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Abstract: It is proved that the new conjugate gradient method proposed by
Dai and Yuan [5] produces a descent direction at each iteration for strictly
convex problems. Consequently, the global convergence of the method can
be established if the Goldstein line search is used. Further, if the function
is uniformly convex, two Armijo-type line searches, the first of which is the
standard Armijo line search, are also shown to guarantee the convergence of
the new method.
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1 INTRODUCTION

Consider the unconstrained optimization problem
min f(z), =z € R", (1.1)

where f is smooth and its gradient g is available. Conjugate gradient methods
for solving (1.1) are iterative methods of the form

Tyl = T+ agdy, (12)
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_ —9k, for k = 1;
e = { —gr + Brde—1,  for k>2, (1.3)

where aj > 0 is a steplength obtained by a 1-dimensional line search and Sy, is
a scalar. The choice of G should be such that (1.2)-(1.3) reduces to the linear
conjugate gradient method in the case when f is a strictly convex quadratic
and aj, is the exact 1-dimensional minimizer. Well-known formulas for 3; are
called the Fletcher-Reeves [10], Polak-Ribiere-Polyak [23; 24], and Hestenes-
Stiefel [15] formulas. Their convergence properties have been reported by many
authors, including [2; 6; 7; 11; 14; 18; 22; 27]. Nice reviews of the conjugate
gradient method can be seen in [11] and [20].

In [5], a new nonlinear conjugate gradient method is presented, which has
the following formula for (3y:

0 = lgwll®/di—1yr-1- (1.4)

It was shown in [5] that such a method can guarantee the descent property of
each direction provided the steplength satisfies the Wolfe conditions (see [26]),
namely,

6akg{dk7 (15)
Ug{dk)

f@e + owdr) — fzr) <

9@y + ondi) Ty >
where 0 < § < o < 1. In this case, the global convergence of the method was
also proved in [5] under some mild assumptions on the objective function. More
exactly, we assume that f satisfies

Assumption 1.1 (1) f is bounded below in the level set L = {x € R": f(x) <
f(z1)}; (2) In some neighborhood N of L, f is continuously differentiable, and
its gradient g is Lipschitz continuous, namely, there exists a constant L > 0
such that

lg(x) — gl < Lllz —yll, for any z, y € N. (1.7)

In addition, based on this method, an algorithm using the Wolfe line search
is explored in [5], which performs much better than the Polak-Ribieére-Polyak
method on the given 18 unconstrained optimization problems in [19].

In this paper, we will study the convergence properties of the new method
for convex problems. We will prove that, without any line searches, the new
method can also guarantee a descent direction at each iteration for strictly
convex functions (see Theorem 2.1). Consequently, the global-convergence of
the method is proved if the steplength is chosen by the Goldstein line search.
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Further, if the function is uniformly convex, two Armijo-type line searches, the
first of which is the standard Armijo line search, are also shown to guarantee
the convergence of the new method (see Theorems 2.3 and 2.4). As a marginal
note, the global and superlinear convergence of the BFGS method using the
second Armijo-type line search for uniformly convex problems is also referred
to (see §3). Some other remarks are also given in the last section.

2 MAIN RESULTS

In this section, we assume that f satisfies Assumption 1.1 and £ is a convex
set. In this case, we say that f is convex on L if

(9(z) — g(y)) " (x —y) > 0; for any x,y € L; (2.1)
and that f is strictly convex on L if
(9(z) —g(y) (@ —y) >0, foranywz,yecLl, §#1. (2.2)

We also say that f is uniformly convex on L if there exists a constant n > 0
such that

(9(x) —gw) (@ —y) > nllz—y|*, forallz,ye L. (2.3)

Note that f has a unique minimizer on £ if f is uniformly convex, whereas there
is possibly no any minimizer of f on £ if f is only a strictly convex function.
To show this, a 1-dimensional example can be drawn from [16], which is

f(xy=e", z€R. (2.4)
In the following theorems, we always assume that
llgrll # 0, for all &, (2.5)
for otherwise, a stationary point has already been found.

Theorem 2.1 Suppose that x1 is a starting point for which Assumption 1.1
holds. Consider the method (1.2)—(1.3) where By is given by (1.4). Then if f
is strictly convex on L, we have that for all k > 1,

gld; <0. (2.6)

Proof. (2.6) clearly holds due to d; = —g;. Suppose that (2.6) holds for some
k — 1. Since f is strictly convex, we have from (1.2) and (2.2) that

di_yyk—1 > 0. (2.7)
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Multiplying (1.3) with g, and applying (1.4), we obtain

llgrl?

Ty Ik, (28)
k—1Jrk—

gidy =

which with the induction supposition and (2.7) implies that gfdj, < 0. Thus
by induction, (2.6) holds for all k > 1. O

Thus we have proved that the new method without any line searches can pro-
vide a descent direction for strictly convex problems unless the gradient norm
at the current point is zero. We now conclude that if, further, the steplength
ay, is chosen by the Goldstein line search, there exists at least a subsequence
of {||gk||} generated by the new method converges to zero. The Goldstein line
search, first presented by Goldstein [12], accepts a steplength ay > 0 if it
satisfies

Srapgrd < fan + ardy) — fr < Sraugi di, (2.9)

where 0 < 02 < 1/2< 4§ < 1.
Theorem 2.2 Suppose that x1 is a starting point for which Assumption 1.1
holds. Consider the method (1.2)—(1.3) where By is given by (1.4). Then if f

is strictly convex on L and if ay, is chosen by the Goldstein line search, we have
that lim inf ||gx|| = 0.

Proof. First, it follows by the mean value theorem and (1.7) that
1
f(l‘k + Ckkdk) —fr = / g(:rk + takdk)T(akdk)dt
0
1
= gl dy + ak/ [g(xx, + tardy) — gi] " dydt
0
1
< apgldp + §La%||dk||2. (2.10)

The above relation and the first inequality in (2.9) imply that

|93 di|
ap >c¢ , (2.11)
ld|I?
where ¢ = @. Because f is bounded below, we have from (2.9) that
Zak|g£dk| < 00. (2.12)

E>1
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Thus by (2.11) and (2.12), it follows that

(g dr)? o
> e <> (2.13)

k>1

We now proceed by contradiction and assume that lim infy_ ||gk|| # 0. Then
there exists a constant 7 > 0 such that for all £ > 1,

gkl > T (2.14)

Noting that the fraction in (2.8) is just the formula (1.4), we also have that

T
9k di,
By = — Lk 2.15
g gg;ldkfl ( )
(1.3) can be re-written as
di, + gk = Brdi—1- (2.16)

Squaring both sides of the above equation, we get that
ldll* = Billdk—11” — 291 di — gkl (2.17)
Dividing both sides by (g{ d;)? and applying (2.15),

el ldal? 2 el 219
(9ide)®  (giyde-1)®  gide  (gid)?
On the other hand, if we denote
T
9k dr—1
L1 = : 2.19
ht gg;ldkfl ( )
(2.8) is equal to
1
T 2
dy = ——— . 2.20
L (—y llg. (2:20)
Substituting this into (2.18), we can get that
di | di—1]|? 1-1;
[ S G et Y o)
(e dr)?  (9p—1dk-1) 19l
Summing this expression and noting that d; = —g;, we obtain

(g7 di)? ||gz||2
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Then we have from (2.22) and (2.14) that

ldell> _ &
6L de? = 7 22
which implies that
(g3 di)?
> TEATER (2.24)

x~
Vv
-

Thus (2.13) and (2.24) give a contradiction, which concludes the proof. O
The following theorem is given to the standard Armijo line search. This line
search, first studied by Armijo [1], is to determine the smallest integer m > 0
such that, if one defines
ap =A™, (2.25)

then
f(:L’k + Ckkdk) — fk < 6akngdk. (226)

Here A and § are any positive parameters less than 1.

Theorem 2.3 Suppose that x1 is a starting point for which Assumption 1.1
holds. Consider the method (1.2)—(1.3) where By is given by (1.4). Then if f
is uniformly convex on L and if oy, is chosen by the Armijo line search, there
exists a constant ¢y > 0 such that for all k > 1,

gidi < —c1llgel”. (2.27)

((2.27) is called in [11] the sufficient descent condition holds.) Further, we
have that lim ||gx|| = 0.

Proof. It follows from Theorem 2.1 that (2.6) holds for all £ > 1. Similarly
to (2.10), we can prove by the mean value theorem and (2.3) that

1
floe + awdy) — fxr) > argy di + 577ai||dk||2- (2.28)
Then from (2.6), (2.26) and (2.28), we get that

lgi di|
lldel?’

ap < e (2.29)

where cp = 2(1;5) is constant. Besides it, the Lipschitz condition (1.7) gives

1941k — gk di| < Nlgrsr — gulllldall < culld]]*. (2.30)
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Thus by (2.6) and (2.30),

olrch = gde P

ly—1= >
g di g di

> —Les. (2.31)

Since we also have that I, —1 < 0 due to (2.6) and (2.3), it follows from this,
(2.31) and (2.20) that (2.27) holds with ¢; = 7.

We now proceed by contradiction and assume that (2.14) always holds for
some constant 7 > 0. Under Assumption 1.1 on f, it can be shown (for example,

see [3]) that if the steplength «y is chosen by the Armijo line search, either

ap =1 (2.32)
or T
9 di,

ay > c3 (2.33)
i ll?

holds for every k, where c¢3 > 0 is some constant. If there exists an infinite
subsequence, {k;} say, such that (2.32) holds. Then summing (2.26) over the
iterates and noting that f is bounded below, we have that

lim g{ dy, = 0. (2.34)
1— 00

This, (2.14) and (2.27) clearly give a contradiction. Thus (2.33) must hold for
all sufficient large k. In this case, similarly to the proof of Theorem 2.2, we
have that (2.24) and (2.13) hold, which contradict each other. Therefore we
must have lim ||gg]| =0. O

In the following, we turn our attention to another Armijo-type line search
and re-establish the global convergence of the new method. Given any param-
eters A € (0,1) and § > 0, this line search is to determine the smallest integer
m > 0 such that, if one defines

ap =A™, (2.35)

then
f(l‘k + Clkdk) — fk < —6ai||dk||2 (236)

Such a line search is a simplified version of those proposed in [17] and [13], in
connection with no-derivative methods for unconstrained optimization. Note
also that based on the line searches proposed in [17] and [13], a new line search
technique was designed in [14] which guarantees the global convergence of the
Polak-Ribiere-Polyak conjugate gradient method. For the clarity in notation,
we call the line search (2.35)—(2.36) as the second Armijo-type line search.
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Theorem 2.4 Suppose that x1 is a starting point for which Assumption 1.1
holds. Consider the method (1.2)—(1.8) where By is given by (1.4). If [ is
uniformly convex on L and if ay is chosen by the second Armijo-type line
search, then (2.27) holds for some constant ¢; > 0 and all k > 1. Further, we
have that lim ||gx|| = 0.

Proof. It follows from (2.28) and (2.36) that

1 |gfdyl
= in+ 06 ldil?

Q (2.37)

Therefore, similar to the proof of Theorem 2.3, we can show that (2.27) holds
for some constant ¢; > 0.
Because ||gi|| is bounded, (2.27) implies that

lldkll > c1llgrll- (2.38)

If a < 1, the line search implies that

fxr + X agdy) — fr > —0A"2ai||dg]|?. (2.39)
On the other hand, similar to (2.10), we have that
1
flag + X ondi) = fio < X angi di + §LA‘2ailldkll2- (2.40)
Combining (2.39) and (2.40), we can see that (2.33) holds with ¢3 = %.
Thus it follows from (2.36), (2.38) and (2.27) that
Tdn 2
f(xr) = f(zr41) > min |:6||dk||2)6cg (ﬂ’;kﬁg ]
Tdn 2
> min {6c%||gk||2, 52 L9 ’”3 } . (2.41)
el
Therefore, if the theorem is not true, there exists a constant ¢4 > 0 such that
Td 2
f(@k) — f(Th41) > camin {L (ﬂ’ékﬁg ] (2.42)
for all k. Because f(zy) is bounded below, we have that
Td 2
3 (g’zl ’“3 < 0. (2.43)
2 ldi]

The above inequality and the proof of Theorem 2.2 implies that lim ||gx|| = 0.
This completes our proof. O
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3 SOME REMARKS

The Goldstein line search and the Armijo line search were designed respectively
by Goldstein [12] and Armijo [1] to ensure the global convergence of the steepest
descent method. Under these line searches, it was shown in [25] and [3] that
there are the global and superlinear convergences of the BFGS method for
uniformly convex problems. One can see without difficulty that these results
also apply to the second Armijo-type line search (2.35)—(2.36). For the latter
case, by [3], it suffices to note that if ay = 1 for some k, we have from this and
(2.36) that the relation (3.9) in [3] holds with n = §(3') 2.

Assume that the line search conditions are (1.2)-(1.3). It was shown in
[4] and [7] that if the parameter o € (0,1) is specifically chosen, the Fletcher-
Reeves method and the Polak-Ribiére-Polyak method may fail due to producing
an uphill direction even if f is a 1-dimensional function in the form

t
f(z) = 53:2, r € RY, (3.1
where ¢ > 0 is some constant. In [9], another conjugate gradient method was
proposed which can provide the descent property if the steplength satisfies
(1.2)—(1.3) in which o € (0,1) is any. This method, called conjugate descent
method, has the following formula for 3y,

gD = ||gk||2/(_d£gk)- (3.2)

However, the convergence of the conjugate descent method can only be obtained
(see [8]) under the line search conditions (1.5) and

ogidr < g(ar, + ardy) d, <0, (3.3)

where also 0 < § < o < 1. For any constant g; > 0, a convex example is given
in [8] which shows that the conjugate descent method needs not converge if the
line search conditions are (1.5) and
O’g{dk < g(:rk + Ckkdk)Tdk < —Ulggdk. (34)
The new method has the nice property of providing a descent search direc-
tion for any nonzero steplength provided that the objective function is strictly
convex. For general functions, one can show that either de or dPY is a de-
scent direction, where d” and dPY are search directions generated by the
conjugate descent method and the new method respectively. Therefore it is

possible to construct an ad hoc efficient method by combining the conjugate
descent method and the new method.
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