A class of globally convergent conjugate gradient methods
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Abstract Conjugate gradient methods are very important ones for solving nonlinear optimization prob-
lems, especially for large scale problems. However, unlike quasi-Newton methods, conjugate gradient
methods were usually analyzed individually. In this paper, we propose a class of conjugate gradient
methods, which can be regarded as some kind of convex combination of the Fletcher-Reeves method and
the method proposed by Dai et al. To analyze the class of methods, we introduce some unified tools
that concern a general method with the scalar fj, having the form of ¢, /¢r—1. Consequently, the class
of conjugate gradient methods can uniformly be analyzed.

Keywords: unconstrained optimization, conjugate gradient, line search, global convergence.
Consider the unconstrained optimization problem
min f(z), z € R", (0.1)

where f is smooth and its gradient ¢ is available. Conjugate gradient methods are very important
methods for solving (0.1), especially for large scale problems, which have the following form:

T T 02
— — Gk, for k =1;
= { —gk + Brdg—1,  for k > 2, (0.3)

where g, = V f(z), ay is a stepsize obtained by a one-dimensional line search and S is a scalar.

Since Fletcher and Reeves introduced the nonlinear conjugate gradient method in 1964, many
formulae have been proposed to compute the scalar Sy, see [1, 2, 3, 4, 5, 6, 7, 8, 9] etc. Among
them, two well-known formulae for g are called the FR and PRP formulae (see [4, 7, 8]), and
are given by

B = llgell?/ gkl (0.4)

and
B = gl ye—1/ll gkl (0.5)
respectively, where yr_ 1 = gr — g1 and || - || means the Euclidean norm. The properties

of nonlinear conjugate gradient methods may be quite different with the scalar f;. A typical
example is that (see [10]), the FR method may sink into a cycle of small steps thus leading to
bad numerical performances, whereas the PRP method will take the steepest descent direction
approximately once a small step is produced. Nonlinear conjugate gradient methods have been
analyzed individually, see [11, 12, 13, 14, 15, 16, 17, 18, 19, 20] etc.

It is well known that some quasi-Newton methods can be expressed in a unified way. For
example, the Broyden’s family can be written as one parameter class which can be viewed as a



combination of the BFGS and DFP methods. Consequently, properties of the methods in the
Broyden’s family and their convergences can be analyzed uniformly (see, [21], [22] and [23]). A
larger family of quasi-Newton methods is called the Huang’s family ([24]). Therefore a question
of much theoretical interest is as follows. Does there exists a class of nonlinear conjugate gradient
methods and its properties can be analyzed by a unified tool?

This paper will give a positive answer to this question partly through our observations on
the formulae of B;. In [1], we presented a nonlinear conjugate gradient method, which has the
form (0.2)-(0.3) with

BT = llgkll® /df—1yr1- (0.6)
Such a nonlinear conjugate gradient method was shown to be globally convergent under the
Wolfe line search conditions. An algorithm based on (0.6) was tested and it performs better

than the PRP method on a set of test problems([1]). By direct calculations, we can deduce an
equivalent form for ,6,? Y namely,

BYY = gk di/gi_1dk—1. (0.7)

We see that the FR formula and the above formula for §; are special forms of

Br = dr/br—1, (0.8)

In this paper, we consider a class of methods that use (0.8) to define S and where ¢y, satisfies
that

de = Mlgell> + (1 = X)(—gi di), (0.9)

with A € [0,1] being a parameter. This class of conjugate gradient methods can be viewed
as some kind of convex combination of the FR method and the method (0.6), because ¢y, is a
convex combination of ||gx|| and —g] dj.

This paper is organized as follows. Some preliminaries are given in the next section; Section
3 provides two convergence theorems for general method (0.2)-(0.3) with g defined by (0.8);
Section 4 analyzed the class of conjugate gradient methods where ¢ is defined by (0.9). Some
remarks are made in the last section.

1. Preliminaries

Throughout this paper, we assume that g # 0 for all k, for otherwise a stationary point has
been found. We give the following basic assumption on the objective function.

Assumption 1.1 (i) f is bounded below on the level set L = {x € R" : f(z) < f(z1)}; (i) In
some neighborhood N of L, f is differentiable and its gradient g is Lipschitz continuous, namely,
there exists a constant L > 0 such that

lg(z) —g(@I < Lllz — &,  forallz, & €N. (1.1)
Some of the results obtained in this paper depend also on the following assumption.

Assumption 1.2 The level set L= {x € R": f(z) < f(x1)} is bounded.



If f satisfies Assumptions 1.1 and 1.2, there exists a positive constant 7 such that
llg(x)|| <7, forallze L. (1.2)

The stepsize oy in (0.2) is computed by carrying out certain line searches. The Wolfe line
search [25] is to find a positive stepsize oy such that

flay + apd) — f(zp) < dawgl dy, (1.3)

\Y

g(zy, + ardy) " dy,

where 0 < 0 < 0 < 1. Under Assumption 1.1 on f, we state the following result, which was
essentially obtained in [25, 26, 27].

Lemma 1.3 Suppose that x1 is a starting point for which Assumption 1.1 holds. Consider any
iterative method (0.2), where dy is a descent direction and oy is computed by the Wolfe line
search (1.3)-(1.4). Then

3 G de)® (1.5)

2 il

In the convergence analyses and numerical implementations of conjugate gradient methods,
the stepsize «y is often computed by the strong Wolfe line search which requires «y satisfying
(1.3) and

|9(zx + ardi) di| < —ogi dy, (1.6)

where also 0 < § < o < 1. For the purpose of analysis, this paper is also concerned about the
line search conditions (1.3) and

o1gk di < g(xr, + ardy) dy < —oagf dy, (1.7)

where 0 < 0 < 01 < 1 and o9 > 0. It is obvious that the Wolfe line search and the strong
Wolfe line search are corresponding to (1.3) and (1.7) with 01 = 0, 09 = 00 and 01 = 09 = 0
respectively.

In the latter sections, the following lemmas are also needed, the first of which is derived from
[28], whereas the second is self-evident and will be used for many times.

Lemma 1.4 Suppose that {a;} and {b;} are positive number sequences. If

Zak =00 (1.8)

k>1

and for all k > 1,
k

bp <ci+e2 Y ai, (1.9)
i-1

where c¢1 and co are positive constants, then we have that

> ar /by = oo. (1.10)

k>1



Lemma 1.5 Consider the following 1-dimensional function,

a+ bt

t)y=——, teR 1.11
o) =250 e R, (1.11)
where a, b, ¢ and d # 0 are given real numbers. If

bc — ad > 0, (1.12)

p(t) is strictly monotonically increasing for t < —5 and t > —3; otherwise, if
bc —ad < 0, (1.13)

p(t) is strictly monotonically decreasing fort < —% and t > —$.

2. Convergence of the general method (0.8)

In this section, the general method (0.2)-(0.3) with S defined by (0.8) is studied. After
giving a basic lemma, we establish two convergence results which depend certain conditions on

b

For simplicity, we define

I ||
£, = Nk 2.1
o 2
and -
9y, d
T = ——/—. 2.2
K ™ (2.2)
Lemma 2.1 For the method (0.2)-(0.3) with By defined by (0.8),
kT k 2
gi di gi
th=-2) s > “ 2” (2.3)
i=1 i i=1 7i
holds for all k > 1.
Proof Since d; = —g, (2.3) holds for £k = 1. For 7 > 2, it follows from (0.3) that
di + 9i = Bidi-1- (2.4)
Squaring both sides of the above equation, we get that
Idill* = =llgill* — 29 di + B ||d1 1> (2.5)
Dividing (2.5) by ¢? and applying (0.8) and (2.1),
29/ di ill?
t=ti1 — 9€;2 - ”fbg“ . (2.6)
Summing this expression over i, we obtain
k T k 2
T ,
=ty —2y 9l el (2.7)
i=2 i i=2 i

Since d; = —g; and t; = ||g1||?/$?, the above relation is equivalent to (2.3). So (2.3) holds for
allk>1. O



Theorem 2.2 Suppose that x1 is a starting point for which Assumption 1.1 holds. Consider
the method (0.2), (0.3) and (0.8), if for all k dy is a descent direction and «y, is computed by
the Wolfe line search (1.8)-(1.4), and if

dori= (2.8)

k>1
we have that
lim inf ||gx|| = 0. (2.9)
k—o00
Proof Since T
—2g; di — |lgi||* < G lQ) ; (2.10)
lgill
it follows from (2.3) that
: (2.11)
Z ||gz||2¢2
or equivalently,
k 2
2.12
< 212
Assume that (2.9) is not true, namely,
liminf ||gx|| # 0. (2.13)
k—o00
Then there exists a positive constant vy such that
llgkl| >y, for all k. (2.14)
In this case, it follows by (2.12) that
1 k
<z Z (2.15)
The above relation, (2.8) and Lemma 1.4 yield
2
DPREEETNY (2.16)
t;

i>1

By the definitions of ¢; and 7, we know that (2.16) contradicts (1.5). Therefore (2.9) is true.
a

Theorem 2.3 Suppose that x1 is a starting point for which Assumption 1.1 holds. Consider
the method (0.2), (0.3) and (0.8), if for all k dy is a descent direction and «y, is computed by
the Wolfe line search (1.8)-(1.4), and if

k>1 k

we have that liminf||gg|| = 0.



Proof Noting that
ty, >0 (2.18)

for all k, we can get from (2.3) that

_229 >legz
i=1

I

, (2.19)
[
which yields that

k
2 ||2

t (g]d g lgi
- ! LU 2.20
Zugzn ¢2 = ¢2 -yl 5 oy (2.20)

=1 Z =1 7

Thus if (2.17) holds, we also have that

= 0. (2.21)
k>1 ||gk“2¢k
Because (2.11) still holds, it follows from (2.21) and Lemma 1.4 that
T
dy)
3 Mg di)® (2.22)

i1 gkl |12

The above relation and Lemma 1.3 clearly give (2.9). This completes our proof. O

Thus we have proved two convergence theorems for the general method (0.2)-(0.3) with S
defined by (0.8). From the above results, we can see that the proof to the convergence of any
method in the form (0.8) can be divided into two stages: the first stage is to show the descent
property of the search direction and the second is to show the truth of (2.8) or (2.17).

For the method (0.6), (2.8) clearly holds since in this case ¢ = —g] dj, and hence ry, = 1. If f
satisfies Assumption 1.2, then we have (2.17) for the FR method because in this case ¢}, = ||gx||?
and (1.2) holds. Therefore Theorems 2.2 and 2.3 are powerful tools in analyzing the convergence
of any conjugate gradient method provided that 5 has the form (0.8).

It should also be noted that the sufficient descent condition, namely,

g di, < —cllgrl, (2.23)

where c is a positive constant, is not invoked in Theorems 2.2 and 2.3. The sufficient descent
condition (2.23) was often used or implied in the previous analyses of conjugate gradient methods
(for example, see [11, 15]). This condition has been relaxed to the descent condition (gi dj < 0)
in the convergence analyses [1] of the FR method and the convergence analyses [29] of any
conjugate gradient method. Another point is that both theorems can be easily extended to any
method (0.2)-(0.3) with jj, satisfying

Bkl < i/ br—1, (2.24)
because in this case, instead of (2.3), we can show that

gi
te < —2 ¢2 Z
i=1

||2

(2.25)



which is sufficient for us to prove Theorems 2.2 and 2.3.

3. A class of globally convergent conjugate gradient methods

In this section, we will exploit a class of conjugate gradient methods between the FR method
and the method (0.6). The global convergence of the class is proved under certain line search
conditions and the methods related to the class are uniformly discussed.

We consider the method (0.2) — (0.3) with ¢ satisfying

D = Mgill* + (1 = X) (=g d), (3.1)
where A € [0,1]. It is obvious that the FR method and the method (0.6) are corresponding to
A =1 and A = 0 respectively. (3.1) and (0.3) show that

gide = —llgkll® + Brak di—

_ “ 2 >\“9k||2 + (1 - A)(_ggdk) T
= —llgkll” + 5 T 9
Mgkl + (1 = X)(—g5_1dr—1)

dp_1. (3.2)

The above relation gives that

 AMlge=11” = gg de—1) + (1 = \)(=gi_1dx—1)

T 2
g d, = gkl 3.3
: Moo P+ (=N e 3
Thus by the first equality in (3.2), we deduce an equivalent form of S,
2

Mgkl + (1= NdE_ye

The above form for ;. can be used for practical computations. Substituting (3.3) into (3.1), we

obtain that ) -

by = Allge—1l* + (1 = A)(=gj_1dr—1)
Mlgr—1l1? + (1 = Ndi"yk—1

By this relation, we can show an important property of ¢, under Wolfe line searches and hence

obtain the global convergence of the class of conjugate gradient methods (3.4) under some
assumptions.

[rale (3.5)

Theorem 3.1 Suppose that x1 is a starting point for which Assumptions 1.1 and 1.2 hold.
Consider the method (0.2), (0.3), (0.8) and (3.1), where X\ € [0,1] and «y is computed by the
Wolfe line search (1.8)—(1.4). If gt dy, < 0 for all k, then

1
b < 7= llgell> (3.
-0
Further, the method converges in the sense that (2.9) is true.
Proof The line search condition (1.4) implies that

di_1ye—1 > (1= 0)(—g{_1dk_1), (3.7)



which, with relation (3.5), shows the truth of (3.6). It follows from (1.2) and (3.7) that

gk |I?
> T2 (3.8)
E>1 Tk
Thus (2.9) follows from Theorem 2.3. O
Let us now define .
Tp = — 3.9
S PATE (39)
and -
d
= BT (3.10)
9k dy,

Then by (3.3), we can write

_ >\+(1 —>\+>\lk,1)7k,1
T = — .
A+ (1 =M1 =l 1)Pk 1

(3.11)

By the above relation, we can show that, if the line search conditions are (1.3) and (1.7) where
the scalars o1 and o9 satisfy certain condition, then for any A € (0, 1], the method (0.2), (0.3),
(0.8) and (3.1) ensures the descent property of each search direction and converges globally. The
assumption on the objective function used here is slightly weaker those than in Theorem 3.1.

Theorem 3.2 Suppose that x1 is a starting point for which Assumption 1.1 holds. Consider the
method (0.2), (0.3), (0.8) and (3.1), where X € (0,1] and «y, satisfies the line search conditions
(1.3) and (1.7). If the scalars o1 and oo in (1.7) is such that

o1+ o9 < ATH (3.12)

then we have for all k > 1,
T > 0. (3.13)

Further, the method converges in the sense that (2.9) is true.

Proof The right hand side of (3.11) is a function of X, [;_; and 7;_1, which is denoted as
(A lp_1,Tk_1). First, we show that

0<7<(1—0p)? (3.14)

for all kK > 1. Since dy = —¢; and hence 71 = 1, (3.14) clearly holds for £k = 1. Suppose that
(3.14) is true for some k£ — 1. It follows from (1.7) that

—09 <lp_y < o7. (3.15)
Then by Lemma 1.5, we get that
e <Y\, 01, Tk—1) < PN o1, (L—01) ) =1 —01)7". (3.16)
On the other hand, by Lemma 1.5 and relation (3.12), we also have that

Tr > (X, =02, Fr_1) > (X, =02, (1 —01)7") > 0. (3.17)



Thus (3.14) is true for k. By induction, (3.14) holds for all £ > 1.
To show the truth of (2.9), by Theorem 2.2, it suffices to prove that

max{ry_1,7c} > €1 (3.18)

for all £ > 2 and some constant ¢; > 0. In fact, if

Fo1 < 1, (3.19)
we can get by Lemma 1.5 that
7 > P(\, —09,1) £ co. (3.20)
Since ¢z € (0,1), we then obtain
max{?k,l,ﬂc} > C2 (3.21)

for all k£ > 2. By the definition (2.2) of 7 and relation (3.1), we have that

Tk

T+ (1= N7 (3.22)

Tk
which, with (3.21) and Lemma 1.5, implies that (3.18) holds with ¢; = ¢o. This completes our
proof. O

Thus we have established two convergence results for the class of conjugate gradient methods
(3.4). Letting A = 1 in Theorem 3.2, we again obtain the convergence result of the FR method
in [12]. For the case when A = 0, the method is proved to generate a descent search direction
at every iteration and converge globally under the Wolfe line search conditions (1.3)-(1.4) (see
[14]). Such a result can be regarded in certain sense as the limit of the results in Theorem 3.2
when A — 0, since (3.12) implies that oo may tend to infinity when A tends to zero.

In the following, we study methods related to the class of conjugate gradient methods (3.4).
To combine the nice global-convergence properties of the FR method and the good numerical
performances of the PRP method, [30] discussed the methods related to the FR method and
extended the result in [11] to any method (0.2) and (0.3) with jj satisfying

0 < B, <" (3.23)
[15] further extended the result to the case that

1Bkl < B " (3.24)

For the nonlinear conjugate method (0.6), [1] proved that the method (0.2)—(0.3) with g satis-
fying

oc—1
1+o

where f3; stands for the formula (0.6), and with «y, chosen by the Wolfe line search gives the
convergence relation (2.9). If the line search conditions are (1.3) and (1.6) with o < 1/2, these
results can be seen as special cases of the following general result.

Br € { ,Bkaﬁk] : (3.25)



Theorem 3.3 Suppose that xy is a starting point for which Assumption 1.1 holds. Consider
the method (0.2) and (0.3), where

6, = 7| g ||
Mlge—1ll2 + (1 = Ndf_ yp—1’

and where «ay, is computed by the strong Wolfe line search (1.3) and (1.6) with o < 1/2. For
any A € [0,1], if

(3.26)

o—1 1
1+(1-2No "]’
then the method produces a descent direction at every iteration and converges globally in the
sense that (2.9) is true.

Tr € (3.27)

Proof Denote ) -
= AMlgell® + (1 = N (=g dx)

k= (3.28)
Mlgr—1lI2 + (1 = A (=g/_1dk—1)
and 5
¢, = =& 3.29
E= 3 (3.29)
Direct calculations show that
_ A+ [Tklk—l + (1 — )\)(1 — lk—l)]Fk—l
Tk = A+ (1 — )\)(1 — lk—l)Fk—l (330)
and : L
gk [ + ( B )Tk—l]Tk: (331)

A+ (1 — A)(l — 1+ Tklk—l)Fk—l’
where 7y, and [, are defined by (3.9) and (3.10). Now, the right hand side of (3.30) is a function
of \, 7, lp_1 and Tx_, which can be denoted as (X, 7k, lg_1,7k_1). We first show that

0<7r<(1—0)7! (3.32)

holds for all £ > 1. Since 7, = 1, (3.32) holds for k¥ = 1. Suppose that (3.32) is true for some
k — 1. Tt follows from (1.7) that
llg—1] < 0. (3.33)

This relation and Lemma 1.5 give that

o—1

T < max{y(A\ 1l 1,k 1), P (N m,lkq,ﬁfl)}
S max{lﬁ()\, 1? g, Fk*l)a ¢(>‘a ﬁa —0, Fk*l)}
-1
< maX{lﬁ(A,l,U,(l —U)_l),lﬁ(A,H(o—l—_Q)\)o_,—O',(l _U)_l)}
— ot (3.34)

where o < 1/2 is also used in the equality. For the opposite direction, we can prove that

o—1

,m,a,(l —o) )} >o0. (3.35)

7r > min{y(\, 1, -0, (1 — o)1), (A

10



Thus (3.32) is true for k. Therefore by induction, (3.32) holds for all k£ > 1.
Now we prove that

& € [-1,1] (3.36)
for all £ > 2. Denoting Dy, to be the denominator of & in (3.31), direct calculations show that
(1=&)Dp = (1 = 7)) A+ (1 = A)(1 = lp—1)T,-1] (3.37)

and
(f]c + 1)Dk = [)\ + (1 — )\)(1 + lk—l)Fk—l]Tk + [)\ + (1 — )\)(1 — lk—l)Fk—l]- (338)

Applying (3.27), (3.32) and (3.33), we can show that Dy > 0 and the right hand terms in
relations (3.37) and (3.38) are nonnegative. So (3.36) holds. Besides it, similarly to the proof of
Theorem 3.2, one can verify that (3.18) is also true for some constant ¢; > 0. By (3.18), (3.36)
and the related discussion in Section 3, we know that (2.9) must hold. O

4. Some remarks

We have studied the convergence properties of the general method (0.8) and provided two
sufficient conditions which ensure the global convergence of the method. The results are powerful
tools in analyzing the convergence of any conjugate gradient method in the form (0.8) and hence
enable us to establish convergence results of the class of conjugate gradient methods (3.4).

From Theorems 2.2, 2.3 and 3.1, we can see that, the descent property of the search direction
plays an important role in establishing convergence results of the method in the form (0.8). At
the same time, we can also see that the sufficient descent condition (2.23) is not necessary in
the convergence analysis of the method in the form (0.8).

It can be seen from Theorem 3.2 that the properties of the class of conjugate gradient
methods (3.4) seem to more resemble those of the FR method with an exception of the method
(0.6). One evident is that, for the method (0.8) and (3.1) where A € (0, 1], if the line search
conditions are (1.3) and (1.7) with o1 and o9 satisfying (3.12), then due to (3.21), we know that
the sufficient descent condition (2.23) holds for at least one of any neighboring two iterations.
However, such a property does not hold any more for the method (0.6) using the Wolfe line
search. For the method (0.6), it can be shown that (2.23) is true for most of the iterations, see
[31].

From the view of theory, it would be interesting to investigate whether Theorems 3.2 and
3.3 can be extended to the case that A > 1 or A < 0. As described in [1], an algorithm based on
the method (0.6) has been found which performs much better than the PRP method. Therefore
from the view of computation, one may ask whether a more efficient algorithm can be exploited
according to the results of this paper. These questions still remain under investigations.
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