978) 224-241.

[2] R. Fletcher, -A Fortran subroutine for general quadratic programming", A.E.R.E. Report 6370,
Harwell, England (1970).

[3] R. Fletcher, "A model algorithm for composite NDO problem", Mathematical Programming Studies
17 (1982) 67-76.

[4] R. Fletcher, Practical methods of optimi-ation VoL 2, Constrained optimization (John Wiley, New
York, 1981).

[5] R. Fletcher, "Second order correction for nondifferentiable optimization", in: G.A. Watson, ed.,
Numerical analys'is (Springer-Verlag, Berlin, 1982) pp. 85-114.

[6] D. Goldfarb and A. ldnani, -A numerically stable dual method for solving strictly convex quadratic
programs", Mathematical Programmin~ 27 (1983) 1-33.

[7] P.E. Gill and W. Murray, Numerical methodLlbr constrained optimization (Academic Press, London,
1974).

[8] P.E. Gill and W. Murray, "'Numerically stable methods for quadratic programming", Mathematical
Programming 14 (1978) 349-372.

Y. Yuan / Tn~st region algorithms 285

[9] P.E. Gill, W. Murray, M.A. Saunders and M.H. Wright, "Linearly constrained optimization", in:
M.J.D. Powell, ed., Nonlinear optimization 1981 (Academic Press, London, 1982).

[10] W. Murray and M.L. Overton, "A projected Lagrangian algorithm for nonlinear minmax optimiz-
ation", S l A M Journal on Scientific and Statistical Computing 1 (I980) 345-370.

[11] W. Murray and M.L. Overton, "'A projected Lagrangian algorithm for nonlinear L~ optimization",
SIAM Journal on Scientific and Statistical Computing 2 (1981) 207-224.

[12] J. Nocedal and M. Overton, "Projected Hessian updating algorithms for nonlinear constrained
optimization", Report 59, Computer Science Department, New York University (November, 1983).

[13] M.J.D. Powell, "'A new algorithm for unconstrained optimization", in: J.B. Rosen, O.L. Mangasarian
and K. Ritter, eds., Nonlinear programming (Academic Press, New York, 1970).

[14] M.J.D. Powell, "Convergence properties of a class of minimization algorithms", in: O.L.
Mangasarian, R.R. Meyer and S.M. Robinson, eds., Nonlinear programming 2 (Academic Press,
New York, 1975).

[I 5] Y. Yuan, "Some properties of trust region algorithms for nonsmooth optimization", Report DAMTP
1983/NA4, University of Cambridge.

[16] Y. Yuan, "An example of only linear convergence of trust region algorithms for nonsmooth
optimization", IMA Journal of Numerical Analysis 4 (1984) 327-335.

