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Abstract

This paper studies the three-term conjugate gradient method for unconstrained opti-
mization. The method includes the classical (two-term) conjugate gradient method and the
famous Beale-Powell restart algorithm as its special forms. Some mild conditions are given
in this paper, which ensure the global convergence of general three-term conjugate gradient
methods.
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1. Introduction

To solve the following optimization problem

min f(x), x ∈ Rn, (1.1)

we consider the iterative method
xk+1 = xk + αkdk, (1.2)

where x1 is given, dk is a search direction, and αk is a steplength. In the classical conjugate
gradient method, the search direction dk (k ≥ 2) is defined by the current negative gradient −gk

and the previous search direction dk−1, namely,

dk = −gk + βkdk−1, (1.3)

where d1 = −g1, and βk is a scalar. Two famous formulae for βk are called the Fletcher-Reeves
(FR), and the Polak-Ribiére-Polyak (PRP) formulae (see [6; 9, 10]), and they are given by

βFR
k = ‖gk‖2/‖gk−1‖2 (1.4)
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and
βPRP

k = gT
k (gk − gk−1)/‖gk−1‖2, (1.5)

respectively. Here ‖ · || stands for the two norm. In [1], Beale proposed a three-term conjugate
gradient method, in which the search direction dk has the form

dk = −gk + βkdk−1 + γkdt, (1.6)

where dt is a restart direction. Powell[11] established efficient restart strategy for this method
and obtained good numerical results. In this paper, we will study the following general three-
term conjugate gradient method:

dk = −gk + βkdk−1 + γkdt(p), (1.7)

where t(p) is the number of the p-th restart iteration satisfying t(p) < k ≤ t(p + 1) ≤ +∞. It is
obvious that the method (1.7) includes the classical (two-term) conjugate gradient method and
the Beale-Powell restart algorithm as its special forms.

References [3] and [2] have analyzed the global convergence properties of general two-term
conjugate gradient methods. [5] extended [8]’s convergence result on the FR method to general
three-term conjugate gradient methods. [4] pointed out that the Beale-Powell restart algorithm
needs not converge for general objective functions. However, with slight modifications, the Beale-
Powell restart algorithm is proved to be globally convergent. In this paper, we will give some
mild conditions which ensure the global convergence of general three-term conjugate gradient
methods.

2. Preliminaries

Throughout this paper, we assume that

gk 6= 0, for all k ≥ 1, (2.1)

for otherwise a stationary point has been found. We also assume that the objective function
satisfies the following assumption.

Assumption 2.1 (i) The level set L = {x ∈ <n : f(x) ≤ f(x1)} is bounded; (ii) In some
neighborhood N of L, f is differentiable and its gradient g is Lipschitz continuous, namely,
there exists a constant L > 0 such that

‖g(x)− g(x̃)‖ ≤ L‖x− x̃ ‖, for all x, x̃ ∈ N . (2.2)

The steplength αk in (1.2) is often computed by mean of a one-dimensional line search. The
standard Wolfe line search ([14]) is to compute αk such that

f(xk)− f(xk + αkdk) ≥ −δαkg
T
k dk, (2.3)

g(xk + αkdk)T dk ≥ σgT
k dk, (2.4)

where 0 < δ < σ < 1. For the standard Wolfe line search, we state the following lemma, which
was essentially proved by Wolfe[14, 15] and Zoutendijk[16].
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Lemma 2.2 Suppose that x1 is a starting point for which Assumption 2.1 holds. Consider the
iterative method (1.2), where dk is a descent direction and αk satisfies (2.3)–(2.4). Then we
have that ∑

k≥1

(gT
k dk)2

‖dk‖2
< ∞. (2.5)

In many implementations and theoretical analyses of conjugate gradient methods, the steplength
αk is often obtained by the strong Wolfe line search. The strong Wolfe line search is to compute
αk satisfying (2.3) and

|g(xk + αkdk)T dk| ≤ −σgT
k dk, (2.6)

where also 0 < δ < σ < 1. Relation (2.6) is stronger than (2.4), which implies that Lemma 2.2
also holds for the strong Wolfe line search. In this paper, we will study the global convergence
of the method (1.7) using strong Wolfe line searches.

In the analyses in the coming sections, we still need the following lemma. One can see [13]
for its proof.

Lemma 2.3 Suppose that {ai} and {bi} are two positive sequences. If
∑

k≥1

ak = ∞, (2.7)

and there exist two constants c1 and c2 such that for all k ≥ 1,

bk ≤ c1 + c2

k∑

i=1

ai, (2.8)

then we have that ∑

k≥1

ak

bk
= ∞. (2.9)

3. Convergence of the method (1.7)

In the following, we will first analyze the general three-term conjugate gradient method using
strong Wolfe line searches.

Theorem 3.1 Suppose that x1 is a starting point for which Assumption 2.1 holds. Consider
the general three-term conjugate gradient method (1.2) and (1.7), where the steplength αk is
such that (2.3), (2.6), and the descent condition gT

k+1dk+1 < 0 hold. Assume that there exist
two constants σ1, σ2 > 0 such that the following relations hold

‖γkdt(p)‖ ≤ σ1‖gk‖, (3.1)

|γkg
T
k dt(p)| ≤ σ2|βkg

T
k dk−1|. (3.2)

Then if
∑

k≥1

‖gk‖t

‖dk‖2
= ∞ (3.3)

holds for some constant t ∈ [0, 4], the method converges in the sense that

lim inf
k→∞

‖gk‖ = 0. (3.4)
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Proof ¿From (1.7), the triangle inequality and (3.1), we have that

‖dk‖ ≥ ‖βkdk−1‖ − ‖ − gk + γkdt(p)‖
≥ |βk|‖dk−1‖ − (1 + σ1)‖gk‖. (3.5)

Multiplying (3.5) with gk and using (3.2) and (2.6), we get that

‖gk‖2 = −gT
k dk + βkg

T
k dk−1 + γkg

T
k dt(p)

≤ |gT
k dk|+ (1 + σ2)|βkg

T
k dk−1|

≤ |gT
k dk|+ c|βkg

T
k−1dk−1|, (3.6)

where c = σ(1 + σ2). Define

τk =
|gT

k dk|
‖dk‖ . (3.7)

It follows by (3.6) and (3.5) that

‖gk‖2

‖dk‖ ≤ τk + cτk−1
|βk|‖dk−1‖
‖dk‖

≤ τk + cτk−1

[
1 + (1 + σ1)

‖gk‖
‖dk‖

]
. (3.8)

Thus we have that
‖gk‖2

‖dk‖
[
1− c(1 + σ1)‖gk‖−1τk−1

]
≤ τk + cτk−1. (3.9)

On the other hand, by the definition (3.7) of τk, (2.5) can be rewritten as
∑

k≥1

τ2
k < ∞, (3.10)

which shows that
lim

k→∞
τk = 0. (3.11)

Now we suppose that (3.4) does not hold and there exists a constant γ > 0 such that

‖gk‖ ≥ γ, for all k ≥ 1. (3.12)

Then by this and (3.11), there must exist some constant k0 such that

c(1 + σ1)τk−1 ≤ 1
2
‖gk‖ (3.13)

holds for all k ≥ k0. It follows from (3.9), (3.13) and (3.10) that

∑

k≥k0+1

‖gk‖4

‖dk‖2
≤ 4

∑

k≥k0+1

(τk + cτk−1)2 ≤ 8(1 + c2)
∑

k≥k0

τ2
k < ∞. (3.14)

The above relation contradicts (3.3), since t ∈ [0, 4] and by (3.12), ‖gk‖ is bounded away from
zero. The contradiction shows the truth of (3.4). 2
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It is easy to see that the assumptions used in the above theorem are weaker than those in
[5]. If the constant σ1 in (3.1) satisfies

σ1 < 1, (3.15)

then instead of (3.2), we can show by (1.7), (2.6) and (3.15) that

(1− σ1)‖gk‖2 ≤ |gT
k dk|+ σ|βkg

T
k−1dk−1|. (3.16)

Thus Theorem 3.1 is also true if condition (3.2) is replaced by (3.15).

Theorem 3.2 Suppose that x1 is a starting point for which Assumption 2.1 holds. Consider
the general three-term conjugate gradient method (1.2) and (1.7), where the steplength αk is
such that (2.3), (2.6), and the descent condition gT

k+1dk+1 < 0 hold. If relations (3.1), (3.3) and
(3.15) hold, where t ∈ [0, 4], the method converges in the sense that (3.4) is true.

By Theorem 3.1, we can prove the following convergence result.

Corollary 3.3 Suppose that x1 is a starting point for which Assumption 2.1 holds. Consider
the general three-term conjugate gradient method (1.2) and (1.7), where the steplength αk is
such that (2.3), (2.6), and the descent condition gT

k+1dk+1 < 0 hold. If relations (3.1), (3.15)
and ∑

k≥1

|gT
k dk|r
‖dk‖2

= ∞ (3.17)

hold, where r ∈ [0, 2] is constant, the method converges in the sense that (3.4) is true.

Proof For any r ∈ [0, 2], if |gT
k dk| > 1, then |gT

k dk|r ≤ (gT
k dk)2. Thus we always have that

|gT
k dk|r ≤ 1 + (gT

k dk)2, (3.18)

which implies that
∑

k≥1

1
‖dk‖2

≥
∑

k≥1

|gT
k dk|r
‖dk‖2

−
∑

k≥1

|gT
k dk|2
‖dk‖2

. (3.19)

The above relation, Lemma 2.2 and (3.17) show that (3.3) holds with t = 0. Therefore by
Theorem 3.1, (3.4) is true. 2

Using Theorem 3.1 and Corollary 3.3, we now are able to give a sufficient condition that
ensures the global convergence of the general three-term conjugate gradient method using strong
Wolfe line searches. The condition concerns about the scalar βk only.

Theorem 3.4 Suppose that x1 is a starting point for which Assumption 2.1 holds. Consider the
general three-term conjugate gradient method (1.2) and (1.7), where the steplength αk is such
that (2.3), (2.6), and the descent condition gT

k+1dk+1 < 0 hold. Assume that (3.1), (3.2) and

βkγkd
T
k dt(p) ≤ 0 (3.20)

holds for all p ≥ 1 and t(p) < k ≤ t(p+1). If there exist an infinite sequence {ki} ⊂ {1, 2, 3, . . .}
and a constant c1 > 0 such that

ki∏

j=l

|βj | ≤ c1 (3.21)

holds for all i ≥ 1 and l ≤ ki, the method converges in the sense that (3.4) is true.
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Proof We rewrite (1.7) as
dk + gk = βkdk−1 + γkdt(p). (3.22)

Taking norms and using (3.1) and (3.20), we can get

‖dk‖2 ≤ (σ2
1 − 1)‖gk‖2 − 2gT

k dk + β2
k‖dk−1‖2. (3.23)

The recursion of (3.23) yields

‖dk‖2 ≤ (σ2
1 − 1)‖gk‖2 − 2gT

k dk +
k∑

j=2

k∏

i=j

β2
i [(σ2

1 − 1)‖gj‖2 − 2gT
j dj ], (3.24)

which with (3.21) implies that

‖dki‖2 ≤ (1 + c2
1)

ki∑

i=1

[(σ2
1 − 1)‖gi‖2 − 2gT

i di]. (3.25)

If
lim inf
i→∞

‖dki‖ < ∞, (3.26)

then (3.3) holds with t = 0 and hence (3.4) follows Theorem 3.1. Thus we can assume

lim
i→∞

‖dki‖ = ∞. (3.27)

In this case, we can prove by (3.25) and Lemma 2.3 that

lim
i→∞

ki∑

j=1

(σ2
1 − 1)‖gj‖2 − 2gT

j dj

‖dj‖2
= ∞. (3.28)

Therefore either (3.3) holds with t = 2, or (3.17) holds with r = 1. By Theorem 3.1 and
Corollary 3.3, we must have (3.4). 2

In the above results, we do not make any assumptions on the restarts of the three-term
conjugate gradient method. In the following, we will consider the method under certain restart
criterions. Firstly, because of the quadratic termination of the conjugate gradient method, we
assume that the method will be restarted at most every n steps, where n is the dimension of
the objection function. In other words, we assume

t(p + 1)− t(p) ≤ n. (3.29)

Secondly, in the case when the previous search direction dk−1 tends to be opposite to the restart
direction dt(p), it is reasonable to discard the second derivative information that is found along
dt(p). More exactly, we also restart the method if the following relation does not hold,

dT
k−1dt(p)

‖dk−1‖‖dt(p)‖
≥ −c2, (3.30)

where c2 ∈ (0, 1) is constant. In addition, if the following relation is not true,

|gT
k dt(p)| ≤ σ3|gT

t(p)dt(p)|, (3.31)

where σ3 is some positive constant, we also restart the method. For the restart criterion given
as above, we can prove the following theorem.
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Theorem 3.5 Suppose that x1 is a starting point for which Assumption 2.1 holds. Consider
the general three-term conjugate gradient method (1.2) and (1.7), where the steplength αk is
such that (2.3), (2.6), and the descent condition gT

k+1dk+1 < 0 hold. Assume that t(p) satisfies
(3.29), and the method is restarted if either of the relations (3.30) and (3.31) does not hold. If

∑

k≥1

‖gk‖t

‖dk‖2
= ∞ (3.32)

holds for some constant t ∈ [0, 4], the method converges in the sense that (3.4) is true.

Proof Denote N to be the set of all positive integers and define

N1 = {k ∈ N : gT
k dk ≤ −1

2
‖gk‖2}, (3.33)

N2 = {k ∈ N\N1 : k = t(p) + 1 for some p} (3.34)

and
N3 = N\(N1

⋃
N2). (3.35)

For any integer k ∈ N1, we clearly have from Lemma 2.2 that

∑

k∈N1

‖gk‖4

‖dk‖2
≤ 4

∑

k∈N1

(gT
k dk)2

‖dk‖2
< ∞. (3.36)

In the case when k ∈ N2, since dk is defined only by −gk and dk−1, we can prove similarly to
the proof of Theorem 2.3 in [3] that, if (3.12) holds, there exist constant c3 > 0 and integer k0

such that
‖gk‖4

‖dk‖2
≤ 2

c3

[
(gT

k dk)2

‖dk‖2
+

(gT
k−1dk−1)2

‖dk−1‖2

]
(3.37)

holds for all k ≥ k0. Thus by Lemma 2.2, we also have that

∑

k∈N2

‖gk‖4

‖dk‖2
< ∞. (3.38)

Now we assume that k ∈ N3. In this case, by the definition of N3 and the assumptions in
this theorem, we have that (3.30), (3.31) and

gT
k dk > −1

2
‖gk‖2 (3.39)

hold for k ∈ N3. Taking norms in (3.22), we get that

‖dk‖2 = −‖gk‖2 − 2gT
k dk + β2

k‖dk−1‖2 + 2βkγkd
T
k−1dt(p) + γ2

k‖dt(p)‖2. (3.40)

By this and (3.39), it is easy to show

‖dk‖2 ≤ 2(β2
k‖dk−1‖2 + γ2

k‖dt(p)‖2). (3.41)

On the other hand, it follows from (1.7), (2.6) and (3.31) that

‖gk‖2 ≤ |gT
k dk|+ σ|βkg

T
k−1dk−1|+ σ3|γkg

T
t(p)dt(p)|, (3.42)
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which implies that

‖gk‖4 ≤ 2[(gT
k dk)2 + σ2β2

k(gT
k−1dk−1)2 + σ2

3γ
2
k(gT

t(p)dt(p))
2]. (3.43)

Combining (3.41) and (3.43), we obtain

2(gT
k dk)2

‖dk‖2
+

σ2(gT
k−1dk−1)2

‖dk−1‖2
+

σ2
3(g

T
t(p)dt(p))2

‖dt(p)‖2

≥
(gT

k dk)2 + σ2β2
k(gT

k−1dk−1)2 + σ2
3γ

2
k(gT

t(p)dt(p))2

β2
k‖dk−1‖2 + γ2

k‖dt(p)‖2

≥ ‖gk‖4

2β2
k‖dk−1‖2 + 2γ2

k‖dt(p)‖2
. (3.44)

By the above relation, (3.29) and Lemma 2.2, we have

∑

k∈N3

‖gk‖4

β2
k‖dk−1‖2 + γ2

k‖dt(p)‖2
≤ c4

∑

k≥1

(gT
k dk)2

‖dk‖2
< ∞, (3.45)

where c4 = 2[2 + σ2 + nσ2
3]. Thus if (3.12) holds, we know from (3.45) that for all large k,

β2
k‖dk−1‖2 + γ2

k‖dt(p)‖2 ≥ 2‖gk‖2

1− δ
. (3.46)

This and (3.30) show that

‖dk‖2 ≥ −‖gk‖2 + (1− c2)(β2
k‖dk−1‖2 + γ2

k‖dt(p)‖2)

≥ 1− c2

2
(β2

k‖dk−1‖2 + γ2
k‖dt(p)‖2), (3.47)

which with (3.45) indicates
∑

k∈N3

‖gk‖4

‖dk‖2
< ∞. (3.48)

Therefore, if (3.12) holds, we have from (3.36), (3.38) and (3.48) that

∑

k≥1

‖gk‖4

‖dk‖2
< ∞. (3.49)

The above relation and (3.32) give a contradiction. Thus (3.4) must hold. 2

4. Some discussions

We have proposed some mild conditions which ensure the global convergence of the general
three-term conjugate gradient method using strong Wolfe line searches. These conditions are
weaker than those used in reference [5]. The results of this paper provide some unified ap-
proaches to the analyses of the three-term conjugate gradient method, since they do not make
any assumptions on the restarts.
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Since the three-term conjugate gradient method includes the classical two-term conjugate
gradient method as its special form, some results made in [3] and [2] can be also regarded
corollaries of this paper. In addition, according to the discussions in the last section of [2], one
can see that condition (3.21) can not be relaxed.

Some of our attentions were also devoted to the restart criterions in the three-term conjugate
gradient method. It is expected that besides (3.29), the other criterions (3.30) and (3.31) will
be also helpful in designing more efficient three-term conjugate gradient methods.
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