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In this paper, a recursive quadratic programming algorithm for solving equality constrained 
optimization problems is proposed and studied. The line search functions used are approximations 
to Fletcher's differentiable exact penalty function. Global convergence and local superlinear 
convergence results are proved, and some numerical results are given. 
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1. Introduction 

The problem we consider is the equality constrained nonlinear optimization 
calculation: 

minimize f ( x )  (1.1) 

subject to 

c (x )  =0, (1.2) 

where f (  x ) E R n×l and c( x ) ~ R "×" are twice continuously ditterentiable. 
The recursive quadratic programming method for solving (1.1)-(1.2) is iterative. 

At the beginning of an iteration an estimate of the solution is available, and a search 
direction is calculated by solving a quadratic programming subproblem which is an 
approximation to the original problem. Then a new estimate of the solution is 
obtained by moving from the old one along the search direction, where the step-length 
is calculated by some technique. Such methods have been studied by many authors, 
including Wilson [20], Bartholomew-Biggs [1, 2], Han [12, 13], Powell, [14, 15, 16, 
17] and Schittkowski [18, 19]. 

It is known [15] that, if the step-length of one is eventually acceptable on every 
iteration, then the recursive quadratic programming method converges superlinearly 
under certain conditions. Several recent papers consider how to choose line search 
functions so that the unit step-length is acceptable near the solution (see Chamberlain 
et al. [6], Gill et al. [11] and Schittkowski [18, 19]). It is also suitable [3, 4] to use 
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Fletcher's [8, 9, 10] differentiable exact penalty function as a line search function. 
We propose and study an algorithm of this type, that has the important feature that 
approximations to the derivatives of  Lagrange multipliers are employed that avoid 
the need to calculate any second derivatives. 

Our algorithm is described in Section 2. Its global convergence properties are 

studied in Section 3, and local convergence is considered in Section 4. Some 
numerical results that were obtained by a particular implementation of the algorithm 
are presented in Section 5. Finally, there is a brief discussion of the given theory 
and results. 

2. The algorithm 

Fletcher's [8] exact penalty function has the form 

&(x, t r )=f(x)-c(x)VA(x)+½o' l lc(x) l122,  x 6 R " ,  (2.1) 

where tr ~> 0 is a parameter  and where, for every x, 

A(x) = a ( x ) + g ( x ) ,  g ( x ) = V f ( x ) ,  a ( x )  = Vc(x) v, (2.2) 

A + being the Moore-Penrose  generalized inverse of A and I1" I] being the 2-norm. 
When the columns of  A are linearly independent,  which is assumed in Sections 3 
and 4, then A + is the matrix ( A T A ) - I A  T. Unfortunately the gradient Vx¢(x, tr) 

depends on second derivatives o f f ( x )  and ci(x) (i = 1, 2 , . . . ,  m).  Therefore on the 
iteration that calculates Xk+l from Xk, once a search direction dk and a trial step-length 
flk, i are chosen, we approximate A ( X k off Off3k, idk ) by A ( Xk ) off Ol [1~ ( X k -~ flk, idk ) -- A (Xk)], 
which gives the line search function 

~k,,( aflk,,) = f ( x k  + aflk, idk ) 

- [~ (x~) + ~ (A (x~ + 3 j ~ )  - ~ (xk))]%(x~ + ~/3~,~d~) 

1 +~k, , l l c (xk+ ,~ t~ , ,d~) f lg ,  0 f  ~ < 1. (2.3) 

Here i is the number  of  step-lengths that have been tried already on the current 

iteration, so we let flk, O = 1. For ii> 1, flka may be any number  from the interval 

[fllflk,~-l, fl2flk, g-1] where fll and f12 are constants such that 0 </31 ~< f12 < 1. A pro- 
cedure that determines the penalty parameter  O'k,~ will be given. Our algorithm will 

make use of  Ck,~(0), ¢~i(flk,~) and the derivative 

CI)'k,i(O) = g(Xk)T dk --1_~ [A (Xk + flk, idk) -- A (Xk)]T c(xk) 

- A (Xk)TA(Xk)Tdk -- V~k,~ II C(X~)[[ I, (2.4) 

where the last term depends on the fact that dk will satisfy equation (2.6). We see 

that A(Xk + flk, idk) has to be calculated for every/3~.  
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We use the nota t ion  gk = g ( X k ) ,  Ak = A(Xk), Ck---¢(Xk), etc. As men t ioned  in 
Section 1, the a lgori thm is iterative. An initial guess of  the solut ion xl E R n is required.  

Constants/31,132,/* ~ (0, ½) and or1_1 > 0 are p rov ided  and a suitable n × n symmetr ic  
matr ix  B1 is also given. 

At the beginning of  the k-th iteration, Xk, ~k,-I and Bk a r e  available.  We let the 
search direct ion dk be the solut ion o f  the quadrat ic  p rog ramming  subprob lem:  

minimize gXd +½dTBkd (2.5) 

subject  to the constraints  

Ck + A~d = 0, (2.6) 

which we assume has a unique solution. 
For  each integer i that  occurs,  the fol lowing procedure  gives a value of  ~rk, i that  

satisfies the condit ions 

I o- cI)'k,,(O) ~ - ½[ dT Bkdk + O'k,, II C(Xk)[[ 21 <~ -- a k,, II C(Xk)II 2. (2.7) 

We let ~k,i = O-k.~-i whenever  (2.7) holds for  crk,, = crk, i-1. Otherwise  we let 

O.k,i=max[20.k,i_ 1 -d'~Bkdk 2 [½dTBkdk 
' ' II ckll 2 

but  the middle  term on the right hand  side is r edundan t  if  Bk is posi t ive definite or 
posit ive semi-definite, I t  fol lows that  either 

O'k, i = O'k,i_ 1 , 

o r  

ok, i >~ 2o'k,i_ 1 . 

We try the values i = 0 ,  1 , 2 , . . . ,  until 

(2.9) 

( 2 . 1 0 )  

i =  ik, which is defined to be  the smallest  
non-negat ive  integer i such that  the condi t ion 

~k,,(/3~,) --< q~k,,(0) + ~/3~,,q5'~,,(0) 

is satisfied. Then we set 

Xk+l  = Xk + /3k ,  iflk 

and  

(2.11) 

(2.12) 

Crk+l _1 = ~rk, ik. (2.13) 

A suitable symmetr ic  matr ix  Bk+l is genera ted  by some means ,  which comple tes  the 
k-th iteration. 
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A summary of  this algorithm is as follows: 

Step 0. x l ~ n , / 3 1 ~  (0, 1),fl2~ [ill, 1),/z c (0,½), o ' l - l > 0 ,  and Bl are given. Set k:= 1. 

Step 1. Solve (2.5)-(2.6), giving dk. 
Stop if dk = O. 

Otherwise set i = 0 and flk, O = 1. 
Step 2. Choose O'k,i in the way described. 

I f  (2.11) is satisfied then go to Step 3. 

Otherwise set i:= i+1 ,  choose [3k,~ ~ [fl~flk,~-~, f1213k.~-~] and repeat Step 2. 

Step 3. Set ik := i, Xk+l :---- Xk+flk.~kdk, and ~rk+l. 1: = ~rk.~ k. 
Generate Bk+I. 

Set k:= k +  1 and go to Step 1. 

The following lemma shows that division by zero does not occur in formula (2.8). 

Lemma 2.1. I f  ftdkll > 0, and i f  (2.7) is not  satisf ied f o r  O k ,  i = Ok.i_l, then IlCkll # O. 

Proof. Assume the lemma is not true. Then 

Ck = 0 (2.14) 

and, in view of equation (2.6), the failure of  condition (2.7) implies 

g~-dk > i T T --~dkBkdk or dkBkdk  < O .  (2.15) 

I f  the first part  of  (2.15) holds, then replacing dk by 0 would reduce the objective 

function (2.5) and would preserve the constraint (2.6), which is a contradiction. I f  
the second part holds, then the multiplication of dk by a large positive factor would 
also reduce (2.5) and preserve (2.6). Therefore the lemma is true. [] 

3. Global convergence 

To prove global convergence, we make the following assumptions: 

Condition 3.1. (i) {Xk}, {dk} and {Bk} are bounded. 
(ii) A ( x )  has full column rank for all x ~ ~n. 

(iii) Each matrix Bk is such that, if h e R" is any vector such that ATkh = 0, then 
hVBkh>~ ,~llhll 2, where 8 is a positive constant. 

These conditions imply that every quadratic programming subproblem has a 
solution, and they give the following useful bound on the initial derivative of  the 

line search function. 
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Lemma 3.2. Expression (2.7) and Conditions 3.1 imply the inequality 

~,,(0) ~< - r/II dk II 2, (3.1) 

where r I is a positive constant. 

Proof.  Let s > 0 satisfy the condit ion 

2e IIBkll + e2iinkll ~<½a (3.2) 

for all k. We express dk as (ek+hk) ,  where ek and hk are in the column space of  
At  and the null space of  A T respectively. Therefore ,  because ek is the shortest vector  
d that can satisfy equat ion (2.6), we have the relations 

Ilekil <~ MoliCklt, hTkBkhk >! 81lhkll = (3.3) 

where Mo is a constant.  Hence,  when II ek f[ >I e I[ h~ fl, the  b o u n d  

I I c~ l l=  ~ > Mo=llekll= ~ > Mo=(ll ekll + II hkll)2/(1 + e - ' )  2 = Mo=lldkll2/(1 + e- l )  = 
(3.4) 

is satisfied. Alternatively, when II e~lL < e IIh~ll, inequalities (3.2) and (3.3) imply the 
condit ion 

dTkBkdk = ( ek -4- hk)T Bk( ek A- hk) >1 II hk 112( 8 - 2e 11Bk II - e=ll Bk II) 

>~½8llhgl] 2> ½8(llhkl[ + Ilek[[)2/ (1 + e) 2 

= ½8lldkll;/(1 + e) 2. (3.5) 

By using condi t ion (3.4) in the last part  of  expression (2.7), or by using condi t ion 
(3.5) in the middle  part  of  this expression, it follows that  inequali ty (3.1) holds for  
all k and i if r/ has the value 

1 min[~r~,_lMo2/(1 + e-l)2, 8/(1  + e)2] ,  (3.6) 

which completes  the p roo f  of  the lemma. [ ]  

Next  we show that, if Xk is not  a stationary point  of  (1.1)-(1.2), the algori thm 
will cycle within Step 2 only a finite number  of  times. A stat ionary point  of  (1.1)-(1.2) 
is a point  x* such that, for  some A * ~ R " ,  

c(x*) =0 ,  g ( x * ) - A ( x * ) A * = O .  (3.7) 

Lemma 3.3. Conditions 3.1 and Lid II > 0  imply that ik is finite. 

Proof.  If  the lemma is not  true, we have that  

q~k,,(/3k,,) > 4~k,i(0) +/x/3~,q0~,i(0) (3.8) 

for  all i =  0, 1 , . . . .  Due to (2.9) and (2.10), it follows that either 

lim crk, i = oe (3.9) 
i~OO 
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or  

O'k,i = Ork, io= O'k, i >~ io,  (3.10) 

for some i0. First we assume (3.9). By Lemrna 2.1 we must have IlCk[I ~ 0. Therefore, 
remembering that O'k.i = O'k,i--1 if conditions (2.7) hold, the limit (3.9) occurs only if 
the expression 

gTdk  T T 1 T 1 - A kAkdk +~d kBkdk -- flk,---~ [;t (Xk + 13k, flk) -- Ak]TCk (3.11) 

becomes unbounded as i ~ co. However, only the last term of this expression depends 
on i, and, due to the continuity of second derivatives and the full rank of Ak, it 
remains finite. Therefore the case (3.9) is not possible. 

To complete our proof, we assume (3.10). Considering sufficiently large i and 
using (2.3), (2.4) and Taylor series, it can be shown that 

@k,,(/3k,~)- @k,,(O)-/Zflka@~,,(0) = (1 --I~)flk,,@'ka(O)+o(flk.~). (3.12) 

Lemma 3.2 implies that the right hand side of this equation becomes negative as i 
increases, which contradicts inequality (3.8). This contradiction proves the 
lemma. [] 

Our next lemma shows that the numbers {o-~,~} are uniformly bounded. 

Lemma 3.4. Assuming Conditions 3.1, there exists ko such that 

trk, i = o'ko,0 = O- (3.13) 

for all k >~ ko and 0 <~ i <~ ik. 

ProoL Because each O-k,~ satisfies condition (2.9) or (2.10), it is sufficient to show 
that there exists a constant & such that the inequalities (2.7) hold whenever ¢rk,~ I> & 
This result depends partly on the bound 

T T T T 
gkdk + d kBkdk -- A kAkdk = 0(11 dk II II Ck II), (3.14) 

which is proved as follows. 

Let Xk be the Lagrange multipliers of the quadratic programming problem that 
determines dk, so they satisfy the equation 

gk + Bkdk  = A k ) t k ,  (3.15) 

which gives the bound 

]g T dk + dT Bkdk-- A TAT dkl = I(ftk-- Ak)T AT dk] ~ IIXk-- i~k [I ]ICkl] . (3.16) 

Further, because A k  has full rank uniformly for bounded IlXklI, we deduce the 
condition 

II Xk -- Ak [I ----- O(  II A k ~  k -- A k A k  II) = o(11 Ak) t  k -- gk 11 q- I[ A k A k  -- gk II) 

-- O( l lB~a~l l ) ,  (3 .17)  
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where the last line depends on the fact that the definition of Ak gives the inequality 

II AkAk -- gk 11 ~ 11Akh k -- gk [[" (3.18) 

Therefore, remembering that the matrices {Bk}  are  bounded, equation (3.14) is true. 
Now the term in equation (2.4) that includes the change in h is also bounded 

above by a multiple of [[dkll II Ckll. Therefore the lemma is true if we can choose 
satisfying the conditions 

-- dT Bkdk + MI  II dk [I [Ick [I - ~ IICk II 2 <~ --½[ d T Bkd k + d" IICk I I 2] ~< _ ~t~ IICk II 2 
(3.19) 

for all k, where M1 is any positive constant. Both these conditions hold if we achieve 
the bound 

- ldTBkdk + M111 dk II IICk [1 ~ 18 [I Ck ll2 (3.20) 

As in the proof  of Lemma 3.2, we express dk as (ek + hk), and we bound II dkl[ by 
[[[ekll + Ilhkl]]. It follows from inequality (3.3) that the left hand side of inequality 
(3.20) is bounded above by the expression 

-½8llhkll2+ M21lhkll [[ckll + M3llck[[ 2, (3.21) 

where M2 and M3 are constants. Therefore condition (3.20) is satisfied if & has the 
value ( 4 M 3 + 2 M 2 / ~ ) ,  which completes the proof  of the lemma. [] 

We use this lemma to show that the search directions become small. 

Lemma 3.5. Our conditions imply the limit 

II dk [[ --> 0 as k -~ oo. (3.22) 

Proof. Lemma 3.4 and definitions (2.1) and (2.3) give the values 

tPk, i(O) = C~(Xk, O'), tf~k,i([3k, i) = dP(Xk-I-[3k, idk, t~) ,  k/> ko. (3.23) 

Because inequality (2.11) holds when i=  ik, it follows from equation (3.23) and 
Lemma 3.2 that the sequence {&(Xk, #): k = ko, ko+ 1, . . .}  decreases monotonically. 
Further, the sequence is convergent due to the finiteness of {Xk}. Therefore we prove 
the lemma by showing that, if ]ldk[I > e, where e is any positive constant, and if 
k >/ko, then [cb(Xk, d - ) -  4)(Xk+l, 6)] is bounded away from zero. 

As in equation (3.12), we deduce the relation 

I~k,i( f lk ,  i ) -- I~k , i (0  ) - -  [,,~[~k,i(I)tk, i(O ) = (1 - Ix )flk,,O'g.i(O) + Ak, i ,  (3.24) 

where Ak.i has the value 

= ~ ( X  k 3V [3k, idk,  0") -- ~ ( X k ,  ~ )  -- [~k, iV~9(Xk ,  o ' ) T d  k 

+ IX (xk + flk, idk) -- hk]TCk --/3k, idTv h (xk)Tck (3.25) 
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for k ~  > k0. We see that  IAk, d is o(/3k,,). Therefore  we have Ak,~<~ (1- /x )e2~f lka  if 

flk,~ < g for  some posit ive constant  g, where  r 1 occurs in L e m m a  3.2. Further,  because 
Xk and dk are uni formly  bounded ,  we can choose  g to be independen t  of  k. It 

follows that,  for  II d~ II > e and k I> ko, express ion (3.24) is negat ive if/3k, i < L Hence  
the step-length of  the k-th i teration is at least/31g, so we have the inequali ty 

6 ( X k ,  0 " ) -  6(Xk+l, I~')= ~k, ik (O ) -- (~k, ik ([~k, ik)~-" --~.~lqik ~k ,  ik(O).w-- ~ .~lEn e . 
(3.26) 

Therefore  the l emma  is true. [] 

It is now s t ra ightforward to prove  global  convergence.  

Theorem 3.6. I f  Conditions 3.1 are satisfied, each accumulation point o f  {Xk} is a 

stationary point o f  (1.1)-(1.2). 

Proof.  L e m m a  3.5 and equat ions  (2.6) and (3.15) give the limits 

ck ~ O , gk -- Ak A k --> O 

as k ~  oo. Therefore  the theorem is true. []  

(3.27) 

4. A local convergence property 

It is shown in this section that,  if  eventual ly  step-lengths of  one would give a 
superl inear  rate of  convergence,  then the line search condit ion (2.11) allows flk, i = 1. 
We assume Condi t ions  3.1 and 

Condition 4.1. xk --> x*. 

Due to the global  convergence  theorem in the previous section, we know that  x* 
is a s ta t ionary point  o f  (1.1)-(1.2). 

Our  super l inear  convergence  p roper ty  is as follows: 

Lemma 4.2. I f  Conditions 3.1 and Condition 4.1 hold, and i f  {t} is an infinite 

subsequence o f  {k} such that 

[[xt + at -x* [ [  = o ( [ [x , -  x*]]), (4.1) 

then, for  all large t, 

xt+l = xt + d,. (4.2) 

Proof.  We assume without  loss of  general i ty that  t/> k0. Writing k instead of  t, it 
is sufficient to show the inequal i ty  

q~k,O(1) -- ~bk,0(0) -- IZqb~,,0(0) < 0. (4.3) 

The definition (2.3) and L e m m a  3.4 give the value 

q'k,o(1) =f(xk+dD-A(x~+dDTc(x~+d~)+k~llc(xk+dk)ll=. (4.4) 
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Further, from the continuity of second derivatives, the equation 

f(Xk + dk) = f(xk) +½d~Egk + g(xk + dk)] + O(I] dkll 2) 

: f (xk) + ½dVk[gk + g (X*)] + O( II dk II 2) (4.5) 

is satisfied, where the last line depends on condition (4.1), and there is an analogous 
expression for C(xk+dk). Thus, noting that the last term in expression (4.4) is 
o(ll dk [12), we deduce the relation 

q~k,o(1) -- q~k,o(0) = ½dT[gk + g(x*)] -- A (Xk + dk)T[ ck +½aT dk +½a(x*)T dk] 

- [-A~ck + ½~ II ck II =] + o(  II d~ 112). (4.6) 

We compare the right hand side with 1 ! ~bk, o(0). Remembering equation (2.6), 
expressions (2.4) and (4.6) give the identity 

• ~ o ( 1 ) -  ~ , o ( 0 )  ' ' ' ~ * , =~CI)k,o(O)+~dk[g(x )--A(x*)A(xk+dk)]+o(lldkll  2) 

1 ! = ~ k,o(O) + O( [I dk 112), (4.7) 

the last line being derived from equations (3.7) and (4.1). Inequality (4.3) now 
follows for sufficiently large k from /x <½ and Lemma 3.2, which completes the 
proof. [] 

This lemma gives the following theorem. 

Theorem 4.3. I f  Conditions 3.1 and 4.1 hold, and if the limit 

l im [[xk+ dk - x * [ [  = 0 (4.8) 

is obtained, then the algorithm sets Xk+ 1 : X k + d k f o r  all sufficiently large k. 

Proof. The result follows immediately from Lemma 4.2. [] 

Conditions on {Bk} that ensure the limit (4.8) are given by Boggs, Tolle and Wang 
[5] and by Powell [16]. 

5. Some numerical results 

In order to test the given algorithm, some parameters, the details of the technique 
of adjusting the step-length, and a formula that defines Bk+l have to be chosen. We 
select/31 = 0.05, /32 = 0.5, /x = 0.1, ~r~_~ = 10 and B~ = I because these values seem 
suitable, but there was no empirical tuning of parameters. 
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If the initial step-length flk.O = 1 is unacceptable, then flk,~+l is chosen from the 
interval [Bltik, i, fl2flk, i] in the following way. Because condition (2.11) has been 
tested, the numbers Ok j(0),  O'k.i(O) and @k,~(flk,~) are available, and by interpolation 
they provide a convex quadratic approximation to the line search function 
{Ok.i(aflk,~); 0 <- a <~ 1}. We set fig, i+1 to the step-length that minimizes this quadratic 
approximation subject to the conditions that depend on fl~ and f12. Thus we obtain 

the value 

flk, i+l = max{ill, min[fl2, Olk, i]}flk, i, (5.1) 

where 

-,sk,o~,,(o) 
! c%, 2[ Ci)k.,(~k,,)__Ci)g.,(O)__ flk, fi)k,,(O) ] 

(5.2) 

The formula for calculating Bk+~ depends, as usual, on an estimate of the change 
in gradient of the Lagrangian function when the variables are altered from Xk to 
Xk+l. Here decisions have to be taken that deserve careful investigation, but we 
only chose an estimate that seemed suitable, namely the vector 

(5.3) 

where A(x) is defined in the first part of equation (2.2). Thus Yk is the change in 
gradient of the exact penalty function (2.1) when tr = 0, except that we have dropped 
the change in VA (x), which depends on second derivatives, and which is multiplied 
by constraint functions that should tend to zero. Notwithstanding its disadvantages 
[17], we adopted the technique of  Powell [14) for preserving positive definiteness. 

T h e r e f o r e  Bk+ 1 is the matrix 

Bk6k3 ~ Bk rlk rl ~ 
Bk+,= Bk- ~BkOk ~ OT~k (5.4) 

where 

and 

3k = Xk+l - -Xk ,  ~k = Ok ' fk '~- (1- -Ok)Bk~k 

1, t~T~/k ~ 0 .1  T t~ k Bk6k , 
0="  0 . 9  T T _ t~kBkt~k/[t~kBk~ k t~Tyk]  , o t h e r w i s e .  

(5.5) 

(5.6) 

This algorithm was applied to a set of  test problems, proposed by Powell [17], 
that can include highly nonlinear constraints. Each objective function has the form 

F ( x ) = F ( z ( x ) ) =  ~ uiz,+ 1 ~ Aijzj , 
i = l  i=1 j = l  

(5.7) 
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where z is defined by 

i 
zi = ~ Cijxj + l p  ~ ~ DijkXjXk ' i = l ,  2, . . . , n. (5.8) 

j--1 j ~ l  k--I 

The constraints are {z~ = 0 ;  i =  1 , 2 , . . . ,  m}. As suggested by Powell [17], the con- 

stants u~ E [0.1, 1.1], A 0 ~ [ - 1 ,  1], Ci) ~ [ - 1 ,  1] but  C,  ~ [0.1, 1.1], and Dug ~ [ - 1 ,  1] 

but  D~jk = Dik), are generated randomly.  The parameter  p controls the nonlineari ty 
o f  the constraints. The point  x -- 0 is a solution, but  other solutions and local minima 

can occur. In  all cases we set n = 4 and xl = (1, 1, 1, 1) T. For  five different choices 

o f  r andom numbers  we tried m = 1, 2, 3 and 4, and p -- 0.01, 0.1 and 1, so we have 
60 different test problems. 

The calculations were done  by an IBM 3081 computer  in double  precision 

arithmetic, using the condi t ion 

[11 dk II = + II c(xk)ll2] ' /= ~< 10 - '=  (5.9) 

for terminating the iterations. However ,  because it was not  always possible to achieve 

this accuracy,  a calculation was also terminated if ten unsuccessful  funct ion evalu- 

ations were made during a line search. Table 1 gives the total number  o f  funct ion 

and gradient evaluations (and the number  of  iterations in brackets) for  each of  the 

test problems. A '* '  indicates an error return due to an unsuccessful  line search, 

and a ' t '  indicates that the sequence {Xk; k = 1, 2, 3 , . . . }  seems to be converging to 
a non-zero limit. In 38 o f  the 60 test problems O'k.~ remained at its initial value of  

10, and the final value o f  this parameter  exceeded 1000 in just 3 cases, namely  the 

ones ment ioned below where the constraint gradients are nearly linearly dependent .  
These figures are similar to Table 1 and Table 2 o f  Powell [17], but  in that paper  

all constraints are inequalities. They show that, on most  iterations, our  modificat ion 

o f  Fletcher 's  exact differentiable penalty funct ion allows a step-length of  one. The 

case 5, m = 1, p = 1.0 and Case 2, m = 2, p = 1.0 error returns are due to rounding  

Table 1 

Numbers  of  function evaluations and iterations 

Case 1 Case 2 Case 3 Case 4 Case 5 

m = 1 0 = 0.01 13 (12) 17 (16) 13 (12) 19 (17) 17 (16) 
m = l  p = 0 . 1  15(14) 15(14) 15(14) 18(16) 18(17) 
m = 1 p = 1.0 17 (16) 25 (21) 38 (34), 28 (23) 36 (22)* 
m = 2  O =0-01 13 (12) 12 (11) 13 (12) 14 (13) 12 (11) 
m = 2  0 = 0 . 1  14(13) 11 (10) 15(14) 15(14) 12(11) 
m = 2 O = 1.0 21 (16), 33 (18)* 23 (20), 20 (18) 31 (27), 
m = 3 t~ = 0.01 8 (7) 9 (8) 9 (8) 8 (7) 8 (7) 
m = 3  p = 0 . 1  10(9) 10(9) 13(12) 9(8)  12(11) 
m = 3 p = 1.0 41 (25) 30 (21) 18 (15), 22 (17) 18 (15), 
m = 4 /9 = 0.01 5 (4) 5 (4) 6 (5) 4 (3) 5 (4) 
m = 4  p = 0 . 1  6(5) 6(5)  5(4) 5(4) 6(5)  
m = 4  p = l . 0  8(6) ,  92(12)* 11(9) 7(6) 70(11)* 
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errors, because the final values of  the left hand side of  expression (5.9) are 5 × 10 -12 
and 36 × 10  -12 respectively. However, the two error returns that are shown in the 

last row of Table 1 are due to the fact that {Xk; k = 1, 2, 3 , . . .}  is converging to a 
point at which the matrix A k of constraint gradients is singular and constraint 
violations are large. Thus, due to equation (2.6), the final values of  [[dk][ are 5 × 106 
and l x  10  6 for Cases 2 and 5 respectively, so ten step-length reductions are 
insufficient to provide an acceptable vector of  variables. The apparent inefficiency 
of the Case 1, tn = 3, p = 1.0 case is due to the fact that near linear dependence of 
constraint gradients causes ]]dk]l to be of  magnitude 10 on several iterations. 

6. Discussion 

The main purpose of this paper  is to show that Fletcher's differentiable exact 
penalty function can be used as a line search function without the calculation of 
any second derivatives. The analysis of  Section 3 establishes that this line search 
function gives global convergence for a wide class of  constrained optimization 
problems, and it is proved in Section 4 that the Maratos effect cannot occur. The 
numerical results of Section 5 are quite favourable, but many of the details of the 

computer program should be regarded as provisional. 
It is particularly encouraging that rounding errors caused difficulties in only two 

of the calculations of  Table 1, because condition (5.9) demands high accuracy, and 

our technique makes difference approximations to first derivatives of  {A (x); x e R"}. 
Probably these difference approximations are adequate in practice because each 
one is multiplied by a constraint function, and {e(Xk); k = 1, 2, 3 , . . .}  should tend 
to zero. The difficulties due to singularity of  the Jacobian matrix when m = n are 
probably not due to our technique, because it is well known that, if Newton's method 
with exact line searches is used to solve a square system of nonlinear equations, 
then convergence can occur to a point that is not a solution, unless the condition 
numbers of  the Jacobian matrices remain bounded. 

Partly because of this last remark, it is often suggested that one should relax 
condition (2.6) on the search direction. A suitable method is described by Powell 

[14], but a useful alternative that has received much attention recently is to calculate 
dk by minimizing expression (2.5) plus a weighted sum of moduli of  linear approxi- 
mations to constraint violations. Thus one is minimizing an approximation to the 
nondifferentiable line search function that is usually employed to force convergence 
in recursive quadratic programming algorithms. Perhaps one should continue to 
choose the search direction in this way, even if the step-length of each iteration is 
determined by the differentiable line search function that we have studied. The 
possibility of  using a differentiable line search function for the calculation of search 
directions is considered by Di Pillo and Grippo [7], but one loses the highly useful 

sharp restrictions on the search directions that are provided by the linear approxima- 
tions to the constraints. 
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W e  h a v e  no t  yet  g iven  any  a t t en t ion  to i n e q u a l i t y  cons t r a in t s ,  o r  to the  poss ib i l i t y  

o f  fo rc ing  c o n v e r g e n c e  by  m e a n s  o f  t rus t  r eg ions  i n s t ead  o f  l ine  searches .  S o m e  

e x a m p l e s  in P o w e l l  [17] s h o w  a n e e d  fo r  d i f f e r en t i ab l e  l ine  s e a r c h  f u n c t i o n s  in s o m e  

p r o b l e m s  wi th  i n e q u a l i t y  cons t ra in t s ,  a n d  the  use  o f  t rus t  r eg ions  m a y  a l l ow  the  

r e m o v a l  o f  C o n d i t i o n  3.1(i i i ) ,  w h i c h  i m p o s e s  a seve re  r e s t r i c t ion  on  the  ma t r i ce s  

{Bk; k = 1, 2, 3 . . . .  }. O u r  resul t s  i nd ica t e  tha t  r e s e a r c h  on  these  q u e s t i o n s  w o u l d  be  

va luab le .  
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