
Mathematical Programming 31 (1985) 269-285 
North-Holland 

O N  T H E  S U P E R L I N E A R  C O N V E R G E N C E  O F  A T R U S T  

REGION ALGORITHM FOR N O N S M O O T H  OPTIMIZATION 

Y. Y U A N  

Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Cambridge 
CB3 9E~; England 

Received 3 November 1983 
Revised manuscript received 15 September 1984 
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1. Introduction 

Fletcher [5] presents a trust region algori thm with a second order correction to 

solve the fol lowing composi te  optimization problem: 

rain 4,(x) == f ( x )  + h( c(x) ), (1.1) 
x 

w h e r e f ( x )  f rom R" to N and c(x) from ~" to N'" are twice cont inuously differentiable 

functions and h(c)  from N'~ to N is a polyhedral  convex function of  the form 

h(e)  = max (hive+ b~), (1.2) 

hi and b~ being given vectors and constants respectively. The algorithm is based on 

a model algorithm of  Fletcher [3] and it is iterative. At the begining of  the k-th 
iteration, x (k~, A ~k and pk are available, where x (k! is an estimate of  the solution 

o f  (1.1), A ~k~ is an estimate of  the Lagrangian multipliers at the solution and p~k~ 
is a trust region bound.  The algorithm requires the solution of  the following 
subproblem:  

min OIk)( d) ~-- q~k~( d) + h( c( x ~kl) + A(x(k ' )d)  (1.3) 

subject to 

ildl I < p(k,, (1.4) 

where 

q(k~( d) = f ( x  ~k)) + v r  f(xtk~)d + �89 v W~k) d, 

m 

Wlk '=  V2f(x~k') + 2 X',k'V2ci(x(k)), 
i = 1  
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]]' II is any given norm and A = VTCCI~ ..... is the Jacob ian  of  c. Let d ~k~ be a solution 
of  (1.3) and (1.4)~ then 

r ~k _ 6 ( x ' k ~ ) - - & ( x ~ k ' + d  ~ )  
~//k j(0) _ ~, kl(d,k,) (1.6) 

is calculated,  which is the ratio between the actual reduction and the predicted 
reduct ion of  the objective function. On some iterations the algori thm also solves 
the following ' second order  correct ion '  subprob lem:  

m i n l b ' k ' ( d ) = q ' k ' ( d ' k ' + d ) + h l c ( x  k ~ + d ' ~ ) + A ( x ' k ~ ) d )  (1.7) 

subject to 

II d 'k '  + dll <-- tr ~' (1 .s) 

Let d,k, be a solution of  (1.7) and (I.81 and define 

g' 'ta 
~' ~9ik,(O) +~'(d '~ ' )"  

<1.9) 
~ l k l  & ( x l k ~ ) - o ( x ' ~ ' + d ' k ' + ~ ' k ' )  

6~k~(O)--~?k'(d 'k~) 

Following Fletcher 's  notat ion,  we let ~'~ = x ~ k ' + d  , = 

, / / k ' ( 0 ) -  O 'k ' (d 'k ' )  and a ~  'k ' =  ~'  k ' ( 0 ) -  ,~, k,(d,k ,), and w;e let g denote  Vf, ;ih denote  
the subdifferential  of  h, a n d g ~ k ' d e n o t e g ~ x  ) etc. 

Using the above notat ion,  the details of  an iteration of  the a lgori thm are as follows, 
where k is the iteration number .  

Fletcher's  Algori thm 

Step 1. Evaluate  J~k', c '~ ,  g~k~, A ~k' and W ~ "  
Solve (11.3)--(1.4) giving d' ~'' 
Evaluate  t-~' if r ~ ' > 0 . 7 5  go to Step 7. 

Step 2. Solve (1.7)--(1.8)  giving d'~'" 
Evaluate  rr ~" if r ' ~ ' < 0 . 2 5  go to Step 4. 

S t ep3 .  l f r~.~ 'e[0.9,  I 1 ] , s e t p  ~ ' ~ '  "~ '~' �9 = .~p and go to 
Step 9, otherwise go to Step 8. 

Step 4. I f / , ,~ '~[0 .75 ,  1.25] go to Step 5: 
Evaluate  ~ '  
In computa t ion  assign d ~ :  = d ~ + d  ~ ,  r ~ :  = ~ ;  
If  r ~ ' > 0 . 7 5  go to Step 7. 
I f  r ~ > 0 . 2 5  go to Step {S. 

k + l l  Step 5. Set t /  = c~glld~']l, ~t~r [0.1, 0.5], 
I f  r ~ ' > 0  go to Step 9. 

Step 6. x ~ + ~ : = x ~ ,  generate  ~ ' ~ "  end of  k-th iteration. 
Step 7. I f  I Id~ ' [ l<p  'k' go to Step 8" 

If  r l ~ > 0 . 9  then p ~ l * : = 4 p ~  e l s z - p ~ k ' ~ : = 2 p  ~ "  
go to Step 9. 
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Step 8. p~k~l):=pr~ 
Step 9. Set x ~ k+,, := x' k ~ + d r k 7, generate A ~ k+ ~ ~. end of  k-th iteration. 

The value of  o~x in Step 5 is an estimate of  the number  o~* which satisfies 

r c~*d ~k~) = mino~ ..... o.5 r  'k~+ ad ck') Fletcher [5] gives a specific choice of  

c~k, which does not require any line searches but only depends on the value of  r ~k~ 

Further, he lets JL ~k*'~ be X ~k~ in Step 6 and l~k.~:, be the multipliers from either 

the subproblem (1.3)-(1.4) or the subproblem (1.7)-(1.8) in Step 9. 

Fletcher [5] shows that if {x~} (k = 1,2 . . . .  ) are all in a bounded  set in ~" then 

{xk} is not bounded  away from the Stationary Points, where a stationary point x* 

means a point at which 

.f( x*) + h ( c(x*) ) ~. /(  x*) + VT f (  x*)d + h (c(x*) + VT c( x*)d) 

holds for all d c [~". The condit ion that {xk } is bounded  is usually satisfied, specifically 

if x, is so chosen that 

x: r < r 

is a bounded  set. Let x* be an accumulat ion point  of  fxk}. Since our  interest is in 

the rate o f  convergence,  we asume that strict complementar i ty  and second order 
sufficiency condit ions are satisfied at x*, and that Rank(A*)  = m. Due to the second 

order sufficiency condit ion it is easy to show that xk ~ x*, since x* is an accumulat ion 

point of{xk}. We assume that the functions f (  �9 ) and c( �9 ) are three times cont inuously 

differentiable. Without  loss of  generality, we also assume that h(e*)= hyde*+ b; for 
all i = 1 , 2 , . . . ,  I. Let A*e  ~h* (;d(* is the convex hull of  the vectors h;, i = 1 , 2 , . . ,  I )  

be the Lagrangian multipliers at x* such that 

g* + (A*)TA* = O. 1.10) 

The full rank of  A* ensures the uniqueness of  A* and the second order sufficiency 

condit ion states that 

where 

d T W*d > 0 for all d ~ G* 

G * = { d :  max dV(g*+(A*)VA)=O,d~O} AGDh* 

w* = v:f Ix*)+ ~ A;*V%Ix*). 
i=1 

1.11) 

1.12) 

Under  the above assumptions,  Fletcher [5] proves that, if the trust region bound  
is inactive for all large k, then the algorithm converges quadratically. Yuan [16], 

however,  gives examples o f  trust region methods that converge only linearly, so it 
is important  to investigate the effect of  the trust region bound when k is large. 

Since our  result is stongly dependent  on the condit ion A~k)-~A *, and since we 
are not able to prove that the original choice o f  X ~k~ in Fletcher [5] ensures this 

condit ion,  th roughout  this paper  we assume that the generation o f  A ~k+~ gives the 
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limit: 

A'k'->A *. (1.13) 

Many suitable methods for estimating Lagrangian multipliers are known, for example 
Murray and Overton [10, 11]. The condition (1.13) admits many estimation tech- 
niques, such as 

A ~k+~'= argmin I[g ' k ' - ( A  'k')~A[I. (1.14) 

Some lemmas are stated and the main theorem is proved in the following section. 
The proofs of the lemmas are given in the Appendix. 

2. The result 

In this section, we demonstrate superlinear convergence of the algorithm by 
showing that the trust region bound is eventually inactive. To make the proof of 
the main theorem straightforward, we give some lemmas without proofs, and only 
prove the main theorem. The proofs of the lemmas can be found in the Appendix. 
The following Lemma 2.1 is due to Fletcher [5], Lemma 2.2 is a generalization of 
Lemma 4.3 of Yuan [15], and kemma 2.3 is the main result which indicates that 
the trust region bound is bounded away from zero. 

Lemma 2.1 (Fletcher [5]). There exists a positive constant c, and a neighbourhood o f  

x*, such that Jbr all x in the neighbourhood the inequali o, 

,/~(x)- ~b(x*) >/c, I lx-  x*l[ -~ (2.1) 

holds. 

Lemma 2.2. For any given ao~ (0, I), there exists a neighbourhood qfx*  such that, 

Jot  all x in the neighbourhood, 

oh(x)-  min [ / ( x ) + g ( x ) r d + h ( r  
Ilall--IIx-x~ll 

(2.2) 

holds. 

Lemma 2.3. Let d ~k~ solve (1.3)-(1.4) and d ~k~ soh,e (l.7)-(1.8), then 

(I) IId'~'ll=O(Hx'~}-x*]l): 

(2) I[,/r = O( l [x 'k ' -  x*ll):  
(3) a ~ , ' k ' ~  > e=lld~'ll = Jar some positive constant c=; 
(4) r~f ' ~  1 as k~+oe:  
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(5) For any subsequence {kJ}, (f r~k?<~ al < 1 for some constant eel, then 

IIdik"ll = o(lldlk?[I), (2.4) 

lim /:lk ~= 1. (2.5) 

Corollary 2.4. For all sufficiently large k, ptJ,, t~ >~ p(k 

Proof. Let o~ in Lemma 2.3 have the value 0.75. Hence for all sufficiently large k, 
either rlk~>0.75, or r e E [0.9, 1.1] and ~ck~c[0.9, 1.1]. Therefore  by the definition 
of  p~k~ ~, we have p(k+~>~pCk). [] 

Theorem 2.5. f f  A~k)-+ A*, the algorithm converges superlinearly. 

Proof. Corol lary  2.4 ensures that {p~k~} is bounded  away from zero, therefore for 
large k, the trust region bound  is inactive. So from (2.8) and (2.9) of  Fletcher [5] 
we have that 

IIx,~§ ll 
llx~,_x, ii -O(maxEIIx'~'-x*ll, Ila '" '-a*ll]) (2.6) 

Thus the superl inear  convergence result follows. 

Corollary 2.6. I r a  lk' is chosen to be a value q f l  that minimizes ]lg ~k~- (Atk~)TA 112, 
then the algorithm either terminates within a.finite number of  iterations of  converges 
to x* quadratically. 

Proof. Since A* has full rank, for large k, A 'k' also has full rank. Therefore  
a~k'=((A~k')-r)*g 'kJ. Because a*=( (A*)V)+ g  * and Rank ( A * ) =  m, we have that 
]]A ik~_ A* n = o (  ]Ix ~k~- x* I[ ). Thus, the quadrat ic  convergence follows from (2.6). [] 

3. Discussion 

By modifying the proof ,  one can show that the superl inear  convergence result 
remains valid if W ~k~ is replaced by any matrix Bk that satisfies 

Bk~  W*, k - + ~ .  (.3.1) 

Further,  the same is true if W ~j'~ is replaced by any matrix Bj, that tends to W* 
along directions d ~k~, a~ ~k~ and x~k~-x*, which means 

II(Bk - W*)zlI/[IzII--" 0 (3.2) 

for z = d ~k~, a~ ~k~ and xCk'--X *, since to ensure the proofs in the Appendix valid we 
only need that 

w ' ~ ' z  - W * z  +o( l l z l l ) ,  
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holds for z = d 'k' ,  [l ~k' and x ~ k ~ - x  *. Therefore the sequence {Bk} can be generated 
by updating using function values and first order derivatives, which is usually much 
easier than calculating second order derivatives. The PSB formula (Powell [13]) is 
recommended,  which works well in trust region algorithms for smooth optimization 
(Powell [14]). In order to satist~ (3.2) the PSB formula has the form 

where 

Bk,, :/~k+ ii~,k,ll_, i1~11~ , (3.3) 

m 

~r'~'= 2 ;t', ~' ,k --VC,(X ) ] + V f ( x ' ~ +  - - V f ( x  ~k') [Vc,(x ~+~'~'~ k~ 61kl) 
i = 1  

--Bkfi Ik! 6 'k l=  d ~k~ (3.4) 

and {A~, k'} ( i =  1,2 . . . .  , m) are estimates of  the Lagrangian multipliers A*. It is 
expected that { B,} updated by (3.3)-(3.4) ensures (3.2), but we are not able to prove 

it. 
If the norm II'll in (1.4) and (I.8) is the infinity norm or the 1-norm, the 

subproblems (1.3)-(1.4) and (1.7)-(1.8) can be solved by using techniques such as 
in Barrels, Conn and Sinclair [1], and they can also be rewritten as linearly con- 
strained quadratic programming calculations. For the solving of Q P  problems, see 
Fletcher [2], Gill et al. [9], Gill and Murray [8] and Goldfarb and Idnani [6]. 

Instead of updating the full matrix Bk, as pointed out by a referee, we can update 
just the projected matrix. For details of the projected update methods, see, for 
example, Fletcher [4], Gill and Murray [7] and Nocedal and Overton [12]. 
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Appendix - Proofs of  Lemma 2.2 and Lemma 2.3 

Proof of  Lemma 2.2. If the lemma is invalid, then there exist m,~(O, 1), and a 
sequence {x ~k'} ( k =  1 ,2 , . . . )  such that 

x ' k l ~  x * (A.I) 
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a n d  

S ince  

O(x /k ' )  - man [ ( ( x l k l ) + g l k ' V d + h ( c < k l + A ' k ) d ) ]  
Ilall~ II. ,~tk, x*ll 

< +<+[+(x 'k ' )  - + ( x * ) ] .  (A.2)  

and  
I 

u'; ~ = 1. (A.7)  
i - I  

F r o m  ( A . 5 ) - - ( A . 7 ) ,  it f o l l ows  tha t  

g , T ( x t  k l __ X * )  + m i n i ~ i <  1 ) h]r a * ( x  tk~ - x*  
l i ra i n f  - - / ,  - o c ,  (A.8)  

k+~. L].r ~' - x* It'- 

which  gives 

g*+(x'k'- x*)+ hTa*(.r x*)=o(llx<~- x*ll+-). (A.9)  

for  all i =  I, 2 . . . . .  I. 

C o n s i d e r  

rain [ f ( x ' k ' ) + g ~ k ' + d + h ( c ! k ~ + A l k ~ d ) ]  
Ildll ~ I1,, .'~ x+it 

= min  I ~ m a x  [f( ~*) + h ~c( ~*) + b, + ~g* ' ( x'~' - x *) 
IJall ~= IIx' ~' - x*ll 

+ �89 _ x*)  + g,k >T d + hT(~a*( x 'k' - x*)  

x*)  + A ' ~ ' a ) ] }  + o( IIx '~' - x* I1-') Imtk~(x tk)  + 2 

~< rain ( ( ~m a-xt [ f ( x * ) + h V ' c * + b + + � 8 9  
Ildll~ I!-r ' -x+t l  "-- :~ 

k')rh,)+Vd]l +o(llx'"'-x*ll=), (A.IO)  ++_(g~ '++':++(A': 
J 

& ( x  Ig~) - ~f (x  tk~ ) + gtkrr(x* - x ik~) + h ( clkl + A ~ k~(x* -x< kl)] 

= &(x  'k>) - r  + O( l[x* - x 'k '1[=), (A.3)  

we have  tha t ,  u s ing  (A.2)  

r tk') - &(x*)  = O( [Ix 'k~ - x* H-~). (A.4)  

H e n c e  

g * V ( x ' ~ ' - x * ) +  m a x  hv, a * ( x ~ k ' - x  *) =o(llx'~>-x*tl~-), (A.5)  
I~i~-I 

us ing  the a s s u m p t i o n  tha t  h ( c * ) =  h ( c * +  b+ for  all  i, 1<~ i<~ I. M o r e o v e r ,  the  s t r ic t  

c o m p l e m e n t a r i t y  and  the de f in i t i on  o f  h( �9 ) i m p l y  tha t  there  exis t  u* > 0 such  tha t  

I 
g , - r +  y u ~ ? h ( A , = O ,  (A.6)  

i - I  



276 Y. Yuan / Trust region algorithms 

where the last part is obtained by forcing d in the middle part to have the form 
~(a~+x*-x 'k') for I1~11<~ t lx'~'-x*ll  . Let B(x )be  the I xn  matrix 

~gT(x)+hTA(x)q 

BCx) = ]gVCx)" _ (A.I1 
+ h;rA(x)] 

t~_gV( x ) +'h~A(x)~ 

It follows from (A.9) that 

13(x*)(x*k'-x *) = O ( l l x  '~' - x*  I1-+>, ( A . 1 2 )  

Hence the vector 

d Iki= - (B(x*))  + B(x*)(x `k+- x*), (A.13) 

satisfies 

and 

11 d'k'll = O ( l l x  '~' - x* l l ; ) ,  (A.14) 

B(x*)d Ikl= -B(x*) (x  Ik' - x*). (A.I 5) 

Therefore 

•(x*)(x ' k ' -  x*) + B(x'~ ')d ~ '  = o(ll x ~ ' -  x* I1-~). (A. 16) 

Because, for sufficiently large k, (A.14) implies I[d~k>ll <~ IIx~k~-x*ll, it follows from 
(A. 10), (A.14) and (A.16) that 

rain [f(x'k>+gik~Vd+h(ctk~+A~kld)] 

(A.17) 

( A . 1 8 )  

=.f(x*) + h( c*) + o([Ix ~ ' -x* l l z ) .  

(A.2) and (A.17) imply that 

( l  - ~ o ) [ 6 ( x  ' k ' -  6 ( x * ) ] ~ <  o ( l l x  ' ~ ' -  x*ll++), 

which contradicts Lemma 2.1. Therefore Lemma 2.2 is true. 

Proof of Lemma 2.3. If (1) is not true, then there exist kj (j = 1 ,2 , . . . )  such that 

IIx'k,'-x*lL = o(ILd'~,~ll) ( A . 1 9 )  

and 

tP~k)(d~k'!) = min tp~k,l(d). (A.20) 
]ldlJ<,~'k, ~ 

Thus we have, for sufficiently large k, 

~o~k,*( d <k,~) <~ ~ 'k ,* (x*  - x  *k,' ) = 6 ( x * ) +  o ( l l x  ~k,' - x *  ll2). (A.21) 
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Choosing a subsequence if necessary, we assume 

d 'k , ' / l l d ' " , ' l [  ~ d '. 

which gives 

(x '~'~ + d ~ ' ' -  x*)/lld'"''ll-~ d'. 

Since 
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(A.22) 

(A.23) 

~b(X~k" + d 'k?) = ~ k " (  dik") + O(n d'k,)n2), (A.24) 

it follows from (A.21), (A.24) and the fact that x* is a minimum of 4,( ') that 

&(x~kP+ d ~k~') = 4,(x*) + O( Ilx~k? + d 'k, ' -  x*l]2). (A.25) 

Therefore the definition (1.12) of G*, (A.19), (A.23), (A.25) and the inequality 

O ( x ) -  cb(x*)~> max ( x - x * ) r ( g * +  (A*)rA*)+O(nx-x*l l  2) 
A e f l h *  

imply that 

d' c G*, (A.26) 

so the second order sufficiency condition ensures 

d 'TW*d'> O. (A.27) 

Hence, using (A.23) 

( x ( k i ,  + d , k ,  _ x , ) T  W , ( x t  k , , .  F dt kj , _  X*)  >! �89 'T W*d'll a' k~ ii 2 (A.28) 

for sufficiently large j. Thus, remembering that h is convex and A*e0h*, and 
remembering equation (1.10), we have, using (A.23) 

�9 d ( k  )T,(72 ~C/ ~(k  ) \ .4(k  ) 4,~,~(d~k, ~) = f(x~k, ~) + gT(X(k.,))dIk,~ + ~.. -- .,k.~ ' , .  , 

l 
1 (k)w ~(ki)l'm2 I ( k i ) ~ ( k i ) - -  +~d , ~ ,~ v cAx )a •  tk,l) 

>~ f(x~k"+_ d Ik'l ) + h(c*) 

I 
+ • A * [ c ? ,  ~ +V+c ' , k , ' d~k / -  c* +kd~k,"rv%'ik')d'k,>]+o(lld'k'~ll 2) 

i = l  

= oh(x*) +f(x~k?+ dr - f ( x * )  

1 
+ Z A * ~ E c , ( x ' ~ " + d ~ " ) - c , ( x * ) ] + o ( l l d ' ~ " l l ~ )  

i=1 

= ~b(x*) +~(x'k,'+ d (k?-  x*) w W*(x(k, '+ d ' kp -  x*) + o( II d~k'~ll z) 

~ ( ~ ) ( X * )  I , T  * , +~d W d HdC",~ll~+o(lld~)ll -~) (A.29) 

for all sufficiently large k. (A.29) contradicts (A.21) (using (A. 19)) since d 'TW*d'> O, 
which proves that (l) is true. 
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The p roo f  of  (2) is similar to that of  ( 1 ). Assuming that  (2) is not true, there exist 

kJ ( J =  1 , 2 , . . . )  such that 

IIx'~,'- x*ll = o([b,i'~,'ll), (A.30) 

and consequent ly ,  f rom (I) ,  

ild,~.,ll = o(l ld,  k,'ll). (1.31) 

Recalling lid'S,'+ d~"l/<- O '~'', we have IIx'~, ' - x * H - - o ( , ' ~ , ' ) ,  so it follows that 

4;~",'< d '",' ) <~ ~'~,'(0> = J/~,'Cd'".'l + O(lld'~,'ll :') 

<~ ,Z,'~,'(x*- x'~,')+Oiiid'~,'[l'-)~ ,~ lx*)+O(l lx '~ , ' -  x*[l'-). 

Choos ing  a subsequence  if necessary, we assume that 

d,~,,/lld, k,,ll_, d' ' 

and consequent ly  

(x;~,' + d'",' § d'~, ' -x*) /IId'~, ' l ] - - ,  d'. 

Since (A.30)-(A.32) imply 

6(x'~ , '  + d'~,'+ d'~, ') = ,~' ~,'(d~, ') + o (  II,i' ~,'11 -~) ~< <~,(x*) + o (  II d~,'[l~), 

(A.32) 

(A.33) 

(A.34) 

(A.35) 

it follows that 

d I ~ G*. (A.36) 

Therefore  

(x'~,' + d'~,' + d'~, ' -  x+,)Tw="(x'~, ' + d ~, '+ d'~, ' -  x*) >1 'rid' )T W * d '  II d'k,~llL 

(A.37) 

for all large j when ( d ~ ) r W * d  I > 0 .  As in (A.29), we have 

~' ~,'(,i'k, ') >i ~ ( x * ) +  o( I1,?~,'11 "- ) 

+ ~lx,~,, + a,~:, + d,~,,_ x . )  r W. (  x,~,, + a,~,' + d ,k , ' -  x*) 

>i ~ ( x * ) +  '4(d' )' W * d  I IId'",'l12+ o(ll,b~,'ll-~), (A.38) 

for all large j, which contradicts  (A.32) (using (A.30)). Therefore  (2) is true. 
We now prove (3). By (1), there exists Mt/> I such that  

I[d'"'ll <~ Mt[Ix ' k ' - -x*I I  (1.39) 

for all k. Noticing that h( �9 ) is a polyhedral  convex function, that { W ~k~} is uni formly 
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bounded ,  and that O~k~( �9 ) is defined by (1.3), we have that  

q / k ' ( 0 ) -  min ~ ( k ) ( d ) ~  t ~ ( k ) ( 0 ) -  min [~0~k'(d) -~drW'k'd+�89 2] 

/> max [tAg-�89 2] 
O~ t ~ 1 

/> �89 min[A ~, (A ~)2/Moa2] (A.40) 

for all cr > 0, where Mo is an upper  bound  on {[dTWtk~dl: I]dll = 1}, and where 

,'l,k~ = t P ~ ' ( 0 ) -  min [ t 0 ' k ~ ( d ) - ' a ~ w ' ~ ' d ]  
I ld l l~-  

= ~ k ' ( 0 )  - rain [f(x~k~)+g~k'Vd+ h(ctk~+A~k)d)]. (A.41) 
I l d l l ~  

Since for a general convex function F ( - ) ,  

m a x [ F ( x )  F(x+d)]>~min[l -~] - , x max [F(x)-F(x+d)] 
Ildll~-- [lariat3 

holds for any c~,/3/>0, the convexity of  ~ptg~(d) -�89 gives 

A ffa'"~ll ~ mini1, Ila'k'll/llx '~ ' -  x*ll],~tL,,, ~*~j, 

consequent ly  Lemmas  2.1, Lemma  2.2 (using ao = ~), (A.39), and the fact that M o ~  I 
give the fol lowing inequality,  which holds for  all large k, 

k Cl A H~.~,, ~ - ~  IIx '" '-x*ll  IId'k'll. (A.42) 

It follows from (A.40) and (A.42) that  there exists M 2 >  0 such that  

4 ,~k ' (0) - tP~k ' (d '~ ' )~  > min t, 11x' -x*lllla'~'ll aM, k 2M,,M, IId'k'IIJ 
(A.43) 

for all k >/M2. Thus (3) follows from (A.43) and (A.39). 
We now prove  (4). For all sufficiency large k, since 

c(x'k'+ d 'k)) - c(x 'k ')  - A' k 'd 'k '  = O( lid' ~'112), (A.44) 

and since Rank(A ck~) = m for all large k, there exists d~kl such that 

r  - d 'k ~) - r  tk)) - AIk)dCgl = Atk)~l  ik) (A.45) 

and 

lld~k~ll = o(lld~k'll=). (A.46) 

Define 

/3k = maxEIla'k'll, IId'k'+ d'~ll], (A.47) 
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then by the definition (1.9) of re,, k', it follows that 

r(k~ 1 { e =~o~k> &(Xlk~)--&(xlkl+dlk')+qlk~(d~k~)+h(c(x(g~+d(k~)) 

- -  min [q~k~(d~k~+d)+h(c(xCkl+d~k~)+A(k~d)]} 
II d'~ '+ dill- ~ 

1 { q~kl(dtk,) ,+dlkl ) 
- ~ t ~ , k ~  ~, (x'k')+ -.l(x 'k 

- min [q~kl(dlk'+d)+h(c'k~+Atkl(d+dlk~+~llkl))]} 
![d ~ ~ ",- d l l~  ~z 

1 [ q~g~(d,k~ ) _t_d,k!) 
--At0'k/ LqS(X'k')+ -f(x'kl  

"-['- g (  k 'Ta~ '  J" ' - -  r a i n  ~'"'(d)+o(lld'':~ll")]. ( A . 4 8 )  
I l a - , i ' "  'I1~ 13,, J 

By the definition (1.5) of q~k~(.) we have that 

t l l  

'd  ' k ' '  r a' ," 'V"C'?'d'k'+O(lld'~'l l~),  (A.49) qlkl( d~kl)-- f(x'k' + d'k~) = ~  =. 
i - I  

and from (1.10), (1.13), (A.45) and (A.46), it follows that 

m 

g ' k ' ~ ' ~ ' k ' = -  E a ' , " ' v r c ' / "d ' k '+o ( l l d ' " l l  2) 
i--I 

m 

= - v A? ,Ec , (x ,~ ,+d  ,k, ) - c,(x ,~,) -VTc ' , ' , d ' " , ]+o t l ld ' " ' l l  ~) 
i--I 

= -  ~d 'k'~ E A ',k'V~-C',k'd'k' +O( l l d 'k ' l ] = ) "  ( A . 5 0 )  
i [ 

Hence from (A.47)-(A.50) and (3), noticing /3k <~ p~g~, we have that 

, k ,  _ max,a_a.~,,_< e~ [0~ ~ '(0) - ~ ' ~ ' ( d )  + o(  [I d'~ ~ll~-)] 

a0 ,  ~, 

_ m a x l i d _ a , ~ , i i ~ t 3 , :  [ 0 ' g ' ( 0 )  - &,~,(d)] +o(lld'"'ll)/lld'"'ll. (A.51) 
maxlldll<.t~ ~ [q /~ ' (0 ) -  g/~ '(d)] 

For each k we define 

A~ = max [O't '(O) - '~" 0 (d)], (A.52) 
Ilarll~-/~ 

which is a monotonical ly increasing function of  positive /3 and for any /30>/3 > 0  
we let do satisfy 

A~,, = ~"~'(0)- O'~"(do), Ild,,lI <~/3 ,. (A.53) 
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Thus, by the convexity of  h and the definition of  ~b(k)( - ), we have that 

[01k)(0) _ (0ik~(do) _~dol TW(k) do)lj _~' ~o d~W~kld~ 

t* 0 , �9 tit  0 

, s4, 

where the last line depends  on (3). Using (1.54) and (A.51), we deduce  that 

r(k,< A~k + II't~' I1+ 
e ' O ( 1 )  

/3~+ I1'i~'11 ~ o ( l ) =  l + o ( 1 ) ,  (A.55) 

r e ~o(l)  

and 

~ -IId'~'ll  fl  + O(ll~T'~'ll /~k)]+ o(1)  = I + o ( l ) .  (A.56)  

Therefore  (4) follows. 
Finally we prove (5). I f  (2.4) is not true, there exist a~c (0 ,  1), kj ( j =  1 , 2 , . . . )  

such that r(k'}~ C~ I and 

II d(k~'ll = O( II a?k,'ll ). (1.57) 

To simplify notation,  we denote  k i by j .  Since {kj} is a subsequence of  {k}, without 
loss of  generality, we assume that 

dlJ)/lld'J'II "-* d', d(')/lldU')) ~ d'. (A.58) 

Since our continuity assumption shows that 

~,(i,(0 ) _ a,.i,(d,_i,) = ~ ( x , j ~ )  _ ~ ( x ' "  + d ' " ) +  O( II d~i'II~'), 

the definition (1.6) of/ . i~ and the assumption r~J~  < c~j ensure that 

e,u ' (0)-  ~,'J'(d':') = O(11 d<'ll-~). (A.59) 

Consequent ly  the bounds (A.59) and (A.43) imply 

Ilx'-"-x*ll  = o(11 d'J'll ). (A.60) 
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It follows from Lemma 2.2, (A.41), (A.60), the fact that (A.40) gives the condition 

A ffd'~'ll <~ max[2g6 'k', (2 Mog&' k3 ]] d,k! H 2)1/2], (A.61) 

(A.59) and (1) that 

�9 1 . [ [ , x " ~ - x * , , ]  
6 ( X  'ii) -- 6 ( x * )  ~< 1__ AIP~'"-x*', < ~ - -  A~Ia~'II max 1, 

- ,~ ~ , ,  L J IldU'll 
= o(~!E~,,,~,~ = o (  II d'"ll 2) = o (  Ilx'"- x *  I1=). (A .62)  

Consequently 

6(  x'"' + d'-") = ~,'"( d'-") § O( II d'J' [l=) 

<~ 6 (  x ' , ' )  + Of ll a'~,ll 2) <~ 6 (  x*)  + O( ll a'-"ll ~- ) (A.63) 

Without loss of generality, we assume that 

(.,~,J~ + d~, ,_  x . ) / l l d , , l l  _~ d.. (A.64) 

From (A.63) and (A.64), if d ' ~ 0 ,  d 'c  G*. Therefore for both zero and nonzero 
values of d', 

d' ~ G* (A.65) 

since, due to (A.62), d ' - d ' ~  G*. Similarly, it can be shown that 

d I ~ G*. (A.66) 

From (1.7), (1.5), (A.45), and (A.46), we deduce that 

~i l (d)  = q l'J)( d~i' + d) + h( c<2~ + AOl( d + dr;)+ d~J))) 

= ~ ' J ' ( d + d ' J ' §  IId'J~ll~). (A.67) 

Consequently, it follows from (A.54) that 

T h u s ,  

= max [~ i ' ( - d~J ' - d ' J ' ) -~U ' (d ) ) ]  
i[.'~a"ll~tL 

= max E,~"'(o)-~,"~(a+a'J'+~"')]+o(lla'"ll ~-) 

>/ max [ t k u ~ ( 0 )  - +"'(a)]+o~lla~"ll 2) 
I l d l l ~ / 3  x IiJ*'~ll 

>1 ~,';~(o) - ,P ' - " (d `j') + o( II d'J' II -') 

/> ,~'-~'(-a'"' - ,~"') - ~(- ,?~ ' )+ o(ll a*" I12). (A.68) 

~u,(~(ii) <~ ~u)(_~i , )  + o(lld,.,,I]=). (A.69) 
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Let qrv~ be defined by 

q f ln (d+d~)  ) (jl I X 'ki = qt ( d ) + ~ d  W d, (A.70) 

and note that ~P~J)(.) is a polyhedral convex function. Since q, tJ)(d) attains its 
minimum on {d: lid H ~<p(;)} at d ~j!, 

tF(J~(d)/> q;~i)(0) (A.71) 

for all d satisfying 

l id+ d'U)ll <~ p(~'. (A.72) 

In particular, if 

/I a(;' + ~(J* + d 'j*ll <~ p'~', (A.73) 

then 

qtIJ~(t~(/) + ~(i)) 1> qt(j)(0 ) = ~(j)(d(;~). (A.74) 

Consequently, it follows from (A.67), (A.70), (A.74) and (A.66) that 

~;(-"(d(J!) - ~;(; '(- J ' " )  = ~,'J'(d'J' + ~"' ' +  J'J)) - ~;':;'(d (-,') + o( II a (;) II -~) 

>~'~(d'YW*d' II d~ ' l l ;+  o(11 a(J)ll 2) (A.7S) 

for all large j, which, due to (A.57), contradicts (A.69). Therefore we assume that 

II d~"+ ,i~" + a"~ll > p'J) (A.76) 

for all j. Remembering (A.57) and that {j} is a subsequence of {k}, we assume 
without loss of generality that 

( d'~;' + ~(J')/II d ' "  II - '  d ' ,  (A.77) 

a t ~ G*. (A.78) 

Define 

J ' J ' =  (a(J' + d ' J '+  d(")(1-211~t(J ' l l /p '~).  (A.79) 

Then, it follows that for sufficiently large j 

IId'J>ll < p'-;', ( , i ' - " -  d'- 'b/II,t~' l l--, a ', (A.80) 

since IId'J'+ ~';'+,t~ll ~ p~J~+ I1,~'11. Similarly to (A.75), it can be shown that 

~,(J>(d~.;, _ d , . ; ,  j ( , , )  _ ~c; , (_,~% ~> ~(d,)-,-W* d ;  II d (;' II 3 + o( II d 'J' II 2). 

Now (A.79), (A.77), (A.46) and (A.57) imply that 

d'-;)/II d'; ' l l-~ ,~'. 

(A.81) 

(A.82) 
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Using (A.67), (A.46), and the continuity of O'J)(d)-~dxW~-i~d, we deduce that 

47J'(-d '-~- ,i'J') - t~J'(a ~ -  d ' j ' -  ,~ ')  

= +' ~'(0) - 4,'J~(,~ ~') + o(  II d"'ll -~) 

~> (1 - 21] 2rJ'l[/p'J')E,Z,'-i'(o) - ,/#'(d'J)+ 21w+ ,i~J')] + o( II d(J'll =) 

= ~,'-~'l O) - ,~ /~ ' (d '"+  , i 'J '+ ,?~')+ o( II a"~ I1-'5 

= , s  a'J' - d '~') - q;'J'(ff'-") + o(  II a'J'll 2) (A .83)  

(A.81) and (A.83) show that (A.75) holds, which contradicts (A.69). The contradic- 
tion shows that (2.4) is true. 

Remembering our notation that ~k~=e(X~k'+d~k~), by the definition (1.73 of 
t~kl( �9 ), we have 

Ats = q ' k ' ( d ' k ' ) + h ( ~ ' k ' ) - - [ q ' k ' ( d ~ k ~ + ~ k ) ) + h ( ~ ' k ' + A ~ k ~ l ~ k ~ ) ]  

A,  V ci u [ f ( i ( k ~ ) + h ( c ( i l k ) ) )  = f  ) ~ 
i - I  

+~'(a '~ '+J '~) �9 ~ ~'? v -~c? , ( a~ ,+ ~ , )  
i I 

+o(lld'~'ll'-)+o(lld'~'+d'~'ll=)+o(lld,~'ll II,?~)l[) § O(ll d'~'ll-~). 

= 6 ( x ( ~ l +  d l k l ) _  6(XI~I+ d . ~ , +  ~,k~) 

+ o ([I d ' t '  113) + o( l l  dig' II II d(k)ll ) § 0 (  l] li(k)II 2). (A.84) 

Hence (2.5) follows from (1.9), (2.4), (3) and (4). This completes the proof of 
Lemma 2.3. [] 
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