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Abstract. In this paper, we present an algorithm for the CDT subproblem. This problem stems
from computing a trust region step for an algorithm first proposed by Celis, Dennis and Tapia for equality
constrained optimization. Our algorithm considers general case of the CDT subproblem, convergence of
the algorithm is proved. Numerical examples are also provided.
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1 Introduction

The CDT subproblem has the following form,

min
d∈RnΦ(d) = 1

2dT Bd + gT d (1.1)
s.t. ‖d‖ ≤ ∆, ‖AT d + c‖ ≤ ξ, (1.2)

where g ∈ Rn, A ∈ Rn×m, c ∈ Rm, ∆ > 0, ξ ≥ 0, and B ∈ Rn×n is a symmetric matrix.
Throughout this paper, the norm || · || is the Euclidean norm. For convenience, we denote by F
the feasible region of the CDT subproblem, namely,

F = {d | ||d|| ≤ ∆, ||AT d + c|| ≤ ξ}. (1.3)

As an important application, the CDT subproblem is a subproblem of some trust region
algorithms for nonlinear programming, which was given by Celis, Dennis & Tapia[1] and Powell
& Yuan[10], whose superlinear convergence property is obtained under certain conditions.

The properties of the CDT subproblem have been studied by many researchers, see Yuan[12],
Peng & Yuan[9] and Chen & Yuan[2, 3, 4] etc. With some additional assumptions, some algo-
rithms have been presented. For example, under the assumption that B is positive definite, two
different algorithms have been proposed by Yuan[13] and Zhang[14] respectively. In this paper,
we present an algorithm for solving problem (1.1)–(1.2) for general symmetric matrix B. We
also assume that F has strict interior points.

The paper is organized as follows. In the next section, we state some known results which
we will use in this paper. In section 3, we consider dual function and give some useful results.
In section 4, the algorithm is presented. In section 5, convergence properties are analyzed. And
in the last two section, we give numerical experiments.

∗Supported by Chinese NSF grant 10231060.
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2 Some basic results

In this section, we restate some fundamental results of the CDT subproblem.
Firstly, we define some notations as follows,

R2
+ = {(λ, µ) | λ ≥ 0, µ ≥ 0}, (2.1)

Ω0 = {(λ, µ) ∈ R2
+ | H(λ, µ) is positive semi-definite}, (2.2)

Ω1 = {(λ, µ) ∈ R2
+ | H(λ, µ) has one negative eigenvalue}, (2.3)

where H(λ, µ) = B+λI+µAAT . For the dual variable λ ≥ 0, µ ≥ 0, when g+µAc ∈ R(H(λ, µ)),
we also define the vector

d(λ, µ) = −H(λ, µ)+(g + µAc), (2.4)

and the Lagrangian dual function

Ψ(λ, µ) = Φ(d(λ, µ)) +
λ

2
(||d(λ, µ)||2 −∆2) +

µ

2
(||AT d(λ, µ) + c||2 − ξ2). (2.5)

The optimal conditions for the CDT subproblem were first proved by Yuan[12].

Theorem 2.1 Let d∗ be a global solution of the problem (1.1)–(1.2). Then there exist λ∗, µ∗ ≥ 0
such that

(B + λ∗I + µ∗AAT )d∗ = −(g + µ∗Ac), (2.6)

λ∗(∆− ||d∗||) = 0, µ∗(ξ − ||AT d∗ + c||) = 0. (2.7)

Furthermore, the matrix
H(λ∗, µ∗) = B + λ∗I + µ∗AAT (2.8)

has at most one negative eigenvalue if the multiplier λ∗, µ∗ are unique.

In addition, Yuan[12] also showed that we could always find the global solution d∗ with (λ∗, µ∗) ∈
Ω0 ∪ Ω1. From these results, we can try to get the global solution of the CDT subproblem by
searching the dual variables (λ∗, µ∗) in Ω0 ∪ Ω1. Further, Chen & Yuan[2] gave the criterion
that the CDT subproblem has no global solution d∗ with (λ∗, µ∗) ∈ Ω0, which can be presented
as follows.

Theorem 2.2 If there is no global solution d∗ of the CDT subproblem with the corresponding
H(λ∗, µ∗) positive semi-definite, then the maxima (λ+, µ+) of dual function Ψ(λ, µ) in the region
Ω0 satisfy

i) H(λ+, µ+) is positive semi-definite with defect 1;

ii)
(||d(λ+, µ+) + τ̃+ũ|| −∆)(||d(λ+, µ+) + τ̃−ũ|| −∆) < 0, (2.9)

where d(λ+, µ+) is defined by (2.4), ũ satisfies ||ũ|| = 1 and H(λ+, µ+)ũ = 0, and τ̃± are
respectively given by

λ+(||d(λ+, µ+) + τ̃ ũ||2 −∆2) + µ+(||AT (d(λ+, µ+) + τ̃ ũ) + c||2 − ξ2) = 0. (2.10)
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It is well known that a KKT point d∗ is the global solution of the CDT subproblem if H is
positive semi-definite. About the KKT points d∗ with (λ∗, µ∗) ∈ Ω1, Li [7] gives the local
optimal conditions when λ∗µ∗ > 0; If λ∗µ∗ = 0, the optimal conditions are reduced to the
conditions when this point is a local solution of a simpler problem, which is easy to verify.
Furthermore, Li [7] shows that all KKT points in Ω1 are local optimal solutions.

Based on these theories, we present an dual algorithm by restricting (λ, µ) ∈ Ω0 at the first
stage; if we don’t find the global solution in Ω0, we can enter the second stage by the criterion
of theorem 2.2, namely, we extend the search region from Ω0 to Ω0

⋃
Ω1.

In the end of this section, we give the assumption as follows.

Assumption 2.3 a) Assume that there is at least one active constraint at the solution d∗ of
the CDT subproblem (1.1)-(1.2).

b) Assume that
min

(λ,µ)∈ÃL0(λ0,µ0)∪Ω1

{||d(λ, µ)||, ||AT d(λ, µ) + c||} ≥ c0 (2.11)

holds, where d(λ, µ) is the same as (2.4), and L0(λ0, µ0)((λ0, µ0) ∈ Ω0) is defined by

L0(λ0, µ0) = {(λ, µ) |Ψ(λ, µ) > Ψ(λ0, µ0), (λ, µ) ∈ Ω0}.

3 Dual function

It is easy to see that dual function for the CDT subproblem (1.1)-(1.2) can be presented as

Ψ(λ, µ) =





undefined, if H(λ, µ)d(λ, µ) = −(g + µAc) is inconsistent,
Φ(d(λ, µ)) + λ

2 (||d(λ, µ)||2 −∆2) + µ
2 (||AT d(λ, µ) + c||2 − ξ2),

otherwise.

According to this definition, if the sequence {(λk, µk)} is close to the boundary ∂Ω0 from
the interior of Ω0, then when k → +∞, we have

(λk, µk) → arg max
(λ,µ)∈Ω0

Ψ(λ, µ) ∈ ∂Ω0, (3.2)

or
Ψ(λk, µk) → −∞, and ||d(λk, µk)|| → ∞. (3.3)

Further, if
arg max

(λ,µ)∈Ω0

Ψ(λ, µ) ∈ ∂Ω0, (3.4)

then Hessian matrix H(λ∗, µ∗)at the global solution d∗ of the CDT subproblem is semi-positive
definite or has one negative eigenvalue.

On the other hand, if H(λ∗, µ∗) has one negative eigenvalue at the global solution d∗, and
the sequence {(λk, µk)} is close to the boundary ∂Ω1 from the interior of Ω1, we will have

Ψ(λk, µk) → +∞, and ||d(λk, µk)|| → ∞, if k → +∞ (3.5)

or the limit of the sequence will be a KKT point.
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Lemma 3.1 If F has strict interior points, then the set

L0(λ0, µ0) = {(λ, µ) |Ψ(λ, µ) ≥ Ψ(λ0, µ0), (λ, µ) ∈ Ω0} (3.6)

is bounded, where (λ0, µ0) ∈ Ω0.

Proof. Because F has strict interior points, there exists d̄ such that

||d̄|| < ∆, and ||AT d̄ + c|| < ξ. (3.7)

Under the assumption (λ, µ) ∈ Ω0, d(λ, µ) is calculated to minimize Ψ(λ, µ), so we have

Ψ(λ, µ) < Φ(d̄) +
λ

2
(||d̄||2 −∆2) +

µ

2
(||AT d̄ + c||2 − ξ2). (3.8)

Hence Ψ(λ, µ) → −∞ if max{λ, µ} → +∞. Therefore the lemma is true. ¤

Theorem 3.2 For (λ, µ) ∈ Ω0 ∪ Ω1, assume that d(λ, µ) is defined by the equation (2.4). then
||d(λ, µ)|| → ∞ only if (λ, µ) is very close to ∂Ω0 ∪ ∂Ω1.

Proof. There are two cases.
a). there does not exist λs = c > 0 which is the singular line(see [2]) of H(λ, µ).

In this case, we can find two points (λa, 0) and (0, µb) such that H(λ, µ) is positive definite. We
define

Ω∞ = {(λ, µ) ∈ R2
+|λ > λa, or µ > µb} (3.9)

Obviously, we only need prove that ||d(λ, µ)|| is bounded above in Ω∞. For all (λ, µ) ∈ Ω∞, we
have

||d(λ, µ)|| ≤ ||H(λ, µ)−1g||+ ||H(λ, µ)−1µAc|| (3.10)

the first term of the right-hand side of (3.10) is bounded above by

max{||H(λa, 0)−1||, ||H(0, µb)−1||}||g|| (3.11)

On the other hand, if λ > λa, using the relation

Ac = AA+Ac = AAT (A+)T c, (3.12)

it can be shown that

||H(λ, µ)−1µAc|| ≤ ||H(λa, µ)−1µAc|| (3.13)
= ||(A+)T c−H(λa, µ)−1H(λa, 0)(A+)T c|| (3.14)
≤ (

1 + ||H(λa, 0)−1|| ||H(λa, 0)||) ||(A+)T c|| (3.15)

Similarly, we can show that

||H(λ, µ)−1µAc|| ≤ (
1 + ||H(0, µb)−1|| ||H(0, µb)||

) ||(A+)T c|| (3.16)

when µ > µb. Therefore ||d(λ, µ)|| is bounded above in Ω∞.
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b). There exists λ = λs(λs > 0) which is the singular line of H(λ, µ).
According to the above proof, we only need consider the case that

λ < λs − ε and µ →∞ (3.17)

where ε > 0 is small enough. In this case, we can also show that (3.10) holds. It is trivial that

||H(λ, µ)−1g|| ≤ ||g||
ε

(3.18)

about the second term of the right-hand side of (3.10), we have

||H(λ, µ)−1µAc|| = ||(I −H(λ, µ)−1(B + λI))(A+)T c||
≤ (1 + (||B||+ λs)/ε) ||(A+)T c|| (3.19)

From (3.18)–(3.19), we have

||d(λ, µ)|| ≤ ||g||
ε

+
(

1 +
||B||+ λs

ε

)
||(A+)T c|| (3.20)

This completes the proof of this lemma. ¤
According to the definition of Ψ(λ, µ), we have

Corollary 3.3 O2Ψ(λ, µ) is bounded above in the set L0(λ0, µ0), where L0(λ0, µ0) is defined by
(3.6).

Proof. If (λ, µ) is very close to ∂Ω0 and (λ, µ) ∈ Ω0, then from the definition of Ψ(λ, µ),
we have Ψ(λ, µ) → −∞ or max(λ,µ)∈Ω0

Ψ(λ, µ).
Further, at the first case, we have

(λ, µ) /∈ L0(λ0, µ0);

On the other hand, if it is in the latter case, we have O2Ψ(λ, µ) is bounded. Since L0(λ0, µ0) is
bounded and Theorem 3.2, we know that corollary is true. ¤

Corollary 3.4 O2Ψ(λ, µ) is bounded in the set

L1(λ+, µ+) = {(λ, µ) | ||OΨ(λ, µ)|| ≤ ||OΨ(λ+, µ+)||, (λ, µ) ∈ Ω1} (3.21)

where
(λ+, µ+) = arg max

(λ,µ)∈Ω0

Ψ(λ, µ).

Corollary 3.4 can be shown from theorem 3.2 and the definition of dual function, so we omit the
proof.
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4 Algorithm

The algorithm presented below is iterative. At each iteration, an estimate of the Lagrange
multiplier (or dual variable) (λk, µk) is known, then, an acceptable step (δλ, δµ)) is calculated
and the next iterate is (λk + δλ, µk + δµ).

In detail, our algorithm consists of two stages. At the first stage, the goal is to maximize
the dual function Ψ(λ, µ) in the set Ω0, namely,

max
(λ,µ)∈Ω0

Ψ(λ, µ). (4.1)

When this stage is over, we get

(λ+, µ+) = arg max
(λ,µ)∈Ω0

Ψ(λ, µ).

If d(λ+, µ+) is the global solution d∗ of the CDT subproblem, then algorithm will stop; Other-
wise, we enlarge search region from Ω0 to Ω0 ∪ Ω1 and enter the second stage, now our goal is
to find a feasible KKT point satisfying Lagrange multiplier (λ∗, µ∗) ∈ Ω1. In one word, whether
at the first stage or at the second stage, we try to search (λ, µ) in Ω0 or Ω1 such that the triple
(λ, µ, d(λ, µ)) is a feasible KKT point of the CDT subproblem.

In addition, the successes of Gay[5] and Moré & Sorensen[8] on the trust region subproblem

min gT d + 1
2dT Bd, (4.2)

s.t. ||d|| ≤ ∆. (4.3)

imply that the rational structure of ||d||, ||AT d + c|| may be exploited.
So for the CDT subproblem (1.1)-(1.2), We apply Newton method to the equation system

w(λ, µ) =
(

1/∆− 1/||d(λ, µ)||
1/ξ − 1/||AT d(λ, µ) + c||

)
= 0 (4.4)

at each iteration, where d(λ, µ) is defined by

H(λ, µ)d(λ, µ) = −(g + µAc). (4.5)

That is to say, we solve

w(λ, µ) + Ow(λ, µ)
(

δλ
δµ

)
= 0. (4.6)

Direct calculation shows that

Ow(λ, µ) = −
(

dH+d/||d||3 dH+y/||d||3
dH+y/||AT d + c||3 yH+y/||AT d + c||3

)
(4.7)

where d = d(λ, µ), H = H(λ, µ) and y = y(λ, µ).
Because the matrix Ow(λ, µ) may be singular, we use the generalized Newton step

ρ̄ = − (Ow(λ, µ))+ w(λ, µ) (4.8)

On the other hand, when Ow(λ, µ) is singular, generalized Newton step ρ̄ is only a minimizer of

||w(λ, µ) + Ow(λ, µ)
(

δλ
δµ

)
||
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in the range space of O2Ψ(λ, µ); Further, when O2Ψ(λ, µ) is almost singular, generalized Newton
step will be too large. Considering these situations, we define

Q(s) = sT OΨ(λ, µ) +
1
2
sT O2Ψ(λ, µ)s, s ∈ R2 (4.9)

if either
ρ̄T OΨ(λ, µ) <

1
M
||OΨ(λ, µ)||2 or ||ρ̄|| > s (4.10)

holds, we use a steepest ascent step

ρ̂ =
1
M

OΨ(λ, µ) (4.11)

where M ≥ |θ1|+|θ2| (θ1, θ2 are the diagonal elements of matrix O2Ψ(λ, µ)), and s is a parameter
updated at each iteration.

At the boundary, we search along the boundary if necessary. At the point (0, µ)T , if
w1(λ, µ) ≥ 0 (this may indicate that the case when the first constraint of the CDT subproblem
is inactive) or if the first component of the calculated step (ρ̄ or ρ̂) is negative (such that the
trial step is infeasible), we then use the “projected steepest ascent direction”,

(
δλ
δµ

)
=

(
0

−w2(λ, µ)/(∂w2(λ, µ)/∂µ)

)
. (4.12)

Similarly, at the boundary point (λ, 0)T if w2(λ, µ) ≥ 0 or if the second component of the trial
step is negative, we use the step

(
δλ
δµ

)
=

( −w1(λ, µ)/(∂w1(λ, µ)/∂λ)
0

)
. (4.13)

In the end, a step is truncated if it makes the new point (λ + δλ, µ + δµ) infeasible. Namely,
we choose the largest t ∈ (0, 1] that satisfies

(λ + tδλ, µ + tδµ) ∈ R2
+. (4.14)

At the first stage, our condition for accepting a trial step is that

(OΨ(λ + tδλ, µ + tδµ))T

(
δλ
δµ

)
≥ 0, (4.15)

Ψ(λ + tδλ, µ + tδµ) ≥ Ψ(λ, µ) + vt(OΨ(λ, µ))T

(
δλ
δµ

)
(4.16)

hold, where v ∈ (0, 0.5) is a preset constant.
If a trail step ρ̄ is unacceptable, we replace it by ρ̂. Then we keep increasing M by twice

until the step ρ̂ is acceptable. It can be seen that if

M ≥ max
(λ,µ)∈L0(λ0,µ0)

||O2Ψ(λ, µ)||, (4.17)

(4.15) will hold.
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On the other hand, if (4.15) holds and (4.16) does not hold, then we can use the same
method as Yuan[13] and show

Ψ(λ + tδλ, µ + tδµ) ≥ Ψ(λ, µ) +
2v(1− v)

M
||

(
δλ
δµ

)
||−2

[
(OΨ(λ, µ))T

(
δλ
δµ

)]2

(4.18)

holds, where M satisfies (4.17). That is to say, either (4.16) or (4.18) holds, we accept trial step.
Similarly, at the first stage, if trial step (4.12) is unacceptable, we choose

δµ := δµ
w2(0, µ)

w2(0, µ + δµ)− w1(0, µ)
. (4.19)

if (4.13) is unacceptable, we set

δλ := δλ
w1(λ, 0)

w1(λ + δλ, 0)− w1(λ, 0)
. (4.20)

At the second stage, we use

F (λ, µ) =
1
2
||r(λ, µ)||2, (4.21)

as merit function, and the goal is to minimize F (λ, µ), where

r(λ, µ) =





e2e
T
2 OΨ(λ, µ) if λ = 0 and w1(λ, µ) ≤ 0,

e1e
T
1 OΨ(λ, µ) if µ = 0 and w2(λ, µ) ≤ 0,

(0, 0)T if λ = µ = 0, w1(λ, µ) ≤ 0 and w2(λ, µ) ≤ 0,
OΨ(λ, µ) otherwise.

(4.22)

It is obvious that F (λ, µ) is piecewise continuous function. Now our condition for accepting trial
step is

F (λk + σltδλ, µk + σltδµ) ≤ F (λk, µk) + b1σ
lt(JT

k r(λk, µk))T

(
δλ
δµ

)
(4.23)

where Jk = J(λk, µk) is Jacobi matrix, σ = 1/2 and l is the least nonnegative integer satisfying
(4.23).

From Corollary 3.4, we know J(λ, µ) is Lipschitz continuous in L1(λ+, µ+). Hence according
to the analysis of Yuan[11], we have

σl ≥ c||JT
k r(λk, µk)||2cosθk (4.24)

holds, where θk is the angle between JT
k F (λk, µk) and trial step t(δλ, δµ).

In our algorithm, we use variable solve to divide the first stage from the second stage. When
solve = .false., the algorithm is in the first stage; otherwise if solve = .true., the algorithm
enters the second stage.

In order to judge the eigenvalues of Hk and solve the equation (4.5), we factorize Hk with
pivoting [6] at each iteration,

H(λk, µk) = RT
k ΛkRk. (4.25)

where Λk is a diagonal matrix and all the diagonal elements are 1 or −1. That is, if one diagonal
element of Hk is equal to −1, then

(λk, µk) ∈ Ω1. (4.26)

Now the detail of the algorithm can be given as follows.
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Algorithm 4.1

Step 0 Given λ1 = ||B||1, µ1 = ||B||1, solve = .false., ε > 0, and k = 1.

Step 1 Factorize H(λk, µk) = RT
k ΛkRk with pivoting.

step 2 Calculate dk from (4.5).

step 3 Calculate the least singular value σmin and the corresponding vector ũ(||ũ|| = 1) of RT
k .

if σmin < ε, calculate τ̃ such that

λk(||dk + τ̃ ũ||2 −∆2) + µk(||AT (dk + τ̃ ũ) + c||2 − ξ2) = 0. (4.27)

If convergence, then stop; If

(||dk + τ̃+ũ|| −∆)(||dk + τ̃− ũ|| −∆) < 0, (4.28)

then solve = .true.

step 4 Calculate

w
(k)
1 =

1
∆
− 1
||dk||2 , w

(k)
2 =

1
ξ
− 1
||AT dk + c||2 ;

if convergence, then stop;

Mk = max{Mk−1, |dT
k H+

k dk|+ |yT
k H+

k yk|}; sk = max{sk−1, ||w(k)||/Mk}.
if λk = 0 and w

(k)
1 ≤ 0, go to step 6; if µk = 0 and w

(k)
2 ≤ 0, go to step 7.

step 5 Calculate the generalized Newton step ρ̄.
If (4.10) holds, set (δλ, δµ)T = ρ̂; otherwise, set (δλ, δµ)T = p̄ .
If λk = 0 and δλ < 0, go to step 6; If µk = 0 and δµ < 0, go to step 7.

step 6 δλ = 0, δµ = −w
(k)
2 /∂w

(k)
2 , go to step 8.

step 7 δλ = −w
(k)
1 /∂w

(k)
1 , δµ = 0.

step 8 Truncate the step if necessary(calculate tk = 1/max{1,−δλ/λk,−δµ/µk};
and (δλ, δµ)T := tk(δλ, δµ)T ).

step 9 Carry out line search. calculate the smallest no-negative integer I(k) such that accepted
criteria hold for the trial step 2−I(k)(δλ, δµ)T ; Set (δλ, δµ)T = 2−I(k)(δλ, δµ)T and Mk =
2I(k)Mk/tk if I(k) > 0.

Step 10 Factorize H(λk +δλ, µk +δµ) = RT
k+1Λk+1Rk+1 (Λk+1 = diag (1, · · · , 1,±1))with piv-

oting, and the last diagonal element of Λk+1 is equal to −1 only if solve = .true. holds.
If H ≥ 0 or H has one negative eigenvalue but solve = .true., go to step 11; otherwise
(δλ, δµ)T = (δλ, δµ)T /2, go to step 9.

step 11 Set λk+1 = λk + δλ, µk+1 = µk + δµ; Set k = k + 1 and go to step 2.
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At step 4 of Algorithm 4.1, the stopping criterion is

r(λk, µk) ≥ −ε e and (λkr1(λk, µk), µkr2(λk, µk))
T ≤ ε e, (4.29)

where e = (1, 1)T ; At step 3, when

τ̃2ũT Hkũ ≤ σ
∣∣ dT

k Hkdk + λk∆2 + µk(ξ2 − ||c||2)∣∣ and | ||dk + τ̃ ũ|| −∆| ≤ ε∆ (4.30)

hold, Algorithm 4.1 will halt.

Lemma 4.2 Let 0 < σ < 1, ε ≥ 0 be given and suppose that

H(λ, µ) = B + λI + µAAT = RT R, (4.31)
H(λ, µ)d = −(g + µAc), λ ≥ 0, µ ≥ 0 (4.32)

Let ũ ∈ Rn(||ũ|| = 1) and τ̃ satisfy

λ (||d + τ̃ ũ|| −∆) + µ
(||AT (d + τ̃ ũ) + c)|| − ξ

)
= 0 (4.33)

τ̃2ũT H(λ, µ)ũ ≤ σ
∣∣ dT H(λ, µ)d + λ∆2 + µ(ξ2 − ||c||2)∣∣ (4.34)

| ||d + τ̃ ũ|| −∆| ≤ ε∆ (4.35)

Then
|Φ∗ − Φ(d + τ̃ ũ) | ≤ σ |Φ∗| (4.36)

where Φ∗ is the optimal value of (1.1)–(1.2).

Proof. Let M = 1
2

(
dT H(λ, µ)d + λ∆2 + µ(ξ2 − ||c||2)). First, note that for any ũ ∈ Rn,

Φ(d + τ̃ ũ) = −1
2

[
dT Hd + λ||d + τ̃ ũ||2 + µ(||AT (d + τ̃ ũ) + c)||2 − ||c||2)] +

1
2
τ̃2ũT Hũ (4.37)

where H = H(λ, µ). Then for any τ̃ , ũ satisfying (4.33)–(4.35),we have

−Φ(d + τ̃ ũ) ≥ M − σ |M | (4.38)

Furthermore, if Φ∗ = Φ(d + τ̃∗ũ∗) where d + τ̃∗ũ∗ ∈ F , then (4.37) implies

−Φ(d + τ̃∗ũ∗) ≤ M. (4.39)

The last two inequalities yield this Lemma. ¤

Lemma 4.2 shows that d + τ̃ ũ is a nearly optimal solution to problem (1.1)–(1.2).

5 Convergence Properties

From the definition of r(λ, µ), we also use the notation

zk = ||r(λk, µk)||, (5.1)

for all k. It can be shown that Algorithm 4.1 converges if and only if

zk → 0(k →∞). (5.2)

First, we consider the angle between trial step and gradient direction.
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Lemma 5.1 Let %k = (δλk, δµk)T be the trial step at the k-th iteration, then we have

αk = cos(%k, OΨk) ≥ min{1, zk/Mksk}, (5.3)

where OΨk = OΨ(λk, µk).

Proof. From (5.1), we have
||OΨk|| ≥ zk, (5.4)

If %k = ρ̂, then αk = 1, (5.3) holds.
When %k = ρ̄, according to (4.10), we get

αk =
ρ̄T OΨk

||ρ̄|| · ||OΨk|| ≥
||OΨk||
Mk||ρ̄|| ≥

zk

Mksk
, (5.5)

namely, (5.3) also holds.
Now we consider the case that %k is defined by (4.12). There are two cases.

1) w1(λk, µk) ≤ 0. It can be shown that

αk = |eT
2 OΨk|/||OΨk|| ≥ zk/||OΨk|| ≥ zk/Mksk, (5.6)

2) w1(λk, µk) > 0, eT
1 ρ̄ < 0. in this case, since

(eT
2 OΨk)eT

2 ρ̄ = ρ̄T OΨk − (eT
1 OΨk)eT

1 ρ̄ ≥ ρ̄T OΨk ≥ ||OΨk||2/Mk, (5.7)

it follows that
αk = |eT

2 OΨk|/||OΨk|| ≥ ||OΨk||/(||ρ̄||Mk) ≥ zk/(Mksk). (5.8)

In the same method, we can show that (5.3) also holds when trial step is decided by (4.13). This
completes the proof of theorem. ¤

The following lemma shows that I(k) = 0 for sufficiently large k at the first stage.

Lemma 5.2 At the first stage, there are only finitely many k such that I(k) > 0. Consequently,
Mk is bounded above.

Proof. Firstly, from Theorem 3.1 and Theorem 3.2, O2Ψ(λ, µ) is bounded in the set L0(λ1, µ1),
where (λ1, µ1) is the initial point of Algorithm 4.1. Namely, we have

||O2Ψ(λ, µ)|| ≤ K, ∀(λ, µ) ∈ L0(λ1, µ1). (5.9)

If conclusion of Lemma does not hold, that is to say, there are infinitely many k such that
I(k) > 0 at the first stage, we can show

lim
k→∞

Mk = ∞. (5.10)

Hence there exists an integer k0 such that

Mk ≥ M, ∀ k ≥ k0. (5.11)

where M is the same as equation (4.17). Therefore, at the first stage, ρ̂ is always an acceptable
step for k ≥ k0. which contradicts (5.10). Thus the lemma is true. ¤

Using the above results, we can prove.
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Theorem 5.3 The sequence {(λk, µk)T ; k = 1, 2, 3 · · · } was generated by Algorithm 4.1 at the
first stage, then {(λk, µk)T } converges to

arg max
(λ,µ)∈Ω0

Ψ(λ, µ). (5.12)

Proof. At the first stage, if (λk, µk) ∈ intΩ0 and (λk + tδλ, µk + tδµ) generated by Algorithm
4.1 is close to or goes beyond the boundary ∂Ω0, then unique possibility is

arg max
(λ,µ)∈Ω0

Ψ(λ, µ) ∈ ∂Ω0. (5.13)

In this case, we must shorten the trial step through step 11 of Algorithm 4.1, and consequently
the sequence {(λk, µk)} will converge to the maximizer on the boundary ∂Ω0. Therefore the
first stage of Algorithm 4.1 will be over. That is to say, Shortening trial step by step 11 of
Algorithm 4.1 will not occur infinitely.

Due to (4.15)-(4.16), we deduce

Ψ(λk+1, µk+1) > Ψ(λk, µk). (5.14)

further, we have that limk→∞ zk = 0 and limk→∞ inf zk = 0 are equivalent.
Assume that theorem is false, that is, there exists τ > 0 such that

zk ≥ τ (5.15)

for all k. In this case, we know that contracting trial step by step 11 will not occur.
Now we consider the lower boundary of ||%k||. When %k = ρ̂, it is obvious from (5.4) that

||%k|| = ||OΨk||/Mk ≥ zk/Mk; (5.16)

if %k = ρ̄, we deduce from Assumption 2.3 that

||%k|| ≥ c2zk/||O2Ψk|| (5.17)

where c2 = 2 ·min{ c20
ξ(ξ+c0) ,

c20
∆(∆+c0)}.

If %k is defined by (4.12), there are two cases.

i) w1(λk, µk) ≤ 0, so it is easy to see that

||%k|| ≥ c2zk/yT
k H+

k yk ≥ c2zk/Mk. (5.18)

ii) w1(λk, µk) > 0 and eT
1 ρ̄ < 0 hold, we have

eT
2 w(λk, µk)eT

2 ρ̄ = ρ̄T w(λk, µk)− eT
1 w(λk, µk)eT

1 ρ̄

≥ ρ̄T w(λk, µk) ≥ c2c3z
2
k/Mk. (5.19)

where

c3 = 1/ max
(λ,µ)∈L0(λ0,µ0)

{∆||d(λ, µ)||(∆+ ||d(λ, µ)||), ξ||AT d(λ, µ)+ c||(ξ + ||AT d(λ, µ)+ c||)},

and from Theorem 3.2, c3 is a constant. therefore we deduce that

||%k|| = |eT
2 w(λk, µk)|/yT

k H+
k yk ≥ c2c3

z2
k

M2
ksk

(5.20)
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That is to say, if trial step is defined by (4.12), then we can show that

||%k|| ≥ min{1, c3 · zk/(Mksk)}c2zk/Mk. (5.21)

Furthermore if trial step defined by (4.12) was modified by (4.19), we can get

||%k|| ≥ min{1, c3 · zk/(Mksk)}c2c3z
2
k/(2M̄Mk), (5.22)

where M̄ = max(0,µ)∈Ω0
|w2(0, µ)|.

Using similar method, when trial step was derived from (4.13), the acceptable trial step is
such that

||%k|| ≥ min{1, c3 · zk/(Mksk)}c2c3z
2
k/(2M̂Mk), (5.23)

where M̂ = max(λ,0)∈Ω0
|w1(λ, 0)|.

According to (5.15)-(5.23) and Lemma5.2 , there is β > 0 such that

||%k|| ≥ β (5.24)

for all k.
From (4.15)-(4.16), we deduce that

Ψ(λk+1, µk+1)−Ψ(λk, µk) ≥
min{vtkβzk min{1, zk/Mksk}, 2v(1−v)zk

2

M∗ [min{1, zk/Mksk}]2} (5.25)

where M∗ = max(λ,µ)∈L0(λ1,µ1) ||O2Ψ(λ, µ)||.
Because Ψ(λ, µ) in the set Ω0 is bounded above, we get

∞∑

k=1

tk < ∞. (5.26)

which implies that the sequence {(λk, µk)T } converges, and

lim
k→+∞

(λk, µk)T = (0, 0)T . (5.27)

Namely, B is positive definite and two constraints are inactive at the global solution d∗ for CDT
subproblem. This contradicts Assumption 2.3, so theorem is true. ¤

Due to Chen & Yuan[2], we know, Algorithm 4.1 either finds the global solution d∗ for CDT
subproblem (1.1)-(1.2) at the first stage or enters into the second stage with the condition of
(4.28).

If there is the global solution d∗ with positive semi-definite H(λ∗, µ∗) for CDT subproblem
(1.1)-(1.2), then Algorithm will stop at the first stage. Namely, if Algorithm 4.1 enters into the
second stage, it implies that there is no positive semi-definite H(λ∗, µ∗) at the global solution d∗;
At this time, we can conclude that H(λ∗, µ∗) has one negative eigenvalue and the corresponding
vectors d∗ and y∗ are linearly independent.

The following theorem shows that Algorithm 4.1 will stop at the second stage.

Theorem 5.4 Suppose that the sequence {(λk, µk)T ; k = 1, 2, 3 · · · } is generated by Algorithm
4.1 at the second stage, then either Algorithm will stop after finite iteration or {(λk, µk)} will
converges in the sense that

lim
k→∞

||JT
k rk|| = 0. (5.28)
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Proof. From the above analysis, when the second stage of algorithm begins, d∗ and y∗

are linearly independent at all the KKT points where H∗ has one negative eigenvalue. Hence
O2Ψ(λ, µ) is nonsingular in the set intΩ1.

If {(λk, µk)} ∈ intΩ1, and {(λk + tδλ, µk + tδµ)} is sufficiently close to ∂Ω1, then the only
impossibility is that there is a KKT point of the CDT subproblem in the set ∂Ω1; In this case,
algorithm will satisfy the stopping criterion after finite iterations. Otherwise, we suppose that
∂Ω1 has no KKT point of the CDT subproblem. {(λk, µk)} generated by Algorithm 4.1 will be
not close to ∂Ω1. without loss of generality, we can assume that

|λmin(H(λ, µ))| > ε, (5.29)

for all (λ, µ) ∈ L1(λ+, µ+), where |λmin(H(λ, µ))| is the absolute minimizer of the eigenvalues
of H(λk, µk).

If theorem is false, we have
||JT

k rk|| > τ. (5.30)

where τ > 0 is a constant.
According to corollary 3.4 and (5.29), we have

m0 ≤ ||Jk|| ≤ M0. (5.31)

Hence (5.30) shows also that
||rk|| ≥ τ1. (5.32)

From (4.23) and (4.24), we have

Fk+1 ≤ Fk − b2(cos θk)2, (5.33)

where b2 > 0 is a constant.
According to Assumption 2.3, (5.29)-(5.32), using the similar method as Lemma 5.1, we can

show that cos θk has lower bound. So
Fk → −∞,

the contradiction occurs. Therefore theorem is true. ¤
The local convergence result is as follows:

Theorem 5.5 Suppose that {(λk, µk)T ; k = 1, 2, 3 · · · } generated by Algorithm 4.1 converges
to (λ∗, µ∗)T , further, if (λ∗, µ∗)T such that λ∗ + µ∗ > 0, then (λk, µk)T converges to (λ∗, µ∗)T

Q-superlinearly.

Proof. At k-th iteration, Newton step ρ̄ can be written as

ρ̄ = −(O2Ψ(λk, µk))+




||dk||2
∆(∆+||dk||)(||dk||2 −∆2)

||AT dk+c||2
ξ(ξ+||AT dk+c||)(||AT dk + c||2 − ξ2)


 (5.34)

It is easy to see that
ρ̄ → −(O2Ψ(λk, µk))+OΨ(λk, µk).

14



Hence if two constraints are active at the point (λ∗, µ∗), then Q-superlinear convergence follows.
Now we consider the case λ∗ = 0, ||d∗||2 − ∆2 < 0. In this case, trial step will be defined by
(4.12), and this trial step is the Newton-Raphson step of the equation

1
ξ
− 1
||AT d(0, µ) + c||2 = 0

so Q-suplinear convergence follows. Similarly, when µ∗ = 0, ||AT d∗ + c||2 − ξ2 < 0, trial step
defined by (4.13) will also be Q-suplinear. This completes the proof of theorem. ¤

6 The description of examples

About the CDT subproblem, there are no standard test examples. Hence we list the examples
used by this paper as follows.

Problem 1–5 denote Yuan’s problems(see [13]),where B is positive definite.

Problem 6. ξ = 2, ∆ =
√

205
12 , B = diag[−3,−2,−1, 0], A = (I3×3 01×3)T , c = (0, 1/2, 1/3)T , g =

(−1,−1/2,−1/3,−1/4)T .

Problem 7–9 just replace B with B − 2I or B − I in Yuan’s problem 3 − −5 such that B is
indefinite.

Problem 10. ξ =
√

5, ∆ =
√

30, B = diag[−1,−2,−3,−4], A = (I2×2 02×2)T , c =
(−2, 0)T , g = (−2,−6,−3, 0)T

Problem 11. ξ =
√

5, ∆ = 1, B = diag[−1,−2], A = I, c = (1, 1)T , g = (−2,−1)T .

Problem 13. only changes A into 2I in problem 6.

Problem 14. B = diag[−50,−2], A = diag[5, 1/5], g = (−10,−1)T , c = (1,−2/5)T , ξ = 1,∆ =
1.

Problem 12,15,16 denote example 7.1, 7.3 and an extension of example 7.3 respectively in [4].

Problem 17 just substitutes g = (24,−27)T for “g” of example 7.1 in [4].

Remark: In problem 1− 5, B is positive definite; In problem 15− 17, H has one negative
eigenvalue at the solution. In other problems , B is indefinite but H is positive semi-definite.

7 Numerical results

Our algorithm is implemented in Fortran77, and test results are presented in the following
three tables. To see the behavior of the algorithm, we include in the table the two quantities
”NT/FC”, where ”NT” is the number of iteration needed for algorithm to reach a solution for
each problem, and ”FC” denotes the number of Cholesky factorization. Listed in the table are
also the dual variables and primal solutions. Moreover, in Algorithm 4.1, the parameter ε
controlling precision in calculation is chosen as 10−6.
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In the table 7.1, we give numerical results of examples form Yuan[13]. For these examples, B
is positive definite. For example 2 and 3, only one constraint is active. In the end, our algorithm
arrived at the global solutions.

Table 7.1 B > 0
np n/m NT FC dual variable primal solution
1 4-1 2 2 0.1001607266D+01 0.4998714683D+00,-0.4995985060D+00

0.3000321453D+01 -0.4995985060D+00,-0.4995985060D+00
2 4-2 5 5 0.0000000000D+00 0.6010300392D+00, 0.2057932222D+00

0.4296232629D+00 0.0000000000D+00, 0.0000000000D+00
3 4-3 4 4 0.6071188494D+01 0.4242568279D+00, 0.5656757706D+00

0.0000000000D+00 0.7070947132D+00, 0.0000000000D+00
4 4-4 4 4 0.2633710837D+01 0.8525471460D+00, -0.2878664443D+00

0.8301411093D+00 -0.3040366588D+00, -0.3128226952D+00
5 4-4 4 4 0.1161211825D+01 0.5826944230D+00, -0.4721314020D+00

0.2289727569D+01 -0.4956259653D+00,0.4382171756D+00

There are nine examples in table 7.2, where B is indefinite but H(λ∗, µ∗) is positive semi-
definite at the global solution d∗. Finally our algorithm succeed in finding their global solution.
For example 6,7 and 13, only one constraint is active at the global solution.

Table 7.2 B is indefinite but H(λ∗, µ∗) ≥ 0
np n/m NT FC dual variable primal solution
6 4-3 4 4 0.3865762605D+01 0.1155051044D+01,0.2679869340D+00

0.0000000000D+00 0.1163157523D+00,0.6467029292D-01
7 4-3 5 5 0.8071773746D+01 0.4242217169D+00,0.5656289558D+00

0.0000000000D+00 0.7070361948D+00,0.0000000000D+00
8 4-4 5 5 0.3633711119D+01 0.8525449044D+00,-0.2878689410D+00

0.8301591742D+00 -0.3040392942D+00,-0.3128254059D+00
9 4-4 5 5 0.2161452708D+01 0.5827110864D+00,-0.4720776368D+00

0.2289573110D+01 -0.4955687127D+00,0.4381789413D+00
10 4-2 5 9 0.4000000000D+01 0.1061597224D+01,0.1839045518D+01

0.1262561988D+01 0.3000000000D+01,0.4089455756D+01
11 2-2 3 5 0.1001027412D+01 0.9991372850D+00,0.8666655968D-01

0.9999180592D+00
12 2-2 5 5 0.5076923137D+01 0.1561981421D-05,-0.1299999980D+02

0.1800000527D+01
13 2-2 5 5 0.0000000000D+00 0.6177812964D+00,-0.5000000000D+00

0.5854860215D+00
14 2-2 9 15 0.2080070959D+01 -0.4040967637D-02, 0.9999854633D+00

0.2001715767D+01

As to three examples in table 7.3, B is indefinite and H(λ∗, µ∗) has one negative eigenvalue at
the global solution d∗. In these three examples, our algorithm also finds the global solution, but
theoretically the algorithm only guarantee to reach some local solution in this situation.

Table 7.3 B and H(λ∗, µ∗) have negative eigenvalues
np n/m NT FC dual variable primal solution
15 2-2 8 10 0.0000000000D+00 -0.9999972031D+00, -0.9999888123D+00

0.3000005594D+01
16 3-3 7 9 0.0000000000D+00 -0.9986507936D+00, -0.9945812412D+00

0.3002702059D+01 0.0000000000D+00
17 2-2 10 16 0.9223248254D+00 0.2326383307D-02, -0.1300465547D+02

0.1800890330D+01
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