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Abstract The Beale-Powell restart algorithm is highly useful for large-scale
unconstrained optimization. In this paper, we use an example to show that the
algorithm may fail to converge. The global convergence of a slightly modified
algorithm is proved.
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The standard conjugate gradient method for solving the unconstrained
optimization problem

min f(z), z € R" (0.1)
has the following form
Th41 = T+ apdg (0.2)
_ —Gk> for k = 1;
de = {0y s, w2 03)

where g, = V f(z), o is a steplength obtained by a one-dimensional line
search, and [ is a scalar. If G is chosen to be

e = llgell?/llgr-—1 1%, (0.4)

where and below || - || stands for the Euclidean norm, the corresponding
method is called as the Fletcher-Reeves ([1]) method, abbreviated to the
FR method. If B equals

BERY = gl ye 1 /lgk1]?, (0.5)
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where yr_1 = gr — gr—1, the corresponding method is the Polak-Ribiere-
Polyak method ([2, 3]), abbreviated to the PRP method. The FR, and PRP
methods are two of the well-known nonlinear conjugate gradient methods.
Some recent results on them can be seen in references [4] and [5].

It is proved in [6] that the standard conjugate gradient method with-
out restart is at most linearly convergent '. Practical conjugate gradient
algorithms therefore include a periodic restart strategy, namely, set

dp=—gr, fork=in+1,i=12,... (0.6)

If the line search is asymptotically exact, [8, 9] proved that this restart
strategy leads to the n—step quadratic convergence rate of the algorithms.
However, as pointed out by Powell [10], this restart strategy has the following
drawbacks: (a) the frequency of restart that should depend on the objective
function can not be simply set to n; (b) a restart along —g, abandons the
second derivative information that is found by the search along dj_1; and
(c) the immediate reduction in the objective function is usually less than
it would be without the restart. Therefore it seems more reasonable to use
—gk + Brdp_1 as the restart direction.

Beale [11] studied such a restart strategy, which uses —gx + Brdi_1 as
the restart direction and extends the non-restart direction from two terms
to three terms (see Step 3 in Algorithm 1) such that all search directions
are conjugate to one another if f is convex quadratic and the line search is
exact. McGuire and Wolfe? tried this algorithm, but disappointed numerical
results were reported. By introducing a new restart criterion, namely, (1.1),
Powell [10] overcame the difficulties that McGuire and Wolfe encountered
and obtained satisfactory numerical results. The current general subroutine
of the algorithm is VEO4 in Harwell subroutine library. In this paper, we
call it as the Beale-Powell restart algorithm.

From Algorithm 1 we see that the Beale-Powell restart algorithm only
needs to store six n-dimensional vectors. As a result, the Beale-Powell
restart algorithm is still available for solving (0.1) even if its dimension n
is very large. One large-scale practical problem that uses the Beale-Powell
restart algorithm to minimize can be seen in [13].

Despite its good numerical performances and adaptability for large-scale
unconstrained optimization, it is not clear yet whether or not the Beale-

117] showed that the convergence rate of the conjugate gradient method is exactly linear
for uniformly convex quadratics.

’see McGuire M F, Wolfe P. Evaluating a restart procedure for conjugate gradients.
Report RC-4382, IBM Research Center, Yorktown Heights, 1973



Powell restart algorithm converges theoretically. Ref. [12] considered general
three-term conjugate gradient method in which d; has the form

dr = =gk + Brdr—1 + Wdyp), tlp) <k <t(p+1) (0.7)

where ¢(p) stands for the p-th restart iteration, and established convergence
results for the general method under quite a few restrictions on the scalars
B and ~yk. In this paper, one of the examples in [14] is used to show that the
Beale-Powell restart algorithm may fail to converge. The global convergence
of a slightly modified algorithm is proved.

1. Beale-Powell restart algorithm

The Beale-Powell restart algorithm is described as follows.

Algorithm 1.

Step 1 Given z1 € R™; ¢1,¢2 € (0,1), ¢3 € (1,00), € € [0,1);
set dy = —g1; k=t=1;

Step 2 If k =1, go to Step 5;
If Kk —t>mn,set t =k — 1; otherwise if £ > 2 and

|9k—19x] > c1llgnl®, (1.1)
also set t =k — 1;
Step 3 If k >t + 1, compute di as follows and go to Step 4:
di, = =gk + Brdr—1 + Yedt, (1.2)
where [ and 7y, is defined by
B = 9iyk1/dk—1yk 1, (1.3)
o = Ghyr1/d 1y (1.4)

if k =t+1, compute dj by setting v = 0 in (1.2) and go to Step
9;

Step 4 If the following relation is not satisfied
—callgrll® < di g < —callgell?, (1.5)

then set t =k — 1, go to Step 3;



Step 5 Carry out a line search along dj, getting o;
set 11 = Tk + apdy;

Step 6 If ||gxr1]| < €, stop; otherwise set k =k + 1 and go to Step 2.

In the above algorithm, we still denote yx_1 = g — gx—1- Ref. [10]
suggested that {c;;i = 1,2,3} can take the values ¢; = 0.2, ¢; = 0.8, and
c3 = 1.2 respectively, and the line search in Step 5 satisfies the strong Wolfe
conditions, namely,

fmr) = fog +opdy) > —dongf d, (1.6)
l9(xr + ardp) dy| < —ogj dy, (1.7)

where 0 < d <o < 1.

2. Non-convergence example and a modified algorithm

In this section, we first show that Algorithm 1 may fail to converge.
Consider the n = 2,m = 8 example for the PRP method in [14]. The
example shows that if the steplength can be chosen to be any local minimizer
of the function

Op(a) = f(zk) + ady, a>0 (2.1)

then the PRP method can cycle near eight points without approaching a
solution point. Since this example is such that QkT+1dk = 0, we have that

df gr. = — gkl (2.2)

Besides it, direct calculations show that, when j — oo, {|g4Tj+ig4j+z-,1|/Hg4j+i||2;i =
1,2,3,4} tend to

1, 2, 1/3, 3/2
respectively, which implies that (1.1) is satisfied for all large &k provided that
the parameter in (1.1) is such that ¢; < 1/3. As a result, if Algorithm 1 is
used to minimize the function, a restart will be done at every iteration and
hence by (2.2),

Be=0"" =0 (2.3)
holds for all large k. Therefore Algorithm 1 produces the same iterates as
the PRP method does, which means that Algorithm 1 may fail to converge.

In the above example, due that ||dg| tends to infinity with k, we can
see that if B,}c) RP < 0 for some k, then the two consecutive directions dj_;
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and di tend to be opposite directions. In the case that G > 0 but v, < 0,
such a phenomenon may also happen and lead to the non-convergence of
the Beale-Powell restart algorithm.

Therefore, to establish convergence results for Algorithm 1, we restrict
the values of B and 7 to be nonnegative, namely, set

ﬁ]:_ = max{ﬁka 0}3 ’YI:_ = max{fyk, 0} (24)
In addition, we see that Algorithm 1 tests the sufficient descent condition

dbgr < —cal|gil? (2.5)

for non-restart iterates, but not for restart iterates. However, the restart
direction needs not be downhill if relations (2.5) is not satisfied. In this
case, since the restart direction has the form

di = —gk + B dy—1, (2.6)

and since B > 0, we can use the line search strategy in [5] to ensure (2.5)
for non-restart iterates. The basic idea of the line search strategy in [5] is
that, (a) find a point by the strong Wolfe line search, and (b) if at that
point (2.5) is not satisfied, more line search iterates will proceed by the one-
dimensional optimization algorithm in [15] until a new point satisfying (2.5)
is found.

A modified Beale-Powell restart algorithm is then given as follows.



Algorithm 2.

Step 1 Given z1 € R™; ¢1,¢2 € (0,1), ¢3 € (1,00), € € [0,1);
set di = —g1; k=t=1;

Step 2 If k =1, go to Step 5;
If k—t>n,set t =k — 1; otherwise if £ > 2 and

|9k-19%] > c1llgell?, (2.7)
alsoset t =k — 1;

Step 3 If k >t + 1, compute di as follows and go to Step 4:
di = —gk + B di—1 + v di, (2.8)

where ﬂ,j and ’y,j are computed by (2.4); otherwise, if k =¢+ 1,
compute dy, by setting v = 0 in (2.8) and go to Step 5;

Step 4 If the following relation is not satisfied

—c3llgrl|* < df gr < —callgkl?, (2.9)
then set t =k — 1, go to Step 3;

Step 5 Carry out a line search along dj, getting o;
if k = ¢t — 1, perform more line searches such that (2.5) is also
satisfied;
set Tk4+1 = Tk + akdk;

Step 6 If ||gkr1]| < €, stop; otherwise set k = k + 1 and go to Step 2.

3. Convergence of the modified Algorithm
We always suppose that the objective function satisfies

Assumption 1. (i) The level set L = {x € R" : f(z) < f(x1)} is
bounded; (ii) In some neighborhood N of L, f is continuously differentiable,
and its gradient is Lipschitz continuous, namely, there exists a constant
L > 0 such that

lg(z) —g(@)|| < Lllz — Z[|, Vz,Z €N, (3.1)



For any descent algorithm, due to the fact that f(zy) < f(zk_1) for all
k, we know that {zy} € L. This, with (i) in Assumption 1, implies that
there exists a positive constant B > 0 such that for all £ > 1,

lzell < B. (3.2)

Thus by (ii) in Assumption 1, there exists a positive constant 7 > 0 such
that for all k£ > 1,

gkl <7 (3.3)

The line search is supposed to satisfy the standard Wolfe conditions, namely,
(1.6) and

9(wx + ardp)” > ogi dy, (3.4)

where also 0 < § < o < 1. The following result was obtained in [16, 17, 18].

Lemma A Suppose that x1 is a starting point for which Assumption 1
is satisfied. Consider any method in the form (0.2) where dy, is a descent
direction and «y, satisfies (1.6) and (3.4). Then

S 0. de)® (3.5)

Ak

In the following, we will prove the global convergence of Algorithm 2 by
contradiction. It should be noted that the proof here follows the same line
as but is more difficult than that for the PRP method in [5]. Assume that

lim inf ||gx || # 0. (3.6)
k—o0
Then there exists a positive constant v > 0 such that
ES (3.7)
holds for all £ > 1. In this case, it follows by Lemma A and (2.5) that
> % < oo. (3.8)
2 Tl
Lemma 3.1 Suppose that u,v € R" are two vectors satisfying ||ul| = ||v|| =
1. If
w=u—06v (3.9)

holds some positive number 6 > 0, then we have that

lu — v < 2[|wl. (3.10)



Proof It follows from the definitions of u and v that
u—v|? =2 —2uTw. (3.11)
Besides it, we have by (3.9) and € > 0 that

dlwl> = 401 —20u"v + 6%
> min4(l — 2nulv +n?)
n=0
{4(1 - (uT)?), wlv>0;
4, ulv < 0.

(3.12)
Combining the above relations, we know that (3.10) holds. O

Lemma 3.2 Suppose that x1 is a starting point for which Assumption 1 is
satisfied. Consider Algorithm 2, where e = 0, and where the line search con-
ditions are (1.6) and (3.4). Then if (3.7) holds, d # 0. Further, denoting
ug = di/||dk||, we have that

Z |, — up_1]|* < oo. (3.13)
k>2

Proof If (3.7) holds, we clearly have that dj # 0 for otherwise we have
from (2.5) that ||gk|| = 0. Hence uy is well-defined. Assume that ¢, (f > t)
are any consecutive restart iterates. Since

div1 = —gep1 + B dis (3.14)
defining
—9k Bi lldi
p= 2 and oy = e IOk (3.15)
|| ||
we have that
U] = Tg41 + 5t+1ut. (316)
Noting the facts that [|us1|| = [|ue]| = 1 and that §;.1 > 0, we get from
Lemma 3.1 and (3.3) that
2y
o1 — wl] < 2o < —2— (3.17)
[rzesy|
If£> ¢+ 2, then
dir2 = —giva + B odi1 + v 2ds- (3.18)
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Thus if we define

_ —Gt+2 + di g1l

T = — —(u —u 3.19
2= o]l TP e ) (3.19)
and
< dy| ldgs 1|
S0 = B “ + vt , 3.20
t+2 /8t+2 ||dt+2 “ 7t+2 ||dt+2 “ ( )
(3.18) can be written as
Utpo = Tyy2 + Oppoty, (3.21)
which, with Lemma 3.1, implies that
uro — uell < 2([7eq2l]- (3.22)

In this case, applying (3.3), (3.7), (3.4), (2.9) and (2.5) in the definitions of
ﬂ,j and 'y,j, we deduce that

Bi<b, < (3.23)

holds for constant b = 25%/(1 —c2)y2. Hence by (3.22), (3.19), (3.17), (3.23)
and (3.3), it follows that

2llgesall | 2675 lldiial

w2 —wl] < (lwpr — we])

ldi+2 |l lde+2]l

= gl | 4B o ldialllirel

T ldee|] lde+2 |l
2 + 4b)y
ldi+2 |l

Further, by induction, it can be proved that
2[1 — (2b)* ¥
s — e < L= (3.25)

1-20  |ldesil]

holds for any 0 < i <#—t¢. From (3.25) and the fact that £ —¢ < n, we have

s — w) < ———) W1<i<f—t, (3.26)
|yl



where ¢ = 2[1 — (2b)"]7/(1 — 2b) is constant. (3.26) also holds for i = 0. For
any k, let £ be the last restart iterate such that ¢ < k, we have that

lupsr —urll < |luggr — ugll + [lug — ugl]
C C
< _° L c (3.27)
ldrsill  lldll

It follows that

> lggr — ugl? <2(Z +Z||d HQ)_ Z |2, (3.28)

E>1 E>1 k11117 E>1 k>1
from which and (3.8) we know that (3.13) holds. O
Now, we denote Z* to be the set of all positive integers and define
Kpy={i€Z" k<i<k+l-1/|sll = lwiz1 —zil > A}.  (3.29)
In addition, we use |IC,;\J| to stand for the number of all elements in IC,;\J

Lemma 3.3 Suppose that x1 is a starting point for which Assumption 1
is satisfied. Consider Algorithm 2, where ¢ = 0, and where the line search
conditions are (1.6) and (3.4). Then if (3.7) holds, there exist a constant
A > 0 and an integer k, such that for anyl € Z™,

l
Kkl > 5 (3.30)
Proof (3.8) implies that
k|| = o0, k — oo, (3.31)

which with (3.3) means that there exists an integer ko such that

1
lgell < S dill, for all k> ko. (3.32)
Let t,t (¢t >t > ko) to be any consecutive restart iterates and denote

B = max{B} ;7 g, 7} (3.33)
Then we have by (3.23) that

Bre1 < D. (3.34)
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In addition, if we denote

7 (l—a)y’ s

4Ly Ly

A = min{

(3.35)

where L is the Lipschitz constant in (3.1), then when [|s¢|]| < A, we have by
(3.1), (3.3) and (3.7) that

. LM 1
< —< —. .
Pri1 < AT (3.36)

Now, we prove by induction that for all 1 < <t —t,

2[1 — (2b)"] -

sl < 225 ) (3.37)
1—-2b

In fact, for ¢+ = 1, we have from (3.14) that
des1 ]| < Ngesall + B lidell- (3.38)

The above inequality, (3.32) and the definition of Biy1 imply that (3.37)
holds for i = 1. Suppose that (3.37) is true for some i satisfying 1 <17 < t—t.
Then by the definition of dy1;11, (3.32), (3.23), (3.33) and the induction
supposition, we have that

N

ldviill < lNgerirrll + Biripa ldesill +viipsllde
1 1—(2b) ~
< §||dt+i+1!| + <2bﬁﬁt+1 +’Yt++z'+1> el
1— (2b)*!

o B lldy, (3.39)

1
< §||dt+i+1|| +

which implies that (3.37) is also true for ¢ + 1. Thus by induction, (3.37)
holds for all 1 <4 <t —t.

Assume without loss of generality that b > 3/2. In this case, it follows
by (3.37) that

de+ill < (26)" Be [lde (3.40)

holds for all 1 < ¢ < t—t. For convenience, we also assume that kg is exactly
a restart iterate. Denote

Thos = {t: ko <t <ko+1—1,tis a restart iterate}. (3.41)
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Then it follows from (3.40) that for any [ > 1,

ldkoall < (20)' ( I1 5t+1> 1ol (3.42)

€Tk 1

We now proceed by contradiction and assume that for any A > 0 and any
integer k£ > 1, there exists an integer [ € ZT, such that
l

K<
|k,l—2

(3.43)

In this case, since k is arbitrary, there exists a sequence [(j) — oo, such that

1(j .
iy 1y < % Vi=1,2,... (3.44)

For any fixed j, if i € [ko, ko + 1(j) — 1] but i & Tj, ;(;), we claim that
[sill > A (3.45)

This is because, if ¢ ¢ T}, ;(j), namely, if i is a non-restart iterate, Algorithm
2 satisfies

1971911 < erllgisal®. (3.46)

Hence if ||s;|| < A and if b is so large that A < %, we get by (3.35),

(3.1), (3.3), (3.7) and the definition of A that

|9iT+19i| = |||9i+1“2 - giT+1(9z'+1 - gi)|
> lgirall® — LAy
> lginall” = (1 —e1)y®
> allgivall, (3.47)

which contradicts (3.46). Thus (3.45) holds for all i ¢ T}, ;(;)- Consequently,
if we denote

Choi) = 10 € Tio () * lIsill < A}, (3.48)
we have by (3.44) and (3.45) that
A Ly
P = 1Trouil 2 % (3.49)
Furthermore, it is clear that
A .
q = |Tho )| < 10)- (3.50)

12



In this case, if in relation (3.42), we use (3.36) when ||s;|| > A and (3.34)
when ||s;|| < A, then

ldkoagiyll - < (20)"DBIP(46%) P |ldy, || = 29 2HDH gy |

< (20997l || < lld |, (3.51)

where (3.49) and (3.50) are also used. By letting 7 — oo in (3.51), we obtain
a contradiction to (3.31). Therefore (3.30) must hold. O

The following is our main theorem of this paper.

Theorem 1 Suppose that z1 is a starting point for which Assumption 1
is satisfied. Consider Algorithm 2, where ¢ = 0, and where the line search
conditions are (1.6) and (3.4). Then the following convergence relation holds

liminf ||gx|| = 0. (3.52)
k—o00

Proof We proceed by contradiction and assume that (3.52) is not satis-
fied. Then (3.7) holds and hence the conditions of Lemmas 3.2 and 3.3 are
satisfied. For any integers [, k, we write

k+l-1
Tkl — Tk = Z BRI

i=k

k+l-1 k+l-1

= > sillue + D llsill(ui — ug). (3.53)
i=k i=k

Taking norms in (3.53) and using (3.2), we get that

k+1—1 k+1—1
S sl <2B+ S fsilllus — gl (3.54)
i=k i=k

Define A by (3.35) and [ = {8B/A}, where {T'} stands for the smallest integer
not less than 7. Lemma 2 implies that

||u,~_|_1 — Uz“ — 0, 7 — 0. (3.55)

Then if kg is so large that
1
a1 — w5l < o (3.56)
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for all kg < j < ko +1—1, we have that

ko+i—1

1 1
kg i — uroll < Y Mg —uyll < = < 5 (3.57)
: 2[ 2
J=ko
for all 1 <14 <. Using (3.54), (3.2), (3.57) and Lemma 3, we obtain
1 ot Ay Al

So I < 8B/A, which contradicts the definition of I. Therefore (3.52) must
hold. O
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