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Abstract We introduce a geometric buildup approach to the distance geometry
problem in protein modeling, and discuss the necessary and sufficient conditions on the
distances for rigid or unique determination of a protein structure. We describe a new
buildup algorithm for determining protein structures rigidly instead of uniquely. The
algorithm requires even fewer distance constraints than the general buildup algorithm.
We present the test results from applying the algorithm to determining the protein
structures with varying degrees of availability of the distances, and show that the new
development increases the modeling ability of the geometric buildup method even
more while retaining much of the computational feasibility of the method.

Keywords Biomolecular modeling · Protein structure determination · Distance
geometry · Graph embedding · Linear and nonlinear systems of equations · Linear
and nonlinear optimization

1 Introduction

In protein modeling, the distances or their ranges for certain pairs of atoms or residues
in a given protein may be obtained from either physical experiments such as NOE
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(Nuclear Overhauser Effects) and dipolar coupling in NMR, or theoretical estimates
such as the bond lengths and bond angles known from general organic chemistry
[1,2], or statistical estimates on certain inter-atomic or inter-residue distances based
on their distributions in databases of known protein structures [3–5]. Then, a structure
may be determined for the protein by using the available distances [6]. However,
the given distances may not necessarily be sufficient for determining the structure
uniquely, or even just rigidly. Here, by uniquely we mean that the structure is unique
under translation and rotation, and by rigidly we mean that any part of the structure
cannot be changed continuously without violating the given distance restraints [7].
Sometimes, the distances may contain errors and may be inconsistent in the sense that
they may have violated some basic geometric conditions such as the triangle inequality
for the distances among any three points. In that case, a structure that fits the given
distances will not even exist [8]. After all, even if a structure does exist, it is still
not trivial to determine it based on the given distances. A distance geometry problem
needs to be solved, which is computationally intractable in general [9].

We investigate the problem of determining a protein structure with a given set of
inter-atomic or inter-residue distances within a so-called geometric build-up frame-
work. Dong and Wu [10,11] first applied a geometric build-up algorithm for the solu-
tion of the distance geometry problem with exact distances and justified the linear
computation time for the case when the distances for all pairs of atoms are given.
Wu and Wu [12] later proposed an updating scheme to control the rounding errors
accumulated in the buildup procedure and guaranteed the numerical stability of the
algorithm. Central to the algorithm is the idea that whenever there are four determined
atoms that are not in the same plane and there are distances from these atoms to an
undetermined atom, the undetermined atom can immediately be determined uniquely
using the distances. If for every atom, the required atoms and the distances can be
found, the whole structure can be determined uniquely [10,12]. Here the condition
is sufficient but not necessary, for there are cases we will elaborate later that a struc-
ture can still be determined uniquely even if the condition does not hold for some
of the atoms. In fact, the structure does not have to be unique, as long as it is rigid.
For this reason, we can consider a weaker condition under which a structure can be
determined rigidly and under certain circumstance, even uniquely. With this condition,
the minimal requirement on the availability of the distances in every buildup step can
be dropped from four to three, which implies that a structure can still be determined
even with a much sparser set of distances. Along the line, we develop a new buildup
algorithm, which determines the atom just rigidly in every step, if there are only three
required distances available. The position of the atom may have multiple reflections,
but can be fixed uniquely if later on some distance constraints are found to be violated
by its multiple positions. With such an algorithm, a rigid structure can be guaranteed
in the end. It may or may not be unique. In any case, different from Crippen and Havel
[6], we only use the available distances to determine the structure, but do not consider
extrapolating the missing distances. Also, different from Hendrickson [7], we use all
given distances as many as necessary, and do not remove any distances even if they
may be redundant for defining a rigid structure since they may still be useful for the
determination of some of the atoms in the buildup process. We develop algorithms
for generation of multiple rigid structures, for identification of unique structures,

123



Rigid versus unique determination of protein structures with geometric buildup

and for combination of partially determined structures. We apply the algorithms to
determining the protein structures with varying degrees of availability of the distances
and justify the increase in the modeling ability of the geometric buildup method with
the new development.

2 General geometric buildup approach

Dong and Wu [10] applied a geometric build up algorithm to the solution of the dis-
tance geometry problem, and showed that the algorithm can find a solution to the
problem in O(n) floating-point operations if the distances for all the pairs of atoms
are available. The work was later extended to sparse distances [11] with an updating
scheme to control the propagation of numerical errors in the buildup process [12].
Central to the algorithm is the idea that whenever there are four determined atoms that
are not in the same plane and there are distances from these atoms to an undetermined
atom, the undetermined atom can immediately be determined uniquely using the dis-
tances. If for every atom, the required atoms and distances can be found, the whole
structure can be determined uniquely (Fig. 1).

The General Geometric Buildup Algorithm

1. Find four atoms that are not in the same plane.
2. Determine the coordinates of the atoms with the distances among them.
3. Repeat:

For each of the undetermined atoms,
If the atom has 4 distances to 4 determined atoms,

Determine the atom with the distances.
End

End
4. If no atom can be determined in the loop, stop.
5. All atoms are determined.
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||xj - x3|| = dj,3
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Three dimensional case: 
Four distances suffice to determine an atom.

Two dimensional case: 
Three distances suffice to determine an atom.
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Fig. 1 Geometric buildup Central to the algorithm is the idea that whenever there are four determined
atoms that are not in the same plane and there are distances from these atoms to an undetermined atom,
the undetermined atom can immediately be determined uniquely using the distances. If for every atom, the
required atoms and the distances can be found, the whole structure can be determined uniquely
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More specifically, given an arbitrary set of distances, the algorithm first finds four
atoms that are not in the same plane and determines the coordinates for the four atoms
using the singular value decomposition algorithm [6] with all the distances among them
(assuming available). Then, for any undetermined atom j , the algorithm repeatedly
performs a procedure as follows: Find four determined atoms that are not in the same
plane and have distances available to atom j , and determine the coordinates for atom j .
Let xi = (xi,1, xi,2, xi,3)

T , i = 1, 2, 3, 4, be the coordinate vectors of the four atoms.
Then, the coordinates x j = (x j,1, x j,2, x j,3)

T for atom j can be determined by using
the distances di, j from atoms i = 1, 2, 3, 4 to atom j . Indeed, x j can be obtained from
the solution of the following system of equations,

||xi ||2 − 2xT
i x j + ||x j ||2 = d2

i, j , i = 1, 2, 3, 4. (1)

By subtracting equation i from equation i + 1 for i = 1, 2, 3, we can eliminate the
quadratic terms for x j to obtain

− 2(xi+1 − xi )
T x j =

(
d2

i+1, j − d2
i, j

)
− (||xi+1||2 − ||xi ||2), i = 1, 2, 3. (2)

Let A be a matrix and b a vector, and

A = −2

⎡
⎣

(x2 − x1)
T

(x3 − x2)
T

(x4 − x3)
T

⎤
⎦, b =

⎡
⎢⎢⎢⎢⎢⎣

(
d2

2, j − d2
1, j

)
− (||x2||2 − ||x1||2

)
(

d2
3, j − d2

2, j

)
− (||x3||2 − ||x2||2

)
(

d2
4, j − d2

3, j

)
− (||x4||2 − ||x3||2

)

⎤
⎥⎥⎥⎥⎥⎦

. (3)

We then have Ax j = b. Since x1, x2, x3, x4 are not in the same plane, A must be
nonsingular, and we can therefore solve the linear system to obtain a unique solution
for x j . Here, solving the linear system requires only constant time. Since we only need
to solve n − 4 such systems for n − 4 coordinate vectors x j , the total computation
time is proportional to n, if in every step, the required coordinates xi and distances
di, j , i = 1, 2, 3, 4 are always available.

The theoretical basis of the geometric buildup algorithm can be traced back in
distance geometry [13]. Several authors had discussions on theoretical issues related
to such an approach, including Sippl and Scheraga [14,15] and Huang, Liang, and
Pardalos [16]. Based on distance geometry theory, any point in a Euclidean space can
be determined in terms of the distances from this point to a special set of points.

Definition 2.1 A set of points B in a space S is a metric basis of S provided each
point of S is uniquely determined by its distances from the points in B.

Definition 2.2 A set of k + 1 points in Rk is called independent if it is not a set of
points in Rk−1.

Theorem 2.1 Any k + 1 independent points in Rk form a metric basis for Rk.
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Proof It can be proved by generalizing the basic geometric buildup step to the
k-dimensional Euclidean space. ��

Given the above properties, we can easily see that a necessary condition for uniquely
determining the coordinates of the atoms with a given set of distances is that each atom
must have at least four distances to other atoms, and a sufficient condition is that in
every step of the geometric buildup algorithm, there is an undetermined atom and the
atom has four distances from four determined atoms who are not in the same plane.
In general, we have

Theorem 2.2 A necessary condition for the unique determination of the coordinates
of a set of atoms, x1, . . . , xn, with a given set of distances among the atoms is that
each atom must have at least four distances from other four atoms, assuming that this
atom is not in the same plane with any three of them.

Proof It follows from the fact that the position of an atom can have a reflection if it
has only three distances from other three atoms unless it is in the same plane with the
three atoms. ��
Theorem 2.3 A sufficient condition for the unique determination of the coordinates
of a set of atoms, x1, . . . , xn, with a given set of distances among the atoms is that
in every step of the geometric buildup algorithm, there is an undetermined atom with
four distances from four determined atoms that are not in the same plane.

Proof The geometric buildup algorithm gives a constructive proof for the theorem,
because if the condition holds in every step of the algorithm, the algorithm will be
able to determine the coordinates of all the atoms uniquely. ��

3 Rigid structure determination

For the unique determination of a structure, it is necessary that every atom has at least
four distances from other atoms. Further, the general geometric buildup algorithm
requires four distances from four determined atoms to the atom to be determined in
every buildup step. These conditions may not be satisfied by a given set of distances
in practice. If the first condition is not satisfied, the structure will not be guaranteed
unique. If the second condition is not satisfied, the general geometric buildup algorithm
will not be able to determine the structure, even if the first condition is satisfied and
the structure is unique.

In order to handle more sparse distance data, we can consider determining the
structures only rigidly instead of uniquely. The necessary condition to have a rigid
structure requires only three distances for each atom. Therefore, in every buildup step,
the geometric buildup algorithm can be modified to require only three distances from
three determined atoms to the atom to be determined. The atom can then be determined
rigidly, although with two possible positions. In the end, the algorithm may produce
multiple structures, due to the multiple choices of the positions of the atoms, but the
structures are rigid and in finite number.
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More specifically, in any buildup step, let xi = (xi,1, xi,2, xi,3)
T , i = 1, 2, 3, be

the coordinate vectors of three determined atoms that are not in a line. Let x j =
(x j,1, x j,2, x j,3)

T be the coordinate vector for an undetermined atom j and di, j the
distances available from atoms i = 1, 2, 3 to atom j . Then, x j can be obtained from
the solution of the following system of equations,

||xi ||2 − 2xT
i x j + ||x j ||2 = d2

i, j , i = 1, 2, 3. (4)

By subtracting equation i from equation i + 1 for i = 1, 2, we can eliminate the
quadratic terms for x j to obtain

− 2(xi+1 − xi )
T x j =

(
d2

i+1, j − d2
i, j

)
−

(
||xi+1||2 − ||xi ||2

)
, i = 1, 2. (5)

Let A be a matrix and b a vector, and

A = −2

[
(x2 − x1)

T

(x3 − x2)
T

]
, b =

⎡
⎢⎣

(
d2

2, j − d2
1, j

)
− (||x2||2 − ||x1||2

)
(

d2
3, j − d2

2, j

)
− (||x3||2 − ||x2||2

)

⎤
⎥⎦. (6)

We then have Ax j = b. Let x j = AT y j , where y j = (y j,1, y j,2)
T . Then, AAT y j = b.

Since x1, x2, x3 are not in the same line, A must be full rank and AAT be nonsingular.
We can therefore solve the linear system AAT y j = b to obtain a unique solution for y j .
Let x ′

j = (x j,1, x j,2)
T and A′ = A(1:2,1:2). Then, x ′

j = [A′]T y j . By using one of the
equations in (4), we can obtain two possible values for x j,3. If the values are complex,
the distance data in (4) must be inconsistent. If the two values are equal, atom j must
be in the same plane formed by the atoms 1, 2, 3. Otherwise, we obtain two solutions
for (4).

The Rigid Geometric Buildup Algorithm

1. Find at least three atoms that are not in the same line.
2. Determine the coordinates of the atoms with the distances among them.
3. Repeat:

For each of the undetermined atoms,
If the atom has >3 distances to the determined atoms,

Determine the atom uniquely.
Check multiple structures with all these distances.
Remove structures that violate the distance constraints.

End
If the atom has 3 distances to 3 determined atoms,

Determine the atom rigidly.
Record multiple structures generated from reflections.

End
End

4. If no atom can be determined in the loop, stop.
5. All atoms are determined.
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The advantage of using the modified buildup algorithm is that the algorithm requires
fewer distance constraints than the general buildup algorithm. It can handle even more
sparse distance data, yet determine meaningful structures. The modified algorithm
may find multiple structures, but they all are rigid, and in some cases, it can find a
unique structure as well, because the requirement by the general buildup algorithm on
the availability of the special four distances in every buildup step is sufficient for the
determination of a unique structure, but not necessary.

However, a problem with the modified buildup algorithm is that it may produce too
many possible structures: Since in every step, an atom is only determined rigidly, there
may be at least two possible positions for it. We have to keep both positions unless
later on we find that one of them can be excluded with other distance constraints.
Moreover, the three determined atoms may also have multiple positions. Let the i th
determined atom have li possible positions, i = 1, 2, 3. Then, in the worst case, there
can be 2 × l1 × l2 × l3 possible positions for the atom to be determined. Therefore,
as the algorithm proceeds, the total number of possible positions for an atom to be
determined may grow into exponentially many.

To reduce the number of possible positions for an atom, we can allow the algorithm
to determine the atom uniquely first whenever there are more than three required
distances available, and determine it rigidly otherwise. Also, in every buildup step,
after the atom is determined, either rigidly or uniquely, we can examine all given
distances from this atom to other determined atoms for their possible positions. If
some positions have violated their distance constraints, they can be removed for further
consideration. In this way, the structures generated in the end are guaranteed to satisfy
all available distance constraints among the atoms, and they may be reduced to a
unique structure after all infeasible structures are identified and removed.

Figure 2 shows how a structure can be determined rigidly and how multiple struc-
tures can be generated and also reduced. Figure 2a shows that atom i is first determined
with three available distances. There are two positions for atom i due to reflection,
which makes two possible structures. Figure 2b shows that atom j again is determined
with three available distances, with two positions for each of the possible structures.
In total, four possible structures are made. In Fig. 2c, atom k is determined uniquely
with four distances, and therefore, the number of possible structures is not increased.
However, there is an additional distance between atoms i and k. By examining all the
structures, we find that two of them do not satisfy this distance constraint, and they
can be removed from the structure pool, as shown in Fig. 2d.

Similar to the general geometric buildup algorithm, the theoretical basis for the rigid
geometric buildup algorithm can be established and generalized to any k-dimensional
Euclidean space.

Definition 3.1 A set of points B in a space S is a reduced metric basis of S provided
each point of S is rigidly determined by its distances from the points in B.

Definition 3.2 A set of k points in Rk is called independent if it is not a set of points
in Rk−2.

Theorem 3.1 Any k independent points form a reduced metric basis for Rk.
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Fig. 2 Rigid structure determination a Atom i is determined. The number of structures is two. b Atom j
is determined. The number of structures is increased to four. c Atom k is determined. d Two structures are
removed because they do not satisfy the distance constraint for atom i and k

Proof It can be proved by generalizing the modified geometric buildup step to the
k-dimensional Euclidean space. ��

Again, we can easily see that a necessary condition for rigidly determining the
coordinates of the atoms with a given set of distances is that each atom must have at
least three distances to other atoms, and a sufficient condition is that in every step of
the modified buildup algorithm, there is an undetermined atom and the atom has three
distances from three determined atoms who are not in the same line. In general, we
have

Theorem 3.2 A necessary condition for the rigid determination of the coordinates of
a set of atoms, x1, . . . , xn, with a given set of distances among the atoms is that each
atom must have at least three distances from three other atoms, assuming that this
atom is not in the same line with any two of them.

123



Rigid versus unique determination of protein structures with geometric buildup

Proof It follows from the fact that the position of an atom can be flexible if it has only
two distances from two other atoms unless it is in the same line with the two atoms.

��
Theorem 3.3 A sufficient condition for the rigid determination of the coordinates of
a set of atoms, x1, . . . , xn, with a given set of distances among the atoms is that in
every step of the modified buildup algorithm, there is an undetermined atom with three
distances from three determined atoms that are not in the same line.

Proof The modified geometric buildup algorithm gives a constructive proof for the
theorem, because if the condition holds in every step of the algorithm, the algorithm
will be able to determine the coordinates of all the atoms rigidly. ��

4 Test results

For convenience, we call the general geometric buildup algorithm the unique geometric
buildup algorithm, and the modified geometric buildup algorithm the rigid geometric
buildup algorithm. We show the test results from applying the two algorithms to
determining the structures for a group of proteins at the atomic or residue level, using
a subset of inter-atomic or inter-residue distances computed from the known structures
of the proteins.

Table 1 contains some results of using the rigid geometric buildup algorithm for the
determination of the structures of a group of proteins. They are also compared with
the results of using the unique geometric buildup algorithm. The first column contains
the names of the proteins in the PDB Data Bank [17]. The second column contains the
numbers of atoms in the proteins. The remaining columns list the results of using the
rigid and unique algorithms for the solution of the structures. Two sets of distance data
were generated for each protein, one with all distances ≤4 Å and another ≤5 Å. With
the rigid geometric buildup algorithm, some proteins were determined rigidly, but with

Table 1 Rigid structure determination at atomic level

PID Atoms Method 4 Å 5 Å

1ABA 699 Rigid Multiple Multiple

Unique / /

1BKR 887 Rigid Multiple 3.80e-07

Unique / /

1EJG 637 Rigid 3.80e-09 9.90e-11

Unique / 8.80e-08

1HYP 656 Rigid 3.00e-07 1.80e-07

Unique / 2.90e-09

The RMSD values of the structures compared with the reference structures
PID protein ID, Atoms the number of atoms, Methods rigid or unique buildup methods, 4 Å distances
<4 Å, 5 Å distances <5 Å
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Fig. 3 Rigid structure determination of 1AKG Shown is the structure of protein 1AKG, with 16 residues,
110 atoms. The distances <3.5Å were used. Total 8,192 rigid structures were determined. They all were
almost identical except for the circled small regions

multiple conformations. For example, two conformations were in fact determined for
1ABA with distances ≤5 Å, and one of them was very close to the original structure
of the protein. However, there were more than hundreds of conformations for 1ABA
and 1BKR with only distances ≤4 Å. For the rest of the test cases, the structures were
determined uniquely. With the unique geometric buildup algorithm, because the data
was too sparse, in most of the test cases, except for two, the structures were not even
solvable. The algorithm stopped when it was not able to find the required distances
for any of the undetermined atoms [18].

Figure 3 further demonstrates the application of the rigid geometric buildup algo-
rithm to a small protein, 1AKG, and the nature of the multiple structures it gener-
ated. The protein 1AKG is a small polypeptide with 16 amino acids and 110 atoms.
The unique geometric buildup algorithm was able to determine the structure for this
protein completely, with distances ≤4.5 Å, and the RMSD value of the structure was
8.3e-07 Å against the original structure. Here, the number of distances used was 1,638,
which was about 14% of all the distances. However, with distances ≤3.5 Å, the unique
geometric buildup algorithm failed, but the rigid geometric buildup algorithm was still
able to find a reasonable number of rigid structures. Here, the number of distances used
was 898, which was only 7.5% of all the distances. There were total 8,192 multiple
conformations found by the rigid algorithm. The one closest to the original structure
had the RMSD value equal to 4.3e-07 Å. Note that 8,192 = 213, and therefore, the
multiple structures were perhaps generated just from a sequence of 13 reflections of
the atomic positions. In fact, as can be observed in the figure, most of the reflections
happened with the side-chain atoms when they are in the surface of the protein, and
the reflections only affected the determination of a small part of the structure. On the
other hand, the major parts of the protein with the backbone atoms and the atoms in
the interior of the protein were all uniquely determined.

We have also applied the rigid geometric buildup algorithm to determining a group
of protein structures at the residual level, with a set of distances between the residue
pairs (between the Cα atoms). Table 2 shows the results of using the rigid and unique
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Table 2 Rigid structure determination at residual level

PID Residues Method 7.5 Å 8.5 Å

1BKR 108 Rigid 2.20e-12 4.30e-12

Unique / 3.60e-11

1EJG 46 Rigid 4.70e-13 1.20e-09

Unique / 7.70e-10

1IO0 166 Rigid 3.7e-7 (2) 6.20e-12

Unique / 6.60e-12

1LIT 131 Rigid 8.7e-10 (2) 1.40e-11

Unique / 9.20e-11

1WRI 93 Rigid / 5.6e-13 (4)

Unique / /

The RMSD values of the structures compared with the reference structures
PID protein ID, Residues the number of residues, Methods rigid or unique buildup methods, 7.5 Å distances
<7.5 Å, 8.5 Å distances <8.5 Å

geometric buildup algorithms for the determination of the structures. The first column
contains the PDB names of the proteins. The second column contains the number of
residues in each protein. The last two columns show the RMSD values of the struc-
tures obtained with rigid or unique buildup methods, against the original structures.
Two sets of distance data were tested for each protein, one with distances ≤7.5 Å, and
another with ≤8.5 Å. The table also shows the numbers of multiple conformations for
each protein determined using the rigid algorithm. With distances ≤7.5 Å, the unique
algorithm was not able to determine any of the structures, but the rigid algorithm deter-
mined the structures for 1BKR, 1EJG, 1IO0 and 1LIT, with two possible structures for
1IO0 and 1LIT. With distances ≤8.5 Å, the rigid algorithm determined the structures
for all the listed proteins uniquely except for 1WRI with four possible conformations,
but the unique algorithm was able to determine the structures only for 1BKR, 1EJG,
1IO0 and 1LIT [18].

Figure 4 further illustrates the detailed structures for 1IO0 determined by the rigid
and unique geometric buildup algorithms. With distances ≤8.5 Å, the unique algorithm
was able to find the structure, where total 1,886 distances, about 7.5% of all distances,
were used. On the other hand, with distances ≤7 Å, the structure was determined
only by the rigid algorithm with 16 possible rigid conformations. The total number
of distances used was 1,386, about 5% of all distances. Almost all the residues were
determined uniquely except for PRO 115, HIS 140 and THR 142 located on the surface
of the protein. The PRO 115 had 2 possible positions, HIS 140 had 4 possible positions
and THR 142 had 2 possible positions, which contributed to all the 16 conformations
determined for the protein.

5 Concluding remarks

In this paper, we have introduced a geometric buildup approach to the distance geome-
try problem in protein modeling, and discussed the necessary and sufficient conditions
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Fig. 4 Rigid structure
determination of 1IO0. The
structure for 1IO0 was
determined rigidly, with 16
possible conformations, using
residue distances ≤7 Å. Almost
all the residues were determined
uniquely expect for PRO 115
with 2 positions, HIS 140 with 4
positions, and THR 142 with 2
positions, making total 16
possible conformations

on the distances for rigid or unique determination of a protein structure. We have
described a new buildup algorithm for determining protein structures rigidly instead
of uniquely. The algorithm requires even fewer distance constraints than the general
buildup algorithm. We have presented the test results from applying the algorithm to
determining the protein structures with varying degrees of availability of the distances,
and showed that the new algorithm was able to determine the structures for many of
the tested proteins, while the general algorithm failed to do so, given the same limited
numbers of distances.

The determination of rigid or unique protein structures with a given set of inter-
atomic or inter-residual distances has potential applications in NMR protein modeling
[19–21] or modeling with residue contact distances [22,23]. However, in these appli-
cations, the distances can only be estimated within certain ranges, while the algorithms
we have described apply only to exact distances. The algorithms can in principle be
extended to distance ranges, with the position of the unknown atom in each buildup
step determined within the given distance ranges by using some optimization method,
but they have to be developed with special cares on the characterization of the ensem-
ble of structures defined by the distance ranges and the potential instability of the
algorithms due to error accumulation. Investigation along this line is underway and
will be reported soon [24].

Note that although only a small subset of all distances is required for the rigid or
unique determination of the structures, in practice, the distances may still be lacking
in some regions. In that case, the physics-based potentials or other modeling efforts
may be helpful for reducing some of the degeneracy of the structures in the uncertain
regions, while the geometric buildup algorithm can help to build the initial structures
efficiently using the available distances. For physics-based approaches or other mod-
eling methods, the readers are referred to Schlick [25] and Bourne and Weissig [26].
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