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We study the self-scaling BFGS method of Oren and Luenberger (1974) for solving unconstrained 
optimization problems. For general convex functions, we prove that the method is globally convergent 
with inexact line searches. We also show that the directions generated by the self-scaling BFGS method 
approach Newton's direction asymptotically. This would ensure superlinear convergence if, in addition, 
the search directions were well-scaled, but we show that this is not always the case. We find that the 
method has a major drawback: to achieve superlinear convergence it may be necessary to evaluate the 
function twice per iteration, even very near the solution. An example is constructed to show that the 
step-sizes required to achieve a superlinear rate converge to 2 and 0.5 alternately. 
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1. Introduction 

W e  a n a l y z e  the  c o n v e r g e n c e  p r o p e r t i e s  o f  a s e l f - s ca l ing  B F G S  m e t h o d  fo r  so lv ing  

the  u n c o n s t r a i n e d  o p t i m i z a t i o n  p r o b l e m  

m i n f ( x ) ,  (1.1) 

w h e r e  f is a s m o o t h  f u n c t i o n  o f  n va r i ab le s .  A t  the  k th  i t e r a t i o n  o f  t he  se l f - sca l ing  

m e t h o d ,  a s y m m e t r i c  a n d  p o s i t i v e  def in i te  m a t r i x  Bk is g iven ,  a n d  a s e a r c h  d i r e c t i o n  

is c o m p u t e d  by  

dk = - - B ~ '  gk, (1.2) 

w h e r e  gk is t he  g r a d i e n t  o f f  e v a l u a t e d  at t he  cu r r en t  i t e ra te  Xk. O n e  t h e n  c o m p u t e s  

t he  n e x t  i t e ra t e  by  

Xk + l = Xk + akdk, (1.3) 
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where the stepsize ak satisfies the Wolfe conditions: 

f(Xk + akdk) <~ f(Xk) + 81Cekd[gk, (1.4) 

and 

T ~ T g(Xk + akdk) dk ~ 82dkgk, (1.5) 

where 0 < 81 < ½ and 81 < 82 < 1. The Hessian approximation is then updated by 

BkSkSTBk ] yky x 
Bk+l = ~k nk klcsTBk S -  J -~ yTsk' (1.6) 

where 

y[Sk 
4 ~ k -  T , ( 1 . 8 )  

S k BkSk 

which is one of the self-scaling quasi-Newton methods proposed by Oren and 
Luenberger (1974). If  ~bk = 1, this method reduces to the standard BFGS method. 

Other choices for ~hk are given in Luenberger (1984) and Oren (1982), and in the 
references therein. In this paper  we only study (1.8) because it simplifies the analysis 
and because we believe that other choices of ~bk do not possess stronger convergence 

properties than (1.8). 
Self-scaling methods were derived, motivated and analyzed in the context of 

unconstrained minimization of quadratic functions. They also arise when deriving 
secant methods by variational means (Dennis and Wolkowicz, 1991). In this paper 
we consider the behavior of one of  these methods on general convex problems and 
show that it can be implemented so as to be globally and superlinearly convergent, 
but we find that the superlinear rate can normally be obtained only at an additional 
computational expense. We construct an example that illustrates this. 

2. Global convergence analysis 

In this section we show that the self-scaling BFGS method with an inexact line 
search is globally convergent on general convex functions. The analysis is based on 
the study of the trace and determinant expressions for the matrices Bk - -  an approach 
due to Powell (1976). 

The analysis is greatly simplified by defining the auxiliary sequence {/~k} by 

n l  = B1, (2.1) 

yTsk Bk+l, k ~  >1 .  (2.2) 

Since/~k and Bk are related by a constant factor, we can express the step Sk in terms 
of/~k. Indeed, using (1.2), (1.3), (1.7) and (2.2), we obtain, for k >  1, 

S k = - - f f knk lgk ,  (2.3) 
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where 

d k  = Olk X (2.4) 
yk-lSk-1 

We now find a recursion for /~k. From (2.2), (1.6) and (1.8) we obtain 

sTBksk yTs k [ BksgSTBk] sTBkSkYkY T &+l 
y~Sk sTBks~k [ Bk S~BkS---~k 1-~ y'~s----~ yTs k ' 

(2.5) 

and using (2.2) gives 

Thus 

=(sTBkSk y~Sk ~ sT--1Bk'ISk--I Bk 
Bk+I \ y-~Sk sTBk------SSk] yT--ISk ~ sTBkSk J 

T - -  T skBksk YkYk - t - - -  
y~Sk y'~Sk" 

BkSkS TBk SfBkSk yky T (2.6) 

From the determinant relation for the BFGS formula (see Pearson (1969)) we obtain 

, . , ~ ,  sT&sk yTs k 
det(/~k+l) = aett~k) ~ sT~kSk. 

= det(/~k)- 

We have thus found that the determinant of the matrices/~k stays constant, 

det(/~k+l) = det(/~l). (2.7) 

If  B~ is positive definite and sTyk> 0 for all k, we can easily see from (1.6) and 
(1.8) that all the matrices B k generated by the self-scaling BFGS method are positive 
definite, and consequently, from relations (2.1)-(2.2), that all /~k are also positive 
definite. 

Next we study the trace relation. To do this we define the scalars 

s ~ &sk s T &sk 
qk S~Sk c o s  ok II&skll Ilskll (2.8) 

y~sg IlYkll 2 
mk = T  , Mk = , (2.9) 

SkSk y~sk 

where here, and for the rest of the paper, I1" II denotes the C2 vector or matrix norm. 
Since Bk and /~k differ only by a constant factor, it is clear that cos Ok remains 
unchanged if we replace/~k by Bk. Thus Ok is the angle between the steepest descent 
direction -gk and the search direction dk of  the self-scaling BFGS method, and the 
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convergence properties of the method can be deduced directly from the behavior 
of c o s  O k . 

From (2.6) we obtain the trace relation 

tr(Bk+l)=tr(Bk) II kskll= s~ksk Ily~[I 2 s~B~sk ~ T (2.10) Ys sk y~Sk 

= tr(/~k) qk ~_qkMk" (2.11) 
COS 2 Ok mk 

We are now ready to establish a global convergence result, under the following 
assumptions. The Hessian matrix o f f  is denoted by G. 

Assumptions 2.1. (1) The objective function f is convex, bounded below, and twice 
continuously differentiable in R". (2) The Hessian matrix G(x) is bounded above 
in norm for all x c D = {x c ~": f ( x )  <~f(xl)}. 

Theorem 2.1. Let Xl be a starting point for which Assumptions 2.1 are satisfied. Then 
for any positive definite starting matrix B~, the self-scaling BFGS method (1.2)-(1.8) 
is globally convergent, i.e. 

lim i n f l l g k l l  = 0.  (2.12) 
k->oo 

Proof. It is easy to see (Powell, 1976, Lemma 1) that Assumptions 2.1 imply that 
{Mk} is bounded above by some positive constant M. The line search condition 
(1.5) implies that 

S[yk >I -- (1 -- 82)S~gk. (2.13) 

Therefore, from (2.10), (2.13) and (2.3), and defining 83 = M( 1 - 8 2 )  -1, we have 

s ~ s ~  
tr(/~k+l) <~ tr(/~k) + M 

- (1 - 82)S~gk 

= tr(/~k) + 836k 

= tr(Bk)[ 1 + 836k/tr(/~k)]. (2.14) 

Therefore 

k 

tr(/~k+,) ~< tr(B,) l-I [1 + 836i/tr(/~i)]. 
i = l  

Now, from (1.4), 

k 

fk+l --fl <~ 81 Z sTigi, 
i=1  

(2.15) 
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and since f is bounded below, we obtain 

- ~ S~gk <O0. (2.16) 
k=l 

We now proceed by contradiction and assume that 

lim inf []gk [1 # 0. (2.1 7 ) 
k~co 

Then there exists a constant 64 > 0 such that 

Ilgk I1 ~ (~4, (2.18) 

for all k. Then from (2.3) and (2.18) we have 
_ oo ~k 

-- k=l ~ s T g k :  k=l ~ C~kgTBklgk~>8:k~----ltr(/~k)' 
since IIBkll Thus by (216), 

k : l  F ( n k )  < (30. (2 .19)  

A basic result of infinite products (see for example Apostol, 1957) states that if {7k} 
is a sequence of positive numbers, then 

7k<CC ~ ~ (1+7k)<0C. (2.20) 
k=l k=l 

Using this result, (2.19) and (2.15) we see that the trace of /~k is bounded. Since 
we have also shown that the determinant of/~k is bounded away from zero, we 
conclude that both {/~k} and {/~k ~} are uniformly bounded above. Moreover, by 
(2.8), we conclude that cos Ok is bounded away from zero. This and assumption 
(2.18) give a contradiction, since Zoutendijk's result (see Zoutendijk, 1970, or Wolfe, 
1969, 1971) states that any method of the form (1.2)-(1.5) satisfies 

co 

Z cos = 0kllgkll =<°° .  
k=l 

The contradiction shows that lim inf]lgkll = 0. [] 

Thus we haw~ proved that the self-scaling BFGS method, with inexact line searches, 
is globally convergent on general convex functions. 

3. Linear convergence 

We make the following assumptions on the objective function. 

Assumptions 3.1. (1) The objective function f is twice continuously differentiable. 
(2) The level set D = {x 6 R' :  f(x)~<f(Xl) } is convex, and there exist positive con- 
stants m and M such that 

mllzll2<  C(x)z<  MIIzll2, (3.1) 
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for  all z E R" and  all x e D. Note  that  this implies  that  f has a unique minimizer  x ,  
in D. (3) The  Hess ian  mat r ix  G is Lipschitz cont inuous  at x , .  

Under  these assumpt ions ,  Theo rem 2.1 implies  that  Xk ~ X , .  We now investigate 
the rate of  convergence  o f  the iteration. 

Since (1.6) and (2.6) are invar iant  under  the t rans format ions  

~,/2~ Yk = G,'/2yk, Bk G,I/2BkG, '/2, 

we can assume,  wi thout  loss of  generali ty,  that  G ,  = L Let us define 

6; k ~ X k - -  X ,  . 

By the M e a n  Value Theorem,  

yk = Gk(Xk+rSk)  drSk  

Io I ;/ = [ G k ( X k + ' r s k ) - - G , ] d r S k +  G , d ' r s k .  

Thus,  since G is Lipschitz cont inuous  at x , ,  we have 

Ily~ 11--Ilskll(1 + 0 (~) ) ,  

where  

o'k = max{ ]l ek II, I[ Ek+l II}- 

Also f rom (3.2), 

y~Sk = IIs~ 112(1 + o ( ~ ) ) ,  

and  using this in (2.9), we obta in  

M ~ / m ~  = 1+ O(~k). 

Substi tuting this in (2.11) 

tr(/3k+l) = tr(/~k) + qk[1 + O(O-k) -- 1/COS 2 Ok] 

= tr(/~k) + qkO(O'k) + qk[1 -- 1/COS 2 Ok]. 

Since the last term is non-posi t ive ,  and since 

qk <~ tr(/~k), 

we obta in  

tr(/~k+,) ~< tr(/~k)(1 + O(Crk)). 

We can now establish a l inear  convergence  result. 

(3.2) 

(3.3) 

(3.4) 

(3.5) 

(3.6) 

(3.7) 

(3.8) 

(3.9) 

0152"'01575 
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Theorem 3.1. Let Xl be a starting point for which f satisfies Assumptions 3.1. Then for 
any positive definite starting matrix B1, the self-scaling BFGS method (1.2)-(1.8) 
generates a sequence {Xk} that satisfies 

IIx,c-x, II 
k = l  

and there is a constant 0 <~ r < 1 such that 

fk+l - - f ,  <~ rk[f, --f ,],  

for all k. 

Proof. Since we know that the iterates converge to x , ,  we have that trk-~ 0. Thus 
using (3.9) we have that for large k, 

[tr(/~k÷0] n <~ tr(/~k)]" (1 + al O'k), (3.10) 

for some constant al. On the other hand, the line search conditions (1.4)-(1.5) and 
the assumptions on f give (see for example Byrd, Nocedal and Yuan, 1987, p. 1175) 

fk+l - - f ,  <~ (1 -- Cl COS 20k)(fk --A) (3.11) 

for some constant 0<  cl ~< 1. Combining (3.10) and (3.11), asuming that cos 2 Ok >1 
and that k is large enough, we obtain 

[tr(Bk+l)]2n (fk+l --f , )  <~ [tr(/~k)]2" (fk --f,)(1 --%1)(1 + alOrk)2 

~< [tr(/~k)]2" (fk -- f , ) ,  (3.12) 

since trk--> 0. We note that the relation (3.12) also holds when cos 2 Ok <½, since in 
that case (3.6) implies that, for large k, tr(/~k÷0<tr(/~k), and since fk+l<-fk, by 
(3.11). Therefore, we see from (3.12) that the sequence {[tr(/~k)]2"(fk--f,)} is 
hounded, i.e. there exists a constant r~ such that 

[tr( Bk) ]2"(fk -- f , )  <~ r~, (3.13) 

for all k. Moreover by Taylor's theorem 

fk - - f ,  I> ½m IIek 112 (3.14) 

where m is the lower bound in (3.1). Using this in (3.13) we obtain 

[tr(/~k)] 2" II ek II 2 (3.15) 

where fit = 2rh/m. Similarly, from (3.13) and the condition fk+~ <~fk we have that 

[tr(/~k)]2"(fk+~ --f ,)  ~< rfi, 

and thus applying (3.14) for k +  1 we obtain 

[tr(/~k)] 2" I[ e'k+l II 2 ~ fit. (3.16) 
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Using (3.15) and (3.16) in (3.10) we have 

[tr(/~k+l)]" ~< [tr(/3k)]" + al[tr(/~k)]"O'k 

<~ [tr(Bk)]" + rh, (3.17) 

where  n~ = a~rh 1/2. Thus we have shown that  [tr(/~k+~)] n grows at most  linearly; we 

shall make  use of  this fact later on. 

We will now consider  the behav io r  of  the trace relat ion (3.6) when  cos 2 Ok is 
small. Thus let us suppose  that  

cos 2 Ok <1 .  (3.18) 

Then 1 + 2 cos 2 Ok < 2, which in turn implies  that  

1 + 2 cos 2 0k 1 

-2 c%s - z  < cos  2 0k 

o r  

1 1 
- - < - 1  
COS 2 O k 2 COS 2 O k " 

Substi tut ing this in (3.6) we have 

tr(/~k+l) <~ tr(/~k) + qk [ 1 + O(~rk) -- 1 

~tr(Bk)--lqk[co~ 2 Ok 1] ,  

since O(~rk) ~<½ for  large k. 

1] 
2 cos 2 Ok 

(3.19) 

(3.20) 

L e t / x ? ) ~  < . . .  ~ / x ?  ) be the eigenvalues of/~k.  Then  f rom (2.8), 

qk ~ > / 3 " ? )  = - (k) (k) (3.21) det(Bk)/ /x2 . . . / x ,  . 

By the geomet r i c / a r i thmet i c  mean  inequal i ty  

. . . . .  / . I . ,  n . L ~ ] - -  1 J > _ ] />/~?~ (k~ 

Using this in (3.21), and  recall ing that  det(/~k) = det (Bl)  we have 

qk t> (n -- 1) "-1 det(B1)/[tr(/~k)] "-1 

= c2/[tr(/~k)] "-~, (3.22) 

where  c2 = (n - 1 )  n-~ de t (B0 .  Substi tut ing this bound  in (3.20) and defining ~ = %2, 
we have 

. 1 _ 1-] /[ tr( /~k)]~_~.  J /  tr(/3k+,) <~ tr(/~k) - C[cos 2 Ok (3.23) 
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Moreover by (3..18) and (3.6) we have tr(/~k+l) ~< tr(/~k), for large k, so that by(3.23) 

[tr(/~k+l)] n ~< [tr(/~k+l)][tr(/~k)] "-1 

~ 1 1]. 
<~ [tr(Bk)]n -- c [COS3 Ok (3.24) 

. , d  

This relation states that, when (3.18) holds, [tr(/~k)]" decreases - -  and the reduction 
is proportional to 1/cos 2 Ok- 1. 

We now apply (3.17) (which holds for all k) when cos 2 Ok/>1, and apply (3.24) 
when cos 2 Ok < ½. We obtain 

1 k 
0<[tr(/~k+l)]"~<[tr(Bl)] " -  :~  --1 + : 2  rh, 

cos 0i<1/2 COS 20i  cos 0i~1/2 
i=1 i=1 

and hence 

:~  - 1  <~c3k 
cos 0i<1/2 COS20i 

i=1 

o r  

k 1 
2 ~ 2 ~ c4k~' (3 .25)  

cos 0i<1/2 COS 0 i 
i=1 

for some constants c3 and c4. From this last relation we obtain 

k 1[ k 1 
y+ - - - -  ~< Y <~ c5 k, 

COS 20i  c4k+cos2~+:. 1/2 c o s  20 i  i=1 i ~ 
i=1 

where c5 = Ca+ 2. Applying the geometric/arithmetic mean inequality we have 

I~ 1 k (3.26) 
,=1 cos :  c5. 

We now conclude the proof as in Powell (1976). Let 

Ik={i:  l~<i~<k, cos 2 0 i < l / c  2} 

Jk={i:  1<~ i~< k, cos: 0+>~1/c2}. 

From (3.26) 

c~ >- [I 7 I] _ _ 1  >_ I~ 1 c21,kl" 
iEl k COS 0 i iEJk COS 2 0 i ~ iElk COS2 0 - - - - ~  " ~  

This implies that Ilkl ~+k, and therefore IJ l ~>kk. Using the latter in (3.11) we obtain 

fk+l --f* < ck6(fl - f , ) ,  
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where c6 = [ 1 - Cl/c~] 2/2 < 1. Therefore fk converges to f ,  R-linearly. It is then easy 
to show (see for example Byrd and Nocedal, 1989, p. 733) that 

Ilek]l < ~ ,  (3.27) 
k = l  

and that xk converges to x ,  R-linearly. [] 

4. Can superl inear  convergence be obtained? 

We will now show that the search direction generated by the self-scaling BFGS 
method approaches the Newton direction, asymptotically. From (3.9), 

k 

tr(/~k÷l)<~tr(B0 I] [ l+O(o-i)] .  
i=1 

Since (3.27) implies that Y.~=l ~ri < oo, we apply the basic result (2.20) on infinite 
products to obtain 

[1 +O(~ri)] < ~ .  
i=1 

Therefore {tr(/~k)} is bounded, and since det(/~k) is constant, we conclude from 

(2.8) that 

C7~ qk<~ C8, 

for some positive constants c7 and c8. Using this in (3.7) and recalling that tr(/~k+~) > 0 

we have 

[ '  1 q, - I  <tr(B,)+c8 
i=l Oi i=l 

We conclude that 

cos 2 Ok ~ 1. (4.1) 

Since we have assumed that G ,  = I, this means that the search direction approaches 
the Newton direction asymptotically, and superlinear convergence would be 
obtained if the steplength ok is chosen appropriately. Byrd, Liu and Nocedal (1991, 
Lemma 3.2), show that if (4.1) and 

T s k Bksk 
- -  ~ 1 (4.2) 

s~yk 

hold, then setting ok = 1 for all large k gives a Q-superlinear rate of convergence 
(this is just a restatement of  the well-known Dennis and Mor6 (1974) condition). 
The BFGS method satisfies (4.1) and (4.2),  so that asymptotically only one function 
evaluation per iteration is needed if the trial value ak = 1 is always used in the line 
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search. However the self-scaling BFGS method does not satisfy (4.2), and to obtain 
superlinear convergence it may require non-unit steplengths. This is illustrated by 

an example given below in which the desired steplengths satisfy O~2k --> I and Ot2k+l --> 2. 
The question, therefore, is whether it is possible to predict the correct steplength 
and avoid the function evaluations required by a line search iteration. 

For general steplengths, Lemma 3.2 of Byrd, Liu and Nocedal (1990) implies that 
superlinear convergence is obtained only if (4.1) and 

T 
OLkSky----------~--~ 1 (4.3) 
s~B~s~ 

hold. Suppose that an exact line search is performed at Xk to obtain Xk+l, i.e. 
Xk+l = X k - - a * d k  where a*  is the steplength to a one-dimensional minimizer of f 
along dk. Then gT+lSk = 0, and using (1.2), (1.3) and (1.7) we obtain 

s T Bksk sT BkSk 

s t y  k -- _ sT g k = C~*. 

It is clear from this relation that a*  satisfies (4.3), so that the self-scaling method 
with exact line searches is superlinearly convergent. Unfortunately exact line 
searches are impractical, and we need to look for other strategies. 

It turns out that by making two function evaluations per search direction we can 

compute a value of ak satisfying (4.3). We can use any initial guess, say a(k 1)= 1, 
evaluate f and g at that point and make a quadratic interpolation to obtain ak.  It 
is easy to see that (4.3) holds for this choice of  ~k- This is the best strategy we know 
for obtaining superlinear c o n v e r g e n c e -  and it is expensive. 

We will now present a simple example that shows that non-unit steplengths may 
be needed by tile self-scaling BFGS method to obtin superlinear convergence. This 
shows that the condition (4.2) is not satisfied. 

Consider the two-dimensional quadratic problem 

min f ( x )  = 1(u2+ v2), (4.4) 

with x = (u, v), which has the unique solution 

x .  = (0, 0) T. (4.5) 

We define the functions 

and 

r (A , /3 )=I (1  +/3:) 2, (4.6) 

p(A,/3) = (1 + t/32) 2 (4.7) 

( /3 :+  1)20(I , /3)~-(I , /3)  
~:(1,/3) - [p(A,/3)  + /32r(1 , /3) ]2  • (4.8) 
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I n  what follows we will assume that a > 1. We first note that 

4p(A, l)r(A, i) 
¢(a, 1)= 

[p(a, 1) + r(a,  1)] 2, 

so that using the elementary inequality (a + b)2>~ 4ab we conclude that 

sO(A, 1)<~ 1. (4.9) 

We also note that 

lim s~(a,/3) = a. (4.10) 
/ 3 ~ + c o  

For any a/> 1 and/3/> 1, it follows from the definitions (4.6)-(4.7) that 

r(a,/3) ~< p(a,/3) ~< ar(a,/3).  (4.11) 

Using (4.8) and (4.11) we have 

~:(a,/3) p ( 2 p - - r ) + 2 f 1 2 ( 2  - 1 )pz+f l4 (2z - -p ) ' c  
1 ,~ ,~(p+fl2r)2 

2fl2(2 - 1 )pZ 
> .~(pq._fl2,V)2 

2/32(,x - 1) 
>-- A 2 - - ~ 2 - ~  ~> O, (4.12) 

where p = p ( a , / 3 )  and r=r(a ,  r). 
Let us now define the sequence 

1 k (4.13) Ak =2+($) , .  k = l , 2 , . . . .  

Since ~(ak,/3) is a continuous function of/3, since {ak} is a decreasing sequence, 
and since Ak > 1, we see from (4.9) and (4.10) that, for each k, there exists /3k > 1 

such that 

sc(ak, fig) = ak+~. (4.14) 

As I~k+1/}Lk "-> 1, we have from (4.14) that ~:(Ak,/3k)/ak+ 1, SO that by (4.12), 

2/32(ak - 1) 
~i+m X2(1 +/32)2 

This implies that 

lim/3k = + o o .  
k ~ o o  

=0. 

(4.15) 
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The sequences {Ak} and {fig} will help us exhibit the desired behavior of the 
self-scaling method. Suppose that at iteration 2k the current iterate is of the form 

1 
x2k= ~k [ A----~k ] ,  (4.16) 

and the Hessian approximation is 

B2k = [ ;  A0k], (4.17) 

where we assume that 

ekfik =-" O(1). (4.18) 

From (4.16), (4.18), (4.15) and (4.5) we have that 

I[X2k --X, II = IAkek[3k]( 1 + o(1)). (4.19) 

The search direction is given by 

[,] 
d2k='--Ek [3 k " 

Due to the special form of the objective function we have that 

Yk = Sk, (4.21) 

for all k, so that the scaling factor (1.8) is 

d~kdEk 
¢~2k -- dTkB2kd2k (1 d- [3~)/(1 + Ak[3~). (4.22) 

We now compute the next Hessian approximation. Using (1.6), (4.21), (4.17), (4.20), 
and (4.22), we have 

B2kd2kdfkB2k 1 d2kdTk 
BZk+I := (O2k B2k d2T B2kd2k j + dTkd2-----~k 

._ 1 [ fi2k'rk+Pk flk[Ok--'rkll (4.23) 
pk(l+[3~) Lfik[Pk--~'k] [3~pk +Tk J '  

where "rk = r (Ak ,  i l k )  and Pk = p(Ak, i l k ) .  We choose the step-size to be 
2 

,)tk (Pk d- [3 k " r k  ) + 7k - -  Pk (4.24) 
~ = ~ -  ~ k ( 1 + [ 3 ~ )  ' 

because it gives a superlinear step for large k. Indeed, the next iterate is 

(l--Ak)ek [ pk+[32k~'k l (4.25) 
x 2 k + , =  x 2 ~ + e % d 2 k  ~"k(l+fi~) L/3~(pk-rk)J' 
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and a short  compu ta t ion  shows that  

[[Xzk+l -- X* [[ = (Ak -- 1)[ek[(1 + O(1)) = O([[X2k -- X* 11)" (4.26) 

We now compute  a new i terat ion of  the self-scaling method.  Due  to the special  

fo rm o f f  we also have that  gk = xk, for  all k, so that  by (4.25) and  (4.23), the new 
search direct ion satisfies 

1 [ J~2Tk"~Pk ~k[PkT"J'k]qd2k+l (l~k--l)Ekr PkJf-~2k"i'k 1 
pk(l+fl 2) Lflk[Pk--'rk] t~2pkTrk J rk(1 4-fl 2) Lflk(Pk--Tk)J" 

By observa t ion  we conclude  that  d2k+~ is a mul t ip le  of  (1, 0)T; more  precisely 

"gk 

Thus it fol lows that  

T 
d 2 k + l d 2 k + l  

-- -~ fl kTk ), ( 4 . 2 8 )  (~2k+l -- T p k ( l + f l 2 ) / ( p k  2 
d2k+lB2k+ld2k+l 

and consequent ly  

[ w ] B2k+ld2k+Id2k+lB2k+l,  q_ 
B2k+2 = q~2k+a, Bzk+l d~k+rBzk+ldzk+l 

T d2k+ld2k+l 

~2k+ l  

T 
d 2 k + l d 2 k + l  

[0 0 leo001 p k ( l + t ~ )  0 ( ~ + l ) 2 P ~ ' k  + 
pk + fl2~-k 

[ ;  21] (4291 
where the last step follows f rom (4.14). Note  that  these fo rmulae  are independen t  

o f  the stepsize a2k+~. We now define 

2 
• ,x,,+ 1,&,+ ~ (p,,  +/3, ,~-k)  - / ? , , ( p , ,  - ~k) 

OL2k+l-  Ak+lt~k+lPk(l_}_t~2) , (4 .30 )  

and a direct calculat ion using (4.25) and (4.27) shows that  

1 
X2k+2=X2k+l-}-Ol2k+id2k+l -~ ek+llhk+lflk+l], (4.31) 

where  

(1 - A D & ( p k  - r k ) e k  

ek+l -- ~'k(1 + fl2)Ak+lflk+a " 
(4.32) 
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Using (4.32), (4.11), the boundedness of Ak, (4.15) and (4.26) we obtain 

Ilx2 +2-x*ll = Ak+l~k+llek+ll(1 + O(1)) 

= (Ak -- 1)[ek (pg-- Zk)ITkl(]~k -~ fl k ' ) - ' (1  + O(1)) 

= 

= o(11X2k+l - -  X *  II). ( 4 . 3 3 )  

Thus we obtain once more a superlinear step. 
We deduce, by induction, that the sequence {Xk} generated by the self-scaling 

BFGS method can satisfy the cyclical pattern (4.16)-(4.33) for all k. Now, taking 
limits in (4.24) and (4.30) we obtain 

a2k-~2- and O£2k+1 -'>1, 

Our example therefore shows that the self-scaling BFGS method can converge 

superlinearly with a2k -~ 2 and c~2k+1 ~½. 
In practice, however, it may not be easy to guess the correct steplength, and a 

practical algorithm that attempts to use only one function evaluation per search 
direction may exhibit a l inear-superlinear-superlinear type of convergence, as we 

now discuss. Let {)Tk} be a sequence generated as follows. The iterate 3¢3k is given 
by X2k, as defined in the derivation above. Remembering that a stepsize near 2 would 
give a superlinear step, we see that a stepsize of one would be accepted by the line 
search conditions (the function decreases along that direction, and a shorter step 
will reduce the function), so that 

II 23k+~ tl/1l~3k II--> ½. 
Then the new Hessian approximation at i3k+~ will be given by (4.23), which for 
large k is very close to Diag[0.5, 1]. Hence at the next iteration a unit step will give 

a superlinear step. We can assume that )73k+2 takes us to X2k+l in the above derivation. 
Note that this last step would not change the Hessian approximation much, and 
hence we can assume that the latter is still given by (4.23). Now at the 3k+2 th  
iteration, as the superlinear step requires a stepsize close to 0.5, the unit trial 
steplength will give a point having about the same function value as the current 
iterate. Then the line search technique would adjust the stepsize correctly to a num- 

ber close to ½, wlhich we could assume to be (4.30),  and consequently -)C3k+ 3 is X2k+2. 
Therefore, the sequence {)Tk} converges in a l inear-superlinear-superlinear pattern. 

This is exhibited in the following numerical test. 

5. Numerical results 

We present a numerical example using problem (4.4). The initial point is (1015, 102°), 
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the initial matrix is Diag[1, 2], and the stopping condition is 

Ilgklr ~< 10 -20. (5.1) 

The runs were performed on a Sparcstaion 1, in double precision. We ran the 
self-scaling BFGS method both with an exact line search as well as with an inexact 

line search that satisfies the Wolfe conditions (1.4)-(1.5) with 61 = 0.01 and 62 = 0.9. 

The results are given in Table 1 and Table 2 respectively. 
In the exact line search case, we observe that ak converges to ½ and 2 alternatively. 

In the inexact line search case, we find that the iterates converge in a linear- 
superliner-superlinear pattern. We also note that in the second of the two consecutive 

superlinear steps, two function values were calculated. These results confirm the 

predictions of  our analysis. 
For purposes of comparison we also present in Table 3 the results of  the (unscaled) 

BFGS method with an inexact line search. We see that the rate of  convergence is 

superlinear and that the unit stepsize is used at every iteration. 
We have also performed numerical  tests with the self-scaling BFGS method using 

the Mor6, Garbow and Hillstrom (1971) collection of test functions. We tried both 

well scaled and badly scaled starting matrices, and observed that, in terms of function 

evaluations, the standard BFGS method is superior to the self-scaling method most 

of  the time. Moreover, we observed that the self-scaling method required almost 
twice as many function evaluations as the BFGS method on several test problems. 

In these cases, the behavior  of  the self-scaling method was similar to that described 

in Sections 4 and 5. 

Tab le  1 

Self-scaling BFGS m e t h o d  with exact  line search  

X k Bk dk ak 

1015 1.0 0.0 --1015 

1020 0.0 2.0 --0.5 × 102o 2.0 

--1015 0.5 10 -5 2 × 1015 

2 × 101° 10 -5 1.0 --4 × 101° 0.5 

0.875 1.0 2.0 × 10 -5 --0.475 

3.994 × 104 2.0 X 10 -5 2.0 --1.997 × 104 2.0 

--7.620X 10 2 0.5 1.191 X 10 -5 0.152 

1.815 x 10 -6  1.191 x 10 5 1.0 -3 .629  x 10 -6 0.5 

1 .804×10  -16 1.0 2 .382x  10 5 _ 8 . 6 0 6 × 1 0 - 1 7  

7.923 x 10 12 2.382 x 10 -5 2.0 7.923:<10 -12 2.0 

8.287 x 10 18 0.5 1 .086x 10 -5 - 1 . 6 5 7 × 1 0  -17 

- 1 . 8 0 0 × 1 0  22 1 . 0 8 6 x 1 0  5 1.0 3.600::,<10 -22 0.5 

1.540 × 10 -32 

7.433 × 10 -28 
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T a b l e  2 

Se l f - sca l ing  B F G S  m e t h o d  wi th  i nexac t  l ine s e a r c h  

35 

xk Bk dk ak  

10 is 1.0 0.0 --1015 1.0 

1020 0.0 2.0 --0,5 X 1020 

0.0 0.5 10 -5 1015 1.0 

0.5 X 1020 10 -5 1.0 --0,5 × 1020 

1015 0.5 --10 -5 --2 X 1015 1 .0(fa i led)  

- 2  x 101° - 1 0  -5 1.0 14488 0.5 

- 0 . 1 2 5  1.0 7 .244 × 10 -12 5 .256 x 10 -2 1.0 

- 2  x 101° 7 .244 X 10 -12 2.0 1010 

- 7 . 2 4 4  × 10 -2 0.5 2 .628 x 10 -12 9.232 × 10 -2  1.0 

- 1 0  t° 2 .628 x 10 -12 1.0 101° 

1.988 × 10 -2 0.5 4 .616 x 10 -12 - 3 . 9 7 6  x 10 -2  1 .0(fai led)  

3 . 8 1 5 × 1 0  -6  4 . 6 1 6 × 1 0  -12 1.0 - 3 . 8 1 5 × 1 0  -6  0.5 

- 1 . 8 3 0 ×  10 - l °  1.0 - 9 . 5 9 4 × 1 0  -5 9 . 1 5 0 x  10 -11 1.0 

1.907 x 10 -6  - 9 . 5 9 4  × 10 -5 2.0 - 9 . 5 3 7  x 10 -7  

- 9 . 1 5 0 × 1 0  -11 0.5 - 4 . 7 9 7  x 10 -5 9 . 1 5 0 x  10 -11 1.0 

9 .537 × 10 -7 - 4 . 7 9 7  × 10 -5 1.0 - 9 . 5 3 7  × 10 -7  

- 8 . 6 7 7  x 10 -19 0.5 - 4 . 7 9 7  x 10 -5 1.735 × 10 -18 1 .0(fa i led)  

0.0 - 4 . 7 9 7  × 10 -5 1.0 8.235 x 10 -23 0.5 

- 1 . 9 9 7  × 10 -27 

4.163 × 10 -23 

T a b l e  3 

B F G S  m e t h o d  With i n e x a c t  l ine s e a r c h  

Xk Bk dk ak 

10 is 1.0 0.0 -1015  1.0 

1020 0.0 2.0 - 0 . 5  x 1020 

0.0 1.0 - 4 ×  10 -15 - 2 x  106 1.0 

0.5 x 1020 - 4  x 10 -15 1.0 - 0 . 5  x 1020 

- 2 x  106 1.0 - S x  10 -25 2 x  106 " 1.0 

- 1 . 6 3 8  × 104 - 8  x 10 -uS 1.0 1 .638 × 104 

- 4 ×  10 - ' i  1,0 - 1 0  -13 4 ×  10 - s  1.0 
- 7 . 2 7 6  × 10 -12 - 1 0  -13 1.0 7 .276 X 10 -12 

--3.523 X 10 -19 1,0 2.41 × 10 -19 3.523 X 10 -19 1.0 

4 .338 × 10 -8 2.41 × 10 -19 1.0 --4.338 × 10 -18 

0 
5,745 × 10 -3° 
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6. Final remarks 

Several researchers (see for example Shanno and Phua, 1978) report disappointing 
numerical results with self-scaling quasi-Newton methods. Their results are con- 
sistent with our analysis. Indeed, even though our analysis is asymptotic, the main 
lesson we derive from it is that for the self-scaling method it is not easy to guess 
the correct steplength, which results in additional function evaluations. Therefore 
it would be desirable to design scaling strategies that do not suffer from the 
inefficiencies just mentioned. Some authors prefer to apply the scaling parameter 
at selected iterations - -  usually only during the first few iterations. This can be very 
useful for some problems. A rather different scaling technique, in which the columns 
of a factorization of the Hessian approximation are scaled, has been proposed by 
Powell (1987). This strategy has been improved by Siegel (1991) and Lalee and 
Nocedal (1991), who establish global and superlinear convergence results. The 
numerical resuts with these techniques appear to be very satisfactory. 

Acknowledgements 

We would like to thank Marucha Lalee and the two referees for carefully reading 
this article and making useful suggestions. 

References 

T.M. Apostol, Mathematical Analysis (Addison-Wesley, Reading, MA, 1957). 
R.H. Byrd, D.C. Liu and J. Nocedal, "On the behavior of Broyden's class of quasi-newton methods," 

Report No. NAM 01, Department of Electrical Engineering and Computer Science, Northwestern 
University (Evanston, IL, 1990). 

R.H. Byrd and J. Nocedal, "A tool for the analysis of quasi-Newton methods with application to 
unconstrained minimization," SIAM Journal on Numerical Analysis 26 (1989) 727-739. 

R.H. Byrd, J. Nocedal and Y. Yuan, "Global convergence of a class of variable metric algorithms," 
SIAM Journal on Numerical Analysis 24 (1987) 1171-1190. 

J.E. Dennis and J.J. Morr, "A characterization of superlinear convergence and its application to 
quasi-Newton methods," Mathematics of Computation 28 (1974) 549-560. 

J.E. Dennis and H. Wolkowicz, "Sizing and least change secant methods," Technical Report, Department 
of Mathematical Sciences, Rice University (Houston, TX, 1991). 

M. Lalee and J. Nocedal, "Automatic column scaling strategies for quasi-Newton methods," Report No. 
NAM 04, Department of Electrical Engineering and Computer Science, Northwestern University 
(Evanston, IL, 1991). 

D.G. Luenberger, Linear and Nonlinear Programming (Addison-Wesley, Reading, MA, 1984, 2nd ed.). 
J.J. Morr, B.S. Garbow and K.E. Hillstrom, "Testing unconstrained optimization software," A C M  

Transactions on Mathematical Software 7 (1981) 17-41. 
S.S. Oren, "Perspectives on self-scaling variable metric algorithms," Journal of  Optimization Theory and 

Applications 37 (1982) 137-147. 
S.S. Oren and D.G. Luenberger, "Self-scaling variable metric (SSVM) algorithms, part I: ~ Criteria and 

sufficient conditions for scaling a class of algorithms," Management Science 20 (1974) 845-862. 
J.D. Pearson, "Variable metric methods for minimization," Computer Journal 12 (1969) 171-178. 



J. Nocedal, Y.-x. Yuan / Analysis of a quasi-Newton method 37 

M.J.D. Powell, "Some global convergence properties of a variable metric algorithm for minimization 
without exact line searches," in: R.W. Cottle and C.E. Lemke, eds., Nonlinear Programming, SIAM- 
AMS Proceedings, Vol. IX  (SIAM, Philadelphia, PA, 1976) pp. 53-72. 

M.J.D. Powell, "Update conjugate directions by the BFGS formula," Mathematical Programming 38 
(1987) 29-46. 

D.F. Shanno and K.H. Phua, "Matrix conditioning and nonlinear optimization," Mathematical Program- 
ming 14 (1978) 149-160. 

D. Siegel, "Modil~ying the BFGS update by a new column scaling technique," Technical Report, 
Department of Applied Mathematics and Theoretical Physics, Cambridge University (Cambridge, 
UK, 1991). 

P. Wolfe, "Convergence conditions for ascent methods," SlAM Review 11 (1969) 226-235. 
P. Wolfe, "Convergence conditions for ascent methods II: some corrections," SIAM Review 13 (1971) 

185-188. 
G. Zouteudijk, "Nonlinear programming, computational methods," in: J. Abadie, ed., lnteger and 

Nonlinear Programming (North-Holland, Amsterdam, 1970) pp. 37-86. 


