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It is shown by example that the reduced Hessian method for constrained optimization that is 
known to give 2-step Q-superlinear convergence may not converge Q-superlinearly. 

Key words: Constrained Optimization, Reduced Hessian, Q-superlinear Convergence. 

I. Introduction 

Consider the following constrained optimization problem 

minimize f(x) 
(1.1) 

subject to c(x)=O 

where f ( x )  from ~n to ~ and e(x) from ~ to ~m are twice continuously differentiable 

functions. We define A(x) = veX(x) and g(x) = Vf(x). Assume that x* is a solution 
of (1.1), that A(x*) has full column rank, and that A* c R m is the unique Lagrangian 

multiplier vector that satisfies 

g(x*) - a(x*)A * = 0. (1.2) 

Let the Q - R  factorization of A(x) be 

[ y(x), Z(x)] [ R~  ) ], (1.3) 

and assume that Y(x), Z(x) and R(x) are continuously differentiable. Further, we 
assume that the second order sufficiency condition holds at x*, that is 
ZX(x *) W*Z(x*) is positive definite, where 

W* = V~f(x *) - ~ A*V=ci(x*), (1.4) 
i=l 

a*( i  = 1, 2 , . . . ,  m) being the components of a*. 
The two-sided reduced Hessian approximation method generates {xk} in the 

following way: given xk and an ( n -  m ) ×  ( n -  m) matrix Bk, which is the reduced 
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Hessian approximation, let Pk be a solution of the square linear system 

BkzT(xk)l [ ZT(xk)g(xk) ] (1.5) 
AT(x~) J P~ = - k c(x~) ' 

and set 

xk+l = xk +Pk. (1.6) 

For more details of the method, see Nocedal and Overton [3]. 
The method is 2-step Q-superlinearly convergent, due to the following result (see 

Powell [5], Nocedal and Overton [3]): 

Theorem. I f  xk-~ x*, if JIB,ill is uniformly bounded, and if 

II [n~  - ZT(x  *) W * Z ( x * ) ] Z T ( x k ) ( X k + x  -- Xk)II 

II x~+, - xk II -~ 0, 

then Xk ~ X* at a 2-step Q-superlinear rate in the sensd that 

I lxk÷~-  x*  II/II x k - l - x * l l - ~  0. (1.7) 

The main purpose of this paper is to consider the following question. If Bk 

ZT(x *) W*Z(x*), which gives the limit (1.7), is it possible that the rate of conver- 
gence of alternate iterations is no better than linear? The example that is presented 
in the next section shows that this possiblity can occur. To make our analysis simple 
we let Bk = ZT(x *) W*Z(x*) for all k. 

2. The example 

Let n = 2, m = 1. We consider an example which satisfies 

g ( x * ) = I ~  ] ,  A(x*)=[10]  , h * = 0 ,  (2.1) 

where x* = (0, 0) T is a solution of (1.1) at which the second order sufficiency condition 
holds. Let the Q-R factors of A(x*) be the matrices 

Further, f (x )  will be chosen such that 

ZT(x  *) w * z ( x * )  = I. (2.3) 

We let Bk --= 1 for all k, as mentioned at the end of section 1. It will be shown that 
{xk} generated by the method given in section 1 may converge to x* by oscillating 
between the two curves y = z and y = z 2, where y and z are the components of x, 
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i.e. x = (y, z) T. Specifically we obtain x2k = (tk, tk) x and x2k+l = (t 2, tk) v for all k, 

where tk+l - t~ and Itll is very small. By induction,  this statement can be proved by 
showing that, for xk = (Yk, zk) x, the system (1.5) has the solution 

[ z ~ -  Yk ], 
Pk -= (2.4) 

LYk -- zk J 

if IlXkll2 is very small and if Xk satisfies either Yk = Zk or Yk = Z2. 
AS the Jacobian  of  the constraint is 

IOc(y, z) l  

oy ] (2.5) 
A ( x ) =  Oc(y,z) 

L Oz J 

and the Q - R  factorizat ion of  A(x)  is (1.3), we have 

1 
Y(x) ~ -  A(x), IIA(x) ll2 

1 
Z(x) i IA (x ) [ i  ~ 

R(x) = IlA(x)[l~. 

-oc(y___~, z ) 1 

ay _1 

(2.6) 

We require Oc(y, z)/Oy and Oc(y, z)/Oz to be cont inuously  ditterentiable functions 

such that 0c(0, O)/Oy = 1 and Oc(O, O)/Oz = 0, [1" I]2 being the Eucl idean norm. 
To construct  f ( x )  and c(x) such that (2.4) holds for all k, remember ing that 

Bk = 1, it is sufficient to obtain 

ZW(x) [ z2-  Yl =--ZT(x)g(x) ,  AT(x) [ Z2- Y] =--c(x) (2.7) 
k y - z J  k y - z J  

for all x =  (y, z) T such that y =  z or y =  z 2 in a small ne ighbourhood  of  x*. I f  

c(y, z) = y + g(y, z), then the second equat ion o f  (2.7) is satisfied for y = z and y = z 2 

if 

o~(z 2, z) 
0e(Z,  Z) (Z 2 -- Z) = C(Z, Z) -t- Z 2, (Z 2 -- Z) ~--- C(Z 2, Z) -F Z 2. (2 .8)  

Oy Oz 

Let g(y, z) have the form 

{ z - y  y--z2"~ 
e(y, z) = D \ l - z '  i 2 z ]  ' (2.9) 
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in order that (2.8) reduces to 
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D(O,z)-[-Z2~- Z - -~yO(O, z )Ar  - D ( O , z )  

[ o ] 
D ( z , O ) + z 2 : z  ( l + Z ) ~ y D ( Z , O ) - 2 z  O---D(z,O) 

Oz 

(2.10) 

where O/ay and O/Oz are the partial derivatives with respect to the first and second 
variable respectively. One can easily verify that 

D(-q, ~') = rl2+ r/(+2~ 2 (2.11) 

solves (2.10). Therefore, if we let 

1 c(y, Z) = y q-,-'-g"---~ [(Z --y)2+ (Z -- y)(y -- z 2) + 2(y - z 2 ) 2 ] ,  
t l - Z - )  

(2.12) 

we satisfy the required conditions that depend on the second part of eq. (2.7). 
To complete the construction of the example, we need to show the existence of 

f ( x )  such that the first equation of (2.7) holds for y = z and y = z 2, so we require 

OOz c(z, z) f(z,  z ) - ~ y  c(z, z) f(z,  z) 

o 
- c(z, z ) ( z  2 -  z), 

Oz 

- -  ~ 2 0 2' O f ( z 2 ,  z ) 0 c(z2 ' z)--~yf(Z, z) z) oz - ~ ( z ,  

: - - ° ~ ( z 2 ,  z ) ( z 2 - z ) .  
Oy 

(2.13) 

Since (2.12) gives the values 

0 (1 +2z) 0 ( 1 - 4 z )  
- -  - -  - - e ( z ,  z ) =  z - -  ay c(z, z ) -  (1 - z ) '  az (1 - z )  

O c(z2, z) (1 - 2 z )  Z e(z 2, z) = 
2 z  

oy (1 - z ) '  az (1 - z ) '  

(2.14) 

we let f (y ,  z) = ½z 2 -  yz + f ( y ,  z), in order that (2.13) is equivalent to 

0 -- 0 -- 
-z(1  - 4 z )  ~yf(Z, z)+(1 +2z) ~zf(Z, z) = -z2(1 - 4 z ) ( 2 -  z), 

3 - 2 O - 2 - 2 z T -  f ( z  , z)+(1 -22)  -T f ( z  , z)= -2 z  2. 
oy OZ 

(2.15) 
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Corresponding to (2.9), we let f(y, z) have the form 

( z - y  y - z  2] 
f(y, z)= G \i77z, ~_~ ]. (2.16) 

It follows that (2.15) reduces to 

(1 + 4 z ) ~ y  G(O, z)-2ZOoz G(0, z ) =  -z2(1 - 4 z ) ( 2 -  z), 

(2.17) 

(1 + 2Z)~y G(z, 0 ) - 4 z  O G(z, 0) -- - 2 z  2. 

Because the function 

G(T~,£e)= 2 q 3  ~2"~ z/7~ '~ v2 ~17"3-~1"4 (2.18) 

satisfies these equat ions we let 

1 [_4(z_y)3_6(z_y)2(y_z2) f(x) =½z2-yz-~ 6 ( 1 - z )  3 

(y  -- Z2) 4] 
- 1 2 ( z - y ) ( y -  Z2) 2 -  17(y-z2)3+3  -11 z .]. (2.19 

Thus we also obtain the required conditions that depend on the first part of expression 
(2.7). 

For f ( x )  and c(x) defined by (2.19) and (2.12), it is easy to show that (2.1) and 
(2.3) hold; further Y(x), Z(x) and R(x) defined by (2.6) are continuously differenti- 
able in a small neighbourhood of x*. Since [A(x), Z(x) ]  is nonsingular, it follows 
from (2.7) that (2.4) holds for all k provided that [[xk[[: is very small and that xk 
satisfies either Yk = zk or Yk = z 2. This completes the construction of the example. 

The example shows that, although the reduced Hessian method has 2-step Q- 
superlinear convergence, the rate of convergence on alternate iterations may be only 

linear. Further, it is not even linear in the sense that ][X2k+l [[co = IIX2k [[co for sufficiently 
large k. 

3. Remarks 

A computer program has been written to test whether the phenomenon exposed 

by the given example occurs in practice or not. Since computing errors may cause 
the iterates not to remain on the two curves y = z and y = z 2, it is reasonable for 
one to think that the theoretical analysis of the above example may not hold in 
practice. However, we find that the one-fast-one-slow convergence phenomenon 
occurs not only for the initial points on the two curves y = z and y = z 2, but also 
for many other initial points. For example the five initial points (0.1, 0.1 )x, (0.1, 0.2) T, 
(0.2,0.1) x, (0.0,0.1) T, and (0.1,0.0) T, and Bk = 1 for all k give the values of rk = 

Ilxkll~/l[Xk_lll~ that are shown in Table 1. Due to rounding errors the method 
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terminates  for all five init ial  points,  the test for convergence being IlZr(x)g(x)]1~+ 
]] e(x)]]~ = 0. These results indicate  that only the second initial  poin t  (0.1,0.2) T gives 

Q-super l inear  convergence.  

Tablel 

{~}evaluatedwithdifferentinitialpoints: 

k 0.1 0.1 0.2 0.0 0.1 
0.1 0.2 0.1 0.1 0.0 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 

0.304 1.35 0.141 1.28 
o. 1 (0) o. 199 0.394 1.02 o. 139 
1 0.160 0.662 " 0.262(-1) 0.835 
0.1(-1) 0.453(-1) 0.728(-1) 0.532 0.148(-1) 
1 0.374(- 1 ) 0.959 0.202(-3) 1 
0.1(-3) 0.210(-2) 0.493(-2) 1 0.250(-3) 
1 o. 156(-2) 1 0.457(-7) 0.877 
0.1(-7) 0.443(-5) 0.253(-4) 0.894 0.482(-7) 

0.244(-5) 0.962 o. 167(- 14) 1 
0.1(-15) 0.196(-10) 0.594(-9) 1 0.254(-14) 

0.598(-11) 1 0.280(-29) 0.914 
0.1(-31) 0.0 0.353(-18) 1 0.541(-29) 

1 0 . 0  1 
0.0 0.125(-38) 0.0 

1 
0.0 

We also tried 25 initial  points  which have the form ( ( ~ 7 - 0 - 5 ) / 1 0 , { ~ ' - 0 . 5 ) / 1 0 )  v, 

where 7, ~" are r a n d o m  numbers  in [0, 1]. It turns out that the Q-super l inear  

convergence occurs in 14 cases. For  the other 11 cases, the one-fast-one-slow 

behaviour  occurs, and  it is usual  for al ternate iterates to get closer to the two curves 

y = z and y = z 2 as k increases. 

The method  is a local one that may fail to converge unless ]]x0]] is sufficiently 

small. For  example  the initial  point  (0.01, 0.5) T was found  to be too far from the 

solution.  

Though  A*=  0 in Section 2, it is easy to show that examples with A * ¢  0 can be 

constructed,  due to the fol lowing lemma: 

Lemma 3.1. Let ui (i = 1, 2 , . . . ,  m) be any m constants. The method given in Section 
1 generates the same sequence {xk} if the objective function is altered from f ( x )  to 

DU m ~ . . f ( x )  ~i=l u~c~(x), provided that the initialpoint and {Bk ; k 1,2, 3, .} are the same 
in both cases. 

Proof. Let {xk} be the sequence generated by the method  when the objective funct ion  

is f ( x )  and  {xk} be that when  the objective funct ion  is f ( x ) +  uXc(x), where u = 
( u , , . . . ,  urn) T. 
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If xk = )~k, then the method defines Xk+x and 27k+1 by the equations 

AT(xk) j (Xk+~--Xk)= k C(Xk) J 

and 

[ BkzT(xk)l -rz  )+A(xk)" l 
a~(xk) j ( x k + , - x ~ ) =  L c(xk) J" 

Since ZT(xk)A(xk)= 0, it follows from (3.1) and (3.2) that 

Xk+l -- Xk ~ Xk+l  --  Xk" 

Therefore 2k+~ = xk+l. By induction, since Xo = fro, the lemma is true. 

(3.1) 

(3.2) 

(3.3) 

l 
& ( x ) = x - L  AT(x) J L c(x) J 

= x - [Z(x )B ' ( x ) A ( x ) ( A T ( x ) A ( x ) )  I] [ZT(x)g(X) l 
L c(x) J 

= x - Z ( x ) B - '  (x )ZT(x)[g(x)  -- A(X)A*]-  A(x)[AT(x)A(x)]  'c(x).  

Because g ( x * ) - A ( x * ) A *  = 0 and c(x*)= 0, it follows that 

Dcb(x*) = I - Z ( x * ) B  ~(x*)ZT(x*) W* - A(x*)[A-r(x*)a(x*)]-~a T(x*). 

Using QT(x*)Q(x*)  =/ ,  we have that 

DO(x*) = Q(x*) 

0 0 
- B - I ( x * ) Z  ( x * ) W * Y ( x * )  I x T " -- B - ' ( x * ) Z T ( x  *) W * Z ( x * ) ]  QT(x*)" 

where 

x = 6 ( x )  

In the example given in Section 2, we have that ]lx2k+l-x*]l~ = ][x2k-x*[Io~ for 
all k. We believe that by modifying the example it is possible to show that alternate 
terms of the sequence { Ilxk - x* II, k = l, 2, 3 , . . .}  may increase for any choice of norm. 

Since our example shows that algorithm (1.5)-(1.6) may converge only 2-step 
Q-superlinearly even if Bk ~- ZT(x *) W*Z(x*) ,  it is not possible to obtain an 1-step 
Q-superlinear convergence resut for (1.5)-(1.6) if Bk is some kinds of approximation 
of ZT(x *) W*Z(x*) .  Pointed out by the referee, a simlar example is given by Byrd 

[1] where Bk is the reduced Hessian at the current iterate instead of at the solution. 
The following analysis is motivated by Goodman [2], Nocedal and Overton [3], 

Overton [4] and Stoer [6]. Suppose Bk= B(xk) where B(x)  from R m to R" is 
continuously ditterentiable in a neighbourhood of the solution x* and B(x*)  is 

nonsingular. (1.5)-(1.6) is Newton's method for the fixed-point problem: 
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Let 

p, = p( B ~(x*)ZT(x *) W* Y(x*) ), 

P2 = p( I :- B - I ( x * ) Z T ( x  *) W*Z(x*)  ), 

where p( .  ) is the spectral redius of a matrix. It is evident that 

p(DqS(x*))<~pl+pz, p([Ddp(x*)]2)<~p2(pl+p2). 

Hence if Pz(Pl + P2) < 1, x k converges to x* locally and 2-step linearly. Specially, 
when B(x*) = ZT(x *) W*Z(x*) ,  we have that P2 = 0. In this case p([Db(x*)] 2) = O, 
consequently the algorithm converges locally and 2-step superlinearly. If 
ZT(x *) W* Y(x*)  ~ O, we have that 

p( Dch(x*) ) >I p, >~ P( ZT(x*) W* Y(x*) ) > O. 
p(B(x*)) 

That is why the algorithm may converge only 2-step superlinearly instead of 1-step 
superlinarly. It is also noted that the algorithm converges 1-step superlinearly if 
B(x*) = ZT(x  *) W*Z(x*)  and Zr (x  *) W* Y(x*)  = O. 
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