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Abstract. For unconstrained optimization, the two-point stepsize gradient method is preferable over the classical
steepest descent method both in theory and in real computations. In this paper we interpret the choice for the stepsize
in the two-point stepsize gradient method from the angle of interpolation and propose two modified two-point
stepsize gradient methods. The modified methods are globally convergent under some mild assumptions on the
objective function. Numerical results are reported, which suggest that improvements have been achieved.
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1. Introduction

Consider the unconstrained optimization problem

min f (x), x ∈ Rn, (1.1)

where f is smooth and its gradient is available. The gradient method for solving (1.1) is an
iterative method of the form

xk+1 = xk − αk gk, (1.2)

where gk = ∇ f (xk) and αk is a stepsize.
It is well-known that the negative gradient direction has the following optimal property

−gk = min
d∈Rn

lim
α→0+

[
f (xk) − f

(
xk + αd/‖d‖2

2

)]/
α. (1.3)
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In the classical steepest descent method (see Cauchy [6]), the stepsize is obtained by carrying
out an exact line search, namely,

αk = arg min
α

f (xk − αgk). (1.4)

However, despite the optimal properties (1.3) and (1.4), the steepest descent method con-
verges slowly and is badly affected by ill conditioning (see Akaike [1] and Forsythe [9]).

Barzilai and Borwein [2] proposed two-point stepsize gradient methods by regarding
Hk = αk I as an approximation to the Hessian inverse of f at xk and imposing some quasi-
Newton property on Hk . Denote sk−1 = xk − xk−1 and yk−1 = gk − gk−1. By minimizing
‖H−1

k sk−1 − yk−1‖2, they obtained the following choice for the stepsize:

αk = sT
k−1sk−1

/
sT

k−1 yk−1. (1.5)

If f is a strictly convex quadratic, Raydan [15] proved that the two-point stepsize gradient
method (1.2) and (1.5) is globally convergent. If the dimension n is two, Barzilai and
Borwein [2] established R-superlinear convergence result for the method and their analyses
indicate that the convergence rate is faster as the matrix A is more ill conditioned. For
the nonquadratic case, Raydan [16] incorporated a globalization scheme of the two-point
stepsize gradient method using the technique of nonmonotone line search. The resulted
algorithm is competitive and sometimes preferable to several famous conjugate gradient
algorithms for large scale unconstrained optimization. Due to its simplicity and numerical
efficiency, the two-point stepsize gradient method has received many studies, see [3–5, 7,
8, 10, 13, 15] etc.

In this paper we will view the choice (1.5) of the stepsize from the angle of interpolation.
Along this line, two new choices of the stepsize are proposed in the next section. The corre-
sponding modified two-point stepsize gradient algorithms are described in Section 3. The
modified algorithms are globally convergent under some mild assumptions on the objective
function. Numerical results are reported in Section 4, which suggest that improvements
have been achieved.

2. Derivation of new stepsizes

For a one-dimensional optimization problem, the two-point stepsize gradient method (1.2)
and (1.5) is the secant method. In the higher dimensional case, the formula (1.5) can be
derived not only from quasi-Newton equation but also from interpolation. In fact, let αk be
defined by (1.5) and tk = α−1

k , then

tk = sT
k−1 yk−1

/
sT

k−1sk−1. (2.1)

The quadratic model

qk(θ) = fk + θgT
k sk−1 + 0.5 tθ2‖sk−1‖2 (2.2)

is an approximation to f (xk + θsk−1). For any t ∈ R, the above model satisfies interpolation
conditions

qk(0) = fk (2.3)
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and

∇qk(0) = gT
k sk−1. (2.4)

It is easy to test that, if t is given by (2.1), the quadratic model (2.2) satisfies the interpolation
condition

∇qk(−1) = gT
k−1sk−1. (2.5)

Therefore the stepsize αk given by (1.5) is an approximation to the inverse of the second
directional derivative of f (x) at xk along sk−1.

If (2.5) is replaced with another interpolation condition

qk(−1) = fk−1, (2.6)

then we can solve from (2.2) that

tk = [
2
(

fk−1 − fk + gT
k sk−1

)]/
sT

k−1sk−1, (2.7)

which yields

αk = sT
k−1sk−1

/[
2
(

fk−1 − fk + gT
k sk−1

)]
. (2.8)

In addition, to let conditions (2.5) and (2.6) be all satisfied, we can construct the following
conic model,

ck(θ) = fk + θgT
k sk−1 + 0.5 tkθ

2sT
k−1sk−1 + ξkθ

3, (2.9)

in which case we can solve that

tk = [
6( fk−1 − fk) + 4gT

k sk−1 + 2gT
k−1sk−1

]/
sT

k−1sk−1 (2.10)

and

αk = sT
k−1sk−1

/[
6( fk−1 − fk) + 4gT

k sk−1 + 2gT
k−1sk−1

]
. (2.11)

It is easy to see that the formulae (2.8) and (2.11) are identical to (1.5) if f (x) is quadratic
on the line segment between xk−1 and xk . This indicates that if the objective function f (x)

is a two-dimensional quadratic function, the method (1.2) with either (2.8) or (2.11) still
has R-superlinear convergence.

For general nonlinear functions, since both the function value information and the gra-
dient information at xk−1 and xk are used in deriving (2.8) and (2.11), it is reasonable to
expect that the two formulae will be better than (1.5). See Yuan [17, 18] for some one-
dimensional evidences showing that the choices (2.8) and (2.11) of the stepsize prefer over
(1.5). Specifically, as analyzed in [18], the local convergence rates of formulae (2.8) and



106 DAI, YUAN AND YUAN

(2.11) for one-dimensional functions are faster than that of (1.5). We guess that Algorithms
3.1 and 3.2 also have R-superlinear convergence rate for a class of nonlinear functions,
which is larger than the class of quadratic functions.

3. Modified two-point stepsize gradient algorithms

In this section, we present the algorithms corresponding to the formulae (2.8) and (2.11)
with the technique of nonmonotone line search.

For convenience, we denote the stepsizes given by (1.5) and (2.8) as α̃k and ᾱk respectively.
As mentioned in Section 2, we have α̃k = ᾱk if the objective function f (x) is quadratic
on the line segment between xk−1 and xk . If f (x) is strictly convex, we always have that
0 ≤ α̃k ≤ 2ᾱk . Since (2.8) is a formula with precisions higher than (1.5) ([18]), an integer
variable j is used in our algorithms to decide whether the use of (2.8) is worthwhile.
The value of j depends on the sequence {uk}, where uk = | α̃k

ᾱk
− 1| is a quantity showing

how f (x) is close to a quadratic on the line segment between xk−1 and xk . More exactly,
assume that c3 > c2 > c1 are three positive constants. If uk ≤ c1, or max{uk, uk−1} ≤ c2, or
max{uk, uk−1, uk−2} ≤ c3, we believe that f (x) is very close to a quadratic on the line
segment between xk−1 and xk , indicating the use of a formula with higher precisions. Thus
in this case we set j = 1 and use the formula (2.8). Otherwise, we set j = 0 and use the
formula (1.5). See Step 2 in Algorithm 3.1.

Now we state the detailed algorithm corresponding to the formula (2.8), in which the
technique of nonmonotone line search of Grippo et al. [12] is used. The algorithm is a
modification of the SPG2 algorithm in [5]. Here we should note that the SPG2 algorithm
was designed for optimization with bound constraints. By setting the bounds to infinity, the
SPG2 algorithm can solve unconstrained optimization problems.

Algorithm 3.1.

Step 0: Given x1 ∈ Rn , α1 = ‖g1‖−1
∞ , M = 10, γ = 10−4, δ = 1030, ε ≥ 0,

c1 = 5.0 ∗ 10−4, c2 = 0.1, c3 = 0.5. Set k = 1.

Step 1: If ‖gk‖∞ ≤ ε, stop.
Step 2: (a) If k = 1, go to Step 3. If sT

k−1 yk−1 ≤ 0, α = δ, uk = 1, go to Step 3.
(b) Calculate α̃k and ᾱk by (1.5) and (2.8) respectively; uk = | α̃k

ᾱk
− 1|.

(c) j = 0; if uk ≤ c1, maxi=0,1 uk−i ≤ c2 or maxi=0,1,2 uk−i ≤ c3, j = 1.
(d) If j = 1, α = ᾱk ; otherwise α = max{δ−1, min{α̃k, δ}}.

Step 3: (nonmonotone line search) If

f (xk − αgk) ≤ max
0≤i≤min{k−1,M}

fk−i − γα‖gk‖2
2,

then set αk = α, xk+1 = xk − αk gk , k = k + 1, go to Step 1.
Step 4: Choose σ ∈ [0.1, 0.9], set α = σα, go to Step 3.
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The denominator ᾱk of the fraction in uk may be zero. However, by (1.5) and (2.8), we
have that

α̃k

ᾱk
= 2

(
fk−1 − fk + gT

k sk−1
)

sT
k−1 yk−1

, (3.1)

which is well defined since we must have sT
k−1 yk−1 > 0 in Step 2(b). If ᾱk is computed

by (2.11) instead of (2.8) in Step 2, the resulting algorithm is called as Algorithm 3.2.
Since gT

k sk−1 = sT
k−1 yk−1 −α−1

k−1sT
k−1sk−1, we see that the required storage and computation

amounts of Algorithms 3.1 and 3.2 are not much more than those of the SPG2 algorithm.
They require to store only three n-dimensional vectors.

Suppose that the gradient ∇ f is Lipschitz continuous. Then we have that

sT
k−1 yk−1 ≤ LsT

k−1sk−1, (3.2)

where L is some positive constant. If sT
k−1 yk−1 > 0, we have by (1.5) and (3.2) that

α̃k ≥ L−1. (3.3)

It follows from the above relation and Step 2 that, if j = 1, we must have that

α = ᾱk ≥ (1 + c3)
−1α̃k ≥ [(1 + c3)L]−1. (3.4)

Otherwise, if j = 0 or the α is obtained by Step 2(a), we also have that α ≥ δ−1. By this and
(3.4), we can similar to Theorem 2.1 in [16] prove the global convergence of Algorithms
3.1 and 3.2.

Theorem 3.1. Suppose that x1 is a starting point for which the level set L = {x : f (x) ≤
f (x1)} is bounded and ∇ f is Lipschitz continuous in some neighborhood N of L. Consider
the iterate {xk} generated by Algorithm 3.1 (or Algorithm 3.2) with ε = 0. Then either
gk = 0 for some finite k or limk→∞ gk = 0.

4. Numerical results and conclusion

We have tested Algorithms 3.1 and 3.2 with double precisions in an SGI Indigo workstation.
The code is based on the SPG2 algorithm in [5] and written with FORTRAN language. The
test problems were taken from Morè et al. [14], except “Strictly Convex 1” and “Strictly
Convex 2” that are provided in [16]. The total number of the test problems are 26. The
stopping condition is

‖gk‖∞ ≤ 10−6, (4.1)

which is stronger than those normally used in real applications. The upper bound for the
number of function evaluations is set to 9999.
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Table 1. Numerical comparisons of gradient algorithms.

Problem n SPG2(I /F) Algorithm 3.1 (I /F) Algorithm 3.2 (I /F)

MGH11 3 949/2507 467/1224 926/2462

MGH14 4 163/329 163/329 163/329

MGH18 6 1091/2042 721/1373 660/1319

MGH22 16 466/776 430/750 356/609

MGH24 20 708/1939 407/1008 502/1239
40 258/527 224/447 242/474

MGH28 20 907/923 907/923 907/923
50 6967/7018 6967/7018 6967/7018

MGH30 50 38/39 38/39 38/39
500 36/37 36/37 36/37

MGH31 50 30/31 30/31 30/31
500 29/30 29/30 29/30

MGH22 100 272/468 249/437 392/711
500 425/755 289/499 275/475

MGH25 100 1/2 1/2 1/2
1000 1/2 1/2 1/2

MGH21 1000 53/279 52/184 34/45
10000 53/279 52/184 34/45

MGH23 1000 56/251 56/251 56/251
10000 64/163 64/163 64/163

MGH26 1000 89/205 89/205 89/205
10000 83/107 83/107 83/107

Strictly convex 1 1000 5/6 5/6 5/6
10000 5/6 5/6 5/6

Strictly convex 2 1000 533/786 367/540 431/642
10000 2091/3205 1754/2592 1653/2653

Total CPU time (s) 114.15 97.95 96.78

We compared Algorithms 3.1 and 3.2 with the SPG2 algorithm. The numerical results
are reported in Table 1, where the test problems from [14] are numbered in the following
way: “MGH i” means the i-th problem in [14]. In addition, n denotes the dimension of the
problem, and I, F are number of iterations and number of function evaluations respectively.
The number of gradient evaluations is equal to that of iterations since no gradient evaluation
is required in the line search procedure.

From Table 1, we see that Algorithms 3.1 and 3.2 require the same numbers of function
evaluations and gradient evaluations as the SPG2 algorithm for some problems, whereas
for the other problems, both algorithms perform better that the SPG2 algorithm (except for
MGH22 with n = 100). The gains are sometimes significant, for example, for MGH18 with
n = 6 and “Strictly Convex 2” with n = 10000. The total CPU times needed by Algorithms
3.1 and 3.2 respectively are less than that needed by the SPG2 algorithm. Therefore our
numerical results suggest two efficient modified two-point stepsize gradient algorithms,
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which require few more storages and computations at every iteration but perform better
than the SPG2 algorithm.
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